Assessment of Pyrogenic Carbonaceous Materials for Effective Removal of Radiocesium

Article Preview

Abstract:

Pyrogenic carbonaceous materials produced by pyrolysis process of various waste feedstocks are increasingly used in non-soil applications such as water purification tools. Pyrogenic carbonaceous materials thermochemically converted from wood chips, corn cobs, garden green waste, cherry pits, walnut shells, pine cones and municipal sewage sludge in slow pyrolysis under N2 atmosphere, were characterized by total C analysis, specific surface area, volumes of micro- and mesopores and tested in batch experiments as potential radiocesium sorption materials. Cesium adsorption-desorption experiments were conducted using the 137Cs radioisotope. Although tested materials significantly differ in Cs removal, Cs+ ions uptake could be attributed to the mechanisms of Freundlich surface adsorption. The highest maximum sorption capacities were reached for pine cones, wood chips and garden waste pyrogenic materials and reached 95.9 to 126 μmol g-1. These results demonstrate suitability of selected Pyrogenic carbonaceous materials as Cs adsorbents potentially useable as reactive barriers for 137Cs contaminated effluents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-110

Citation:

Online since:

April 2020

Export:

Price:

* - Corresponding Author

[1] S. Taj, D. Muhammad, M.A. Chaudhry, M. Mazhar, Lithium, rubidium and cesium ion removal using potassium iron (III) hexacyanoferrate (II) supported on polymethylmethacrylate, J. Radioanal. Nucl. Chem. 288 (2011) 79-88.

DOI: 10.1007/s10967-010-0873-1

Google Scholar

[2] M.R. Awual, S. Suzuki, T. Taguchi, H. Shiwaku, Y. Okamoto, T. Yaita, Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents, Chem. Eng. J. 242 (2014) 127-135.

DOI: 10.1016/j.cej.2013.12.072

Google Scholar

[3] M. Onodera, A. Kirishima, S. Nagao, K. Takamiya, T. Ohtsuki, D. Akizama, N. Sato, Desorption of radioactive cesium by seawater from the suspended particles in river water, Chemosphere 185 (2017) 806-815.

DOI: 10.1016/j.chemosphere.2017.07.078

Google Scholar

[4] J, Bu, R.T. Gonzalez, K.G. Brown, F. Sanchez, Adsorption mechanisms of cesium at calcium-silicate-hydrate surfaces using molecular dynamics simulations, J. Nucl. Mater. 515 (2019) 35-51.

DOI: 10.1016/j.jnucmat.2018.12.007

Google Scholar

[5] S.M. Park, D.S. Alessi, K. Baek, Selective adsorption and irreversible fixation behavior of cesium onto 2:1 layered clay mineral: A mini review. J. Hazard. Mater. 369 (2019) 569-576.

DOI: 10.1016/j.jhazmat.2019.02.061

Google Scholar

[6] L. Remenárová, M. Pipíška, E. Florková, J. Augustín, M. Rozložník, S. Hostin, M. Horník, Radiocesium adsorption by zeolitic materials synthesized from coal fly ash, Nova Biotechnol. Chim. 13 (2014) 57-72.

DOI: 10.2478/nbec-2014-0007

Google Scholar

[7] S. Yamauchi, T. Yamagishi, K. Kirikoshi, M. Yatagai, Cesium adsorption from aqueous solutions onto Japanese oak charcoal I: effects of the presence of group 1 and 2 metal ions, J. Wood Sci. 60 (2014) 473-479.

DOI: 10.1007/s10086-014-1431-1

Google Scholar

[8] T.F. Hamilton, R.E. Martinelli, S.R. Kehl, M.H.B. Hazes, I.J. Smith, S.K.G. Peters, M.W. Tamblin, C.L. Schmitt, D. Hawk, A preliminary assessment on the use of biochar as a soil additive for reducing soil-to-plant uptake of cesium isotopes in radioactively contaminated environments, J. Radioanal. Nucl. Chem. 307 (2016), 2015-2020.

DOI: 10.1007/s10967-015-4520-8

Google Scholar

[9] S. Khandaker, Y. Toyohara, S. Kamida, T. Kuba, Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal. Water Resour. Ind. 19 (2018) 35-46.

DOI: 10.1016/j.wri.2018.01.001

Google Scholar

[10] T. Sizmur, T. Fresno, G. Akgül, H. Frost, E. Moreno-Jiménez, Biochar modification to enhance sorption of inorganics from water, Bioresour. Technol. 246 (2017) 34-47.

DOI: 10.1016/j.biortech.2017.07.082

Google Scholar

[11] B. Micháleková-Richveisová, V. Frišták, M. Pipíška, L. Ďuriška, E. Moreno-Jimenez, G. Soja, Iron-impregnated biochars as effective phosphate sorption materials, Environ. Sci.Pollut. Res. 24 (2017) 463-475.

DOI: 10.1007/s11356-016-7820-9

Google Scholar

[12] M. Pipíška, B. Richveisová, V. Frišták, M. Horník, L. Remenárová, R. Stiller, G. Soja, Sorption separation of cobalt and cadmium by straw-derived biochar: a radiometric study, J. Radioanal. Nucl. Chem. 311 (2017) 85-97.

DOI: 10.1007/s10967-016-5043-7

Google Scholar

[13] V. Frišták, M. Pipíška, G. Soja, Pyrolysis treatment of sewage sludge: A promising way to produce phosphorus fertilizer, J. Clean. Prod. 172, (2018) 1772-1778.

DOI: 10.1016/j.jclepro.2017.12.015

Google Scholar

[14] J. Kiener, L. Limousy, M. Jeguirim, J-M. Le Meins, S. Hajjar-Garreau, G. Bigoin, C.M. Ghimbeu, Activated Carbon/Transition Metal (Ni, In, Cu) Hexacyanoferrate Nanocomposites for Cesium Adsorption, Materials, 12 (2019) 1253.

DOI: 10.3390/ma12081253

Google Scholar

[15] M. Caccin, F. Giacobbo, M. Da Ros, L. Besozzi, M. Mariani, Adsorption of uranium, cesium and strontium onto coconut shell activated carbon, J. Radioanal. Nucl. Chem. 297 (2013) 9-18.

DOI: 10.1007/s10967-012-2305-x

Google Scholar

[16] V. Frišták, M. Pipíška, J. Lesný, G. Soja, W. Friesl-Hanl, A. Packová, Utilization of biochar sorbents for Cd2+, Zn2+ , and Cu2+ ions separation from aqueous solutions: comparative study, Environ. Monit. Assess. 187 (2015) 16 p.

DOI: 10.1007/s10661-014-4093-y

Google Scholar

[17] S. Kloss, F. Zehetner, A. Dellantonio, R. Hamid, F. Ottner, V. Liedtke, M. Schwanninger, M.H. Gerzabek, G. Soja, Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties, J. Environ. Qual. 41 (2012) 990-1000.

DOI: 10.2134/jeq2011.0070

Google Scholar

[18] T. Fujita, L.P. Wang, K. Yabui, G. Dodbiba, K. Okaya, S. Matsuo, K. Nomura, Adsorption of Cesium Ion on Various Clay Minerals and Remediation of Cesium Contaminated Soil in Japan, Resources Processing, 60 (2013), 13-17.

DOI: 10.4144/rpsj.60.13

Google Scholar