Direct Polymer Additive Tooling - Economic Analysis of Additive Manufacturing Technologies for Fabrication of Polymer Tools for Injection Molding

Article Preview

Abstract:

This research project aims to analyze the economic feasibility of Additive Manufacturing (AM) as supportive technology in Injection Molding (IM) tool manufacturing by estimating the potential cost-savings and lead-time reduction. Cost and lead-time considerations during small part quantity production are analyzed by developing an extended estimation model for the integration of AM in tool production. Based on six different real reference parts, the developed model shows the projected savings and the current limitations of AM applications in tool production due to material constraints. Furthermore, this extended model offers a holistic view on part cost and lead-time information, by considering tooling as well as production phases in IM and integrating tool life as a key variable. Hence, this research project closes a literature gap and facilitates the integration of AM into the IM process chain.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-18

Citation:

Online since:

May 2020

Export:

Price:

* - Corresponding Author

[1] A. Kampker, P. Burggräf, C. Wesch-Potente, G. Petersohn, and M. Krunke, Life cycle oriented evaluation of flexibility in investment decisions for automated assembly systems,, CIRP Journal of Manufacturing Science and Technology, vol. 6, no. 4, p.274–280, (2013).

DOI: 10.1016/j.cirpj.2013.07.004

Google Scholar

[2] A. Kampker, P. Burggräf, C. Deutskens, A. Maue, and R. Förstmann, Integrated Product and Process Development: Modular Production Architectures based on Process Requirements,, Procedia CIRP, vol. 20, p.109–114, (2014).

DOI: 10.1016/j.procir.2014.05.039

Google Scholar

[3] T. Altan, B. Lilly, and Y. C. Yen, Manufacturing of Dies and Molds,, CIRP Annals, vol. 50, no. 2, p.404–422, (2001).

DOI: 10.1016/s0007-8506(07)62988-6

Google Scholar

[4] G. N. Levy, R. Schindel, and J. P. Kruth, Rapid Manufacturing and Rapid Tooling with Layer Manufacturing (LM) technologies, state of the art and future perspectives,, CIRP Annals, vol. 52, no. 2, p.589–609, (2003).

DOI: 10.1016/s0007-8506(07)60206-6

Google Scholar

[5] S. Rahmati, Direct Rapid Tooling,, in Comprehensive Materials Processing: Elsevier, 2014, p.303–344.

DOI: 10.1016/b978-0-08-096532-1.01013-x

Google Scholar

[6] A. Kampker, R. Förstmann, S. Kawollek, and B. Bride, Additive Tooling für kunststoffbasierte Urformverfahren,, Lightweight Des, vol. 9, no. S2, p.38–43, (2016).

DOI: 10.1007/s35725-016-0057-1

Google Scholar

[7] J. I. Segal and R. I. Campbell, A review of research into the effects of rapid tooling on part properties,, Rapid Prototyping Journal, vol. 7, no. 2, p.90–99, (2001).

DOI: 10.1108/13552540110386718

Google Scholar

[8] P. Gonçalves Martinho, P. Jorge Bártolo, and A. Sérgio Pouzada, Hybrid moulds: Effect of the moulding blocks on the morphology and dimensional properties,, Rapid Prototyping Journal, vol. 15, no. 1, p.71–82, (2009).

DOI: 10.1108/13552540910925081

Google Scholar

[9] C. K. Chua, K. H. Hong, and S. L. Ho, Rapid tooling technology. Part 1. A comparative study,, Int J Adv Manuf Technol, vol. 15, no. 8, p.604–608, (1999).

DOI: 10.1007/s001700050108

Google Scholar

[10] A. Rosochowski and A. Matuszak, Rapid tooling: the state of the art,, Journal of Materials Processing Technology, vol. 106, no. 1, p.191–198, http://www.sciencedirect.com/science/ article/pii/S0924013600006130, (2000).

DOI: 10.1016/s0924-0136(00)00613-0

Google Scholar

[11] Á. Oroszlany, P. Nagy, and J. G. Kovács, Injection Molding of Degradable Interference Screws into Polymeric Mold,, MSF, vol. 659, p.73–77, (2010).

DOI: 10.4028/www.scientific.net/msf.659.73

Google Scholar

[12] J. Noble, K. Walczak, and D. Dornfeld, Rapid Tooling Injection Molded Prototypes: A Case Study in Artificial Photosynthesis Technology,, Procedia CIRP, vol. 14, p.251–256, (2014).

DOI: 10.1016/j.procir.2014.03.035

Google Scholar

[13] N. Volpato, D. M. Solis, and C. A. Costa, An analysis of Digital ABS as a rapid tooling material for polymer injection moulding,, IJMPT, vol. 52, no. 1/2, p.3, (2016).

DOI: 10.1504/ijmpt.2016.073616

Google Scholar

[14] T. Tábi et al., Comparison of thermal, mechanical and thermomechanical properties of poly(lactic acid) injection-molded into epoxy-based Rapid Prototyped (PolyJet) and conventional steel mold,, J Therm Anal Calorim, vol. 123, no. 1, p.349–361, (2016).

DOI: 10.1007/s10973-015-4997-y

Google Scholar

[15] G. A. Mendible, J. A. Rulander, and S. P. Johnston, Comparative study of rapid and conventional tooling for plastics injection molding,, Rapid Prototyping Journal, vol. 23, no. 2, p.344–352, (2017).

DOI: 10.1108/rpj-01-2016-0013

Google Scholar

[16] M. Mischkot et al., Performance Simulation and Verification of Vat Photopolymerization Based, Additively Manufactured Injection Molding Inserts with Micro-Features,, in Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017, 2018, p.162–168.

DOI: 10.1007/978-3-319-66866-6_16

Google Scholar

[17] M. Mischkot et al., Dimensional accuracy of Acrylonitrile Butadiene Styrene injection molded parts produced in a pilot production with an additively manufactured insert,, in 33rd International Conference of The Polymer Processing Society (PPS-33), (2018).

Google Scholar

[18] A. Charalambis et al., Economic trade-offs of additive manufacturing integration in injection moulding process chain,, in (2017).

Google Scholar

[19] A. Charalambis, L. Kerbache, G. Tosello, D. Pedersen, and M. Mischkot, Economic Analysis of Additive Manufacturing Integration in Injection Molding Process Chain,, in (2017).

DOI: 10.1007/s00170-018-2762-7

Google Scholar

[20] A. Kampker, J. Triebs, S. Kawollek, and P. Ayvaz, Direct Polymer Additive Tooling – Verwendung von Polymerwerkzeugen für den Einsatz im Kleinserien Spritzguss,, in Rapid.Tech + FabCon 3.D – International Trade Show & Conference for Additive Manufacturing: Proceedings of the 15th Rapid.Tech Conference, Erfurt, Germany, 5 – 7 June 2018, M. Kynast, M. Eichmann, and G. Witt, Eds., München: Hanser, 2018, p.45–62.

DOI: 10.3139/9783446458123.003

Google Scholar

[21] A. Kampker, J. Triebs, B. A. Ford, S. Kawollek, and P. Ayvaz, Potential analysis of additive manufacturing technologies for fabrication of polymer tools for injection moulding – A comparative study,, in 2018 IEEE International Conference on Advanced Manufacturing (ICAM), 2018, p.49–52.

DOI: 10.1109/amcon.2018.8614915

Google Scholar