Novel Composite Membranes Based on Polyaniline/Ionic Liquids for PEM Fuel Cells Applications

Article Preview

Abstract:

The modern development of (PEMFCs) is still faced by several obstacles such as membrane cost and performance. Perfluorosulfonic acid membranes (e.g. Nafion of DuPont) are currently the most successful in PEMFCs. PEMFCs usually operate at temperatures around 80°C and at atmospheric pressure. Higher temperature operation (T >100°C) is preferred and has several advantages including enhanced fuel cell kinetics, improved catalysts tolerance for contaminants and recovery of useful heat. However, the high-temperature operation is not permitted using Nafion membranes as they dehydrate and their proton conductivity dramatically decreases, thus, lowering the fuel cell efficiency. Therefore, this work aims at developing a Nafion-free membrane that would successfully operate at higher temperatures and with reasonable proton conductivity (preferably higher than 10-3 S/cm). In this study, novel solid proton conductors based on polyaniline (PANI) and ionic liquids (ILs) are proposed as membranes in PEMFCs. PANI-IL composite membranes are fabricated using porous polytetrafluoroethylene (PTFE) as support. The composite membrane was evaluated for its proton conductivity. The results showed a high proton conductivity range of 0.01 to 0.02 S/cm when a 3.7 wt % of the ionic liquid (IL)[1-Hexyl-3-Methylimidazolium Tricyanomethanide] was used.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-60

Citation:

Online since:

September 2020

Export:

Price:

* - Corresponding Author

[1] I. Dincer, Hydrogen and fuel cell technologies for sustainable futue. Jordan J. Mecha. Indus. Eng. 2 (2008) 1 – 14.

Google Scholar

[2] R. Raza et al., Fuel cell technology for sustainable development in Pakistan – An over-view, Renew. Sustain.Energy Rev. 53 (2016) 450-461.

Google Scholar

[3] T.N. Atalla and L.C. Hunt, Modelling residential electricity demand in the GCC countries, Energy Economics 59 (2016) 149-158.

DOI: 10.1016/j.eneco.2016.07.027

Google Scholar

[4] S.L. Chavan and D.B. Talange, Modeling and performance evaluation of PEM fuel cell by controlling its input parameters, Energy 138 (2017) 437-445.

DOI: 10.1016/j.energy.2017.07.070

Google Scholar

[5] J. Larminie and A. Dicks, Fuelling Fuel Cells, Fuel Cell Systems Explained, 2nd edition, (2013).

DOI: 10.1002/9781118878330.ch8

Google Scholar

[6] O.Z. Sharaf and M.F. Orhan, An overview of fuel cell technology: Fundamentals and applications,Renew. Sustain.Energy Rev. 32 (2014) 810-853.

DOI: 10.1016/j.rser.2014.01.012

Google Scholar

[7] B. Chen, Y. Cai, J. Shen, Z. Tu, and S. H. Chan, Performance degradation of a proton exchange membrane fuel cell with dead-ended cathode and anode, Appl. Therm. Eng. 132 (2018) 80-86.

DOI: 10.1016/j.applthermaleng.2017.12.078

Google Scholar

[8] L.F. Brown, A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles, Inter. J. Hydr. Energy 26 (2001) 381-397.

DOI: 10.1016/s0360-3199(00)00092-6

Google Scholar

[9] R. Jiang, H.R. Kunz, J.M. Fenton, Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol–gel reaction and solution casting for direct methanol fuel cells, J. Membr. Scie. 272 (2006) 116-124.

DOI: 10.1016/j.memsci.2005.07.026

Google Scholar

[10] H. Mohammed, A. Al-Othman, P. Nancarrow, M. Tawalbeh, M.H. Asaad, Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency, Energy 172 (2019) 207-219.

DOI: 10.1016/j.energy.2019.01.105

Google Scholar

[11] R. E. Rosli et al., A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system, Inter. J. Hydr. Energy 42 (2017) 9293-9314.

DOI: 10.1016/j.ijhydene.2016.06.211

Google Scholar

[12] K. Dutta, S. Das, and P.P. Kundu, Partially sulfonated polyaniline induced high ion-exchange capacity and selectivity of Nafion membrane for application in direct methanol fuel cells, J. Membr. Sci. 473 (2015) 94-101.

DOI: 10.1016/j.memsci.2014.09.010

Google Scholar

[13] F.D.R. Amado, S. Krishnamurthy, Synthesis and characterisation of polyaniline (PAni) membranes for fuel cell, Adv. Mater. Letters 7 (2016)719-722.

DOI: 10.5185/amlett.2016.6127

Google Scholar

[14] Z.A. Boeva, V.G. Sergeyev, Polyaniline: Synthesis, properties, and application, Polym. Sci. Series C 56 (2014) 144-153.

DOI: 10.1134/s1811238214010032

Google Scholar

[15] M. Bláha et al., Structure and properties of polyaniline interacting with H-phosphonates, Synth. Metals 232 (2017) 79-86.

Google Scholar

[16] A. Al-Othman, A.Y. Tremblay, W. Pell, Y. Liu, B.A. Peppley, M. Ternan, The effect of glycerol on the conductivity of Nafion-free ZrP/PTFE composite membrane electrolytes for direct hydrocarbon fuel cells, J. Power Sources 199 (2012) 14-21.

DOI: 10.1016/j.jpowsour.2011.09.104

Google Scholar

[17] A. Al-Othman, Y. Zhu, M. Tawalbeh, A.Y. Tremblay, M. Tarenan, Proton conductivity and morphology of new composite membranes based on zirconium phosphates, phosphotungstic acid, and silicic acid for direct hydrocarbon fuel cells applications, J. Porous Materials 24 (2017) 721-729.

DOI: 10.1007/s10934-016-0309-6

Google Scholar

[18] A. Ozden, M. Ercelik, Y. Ozdemir, Y. Devrim, C.O. Colpan, Enhancement of direct methanol fuel cell performance through the inclusion of zirconium phosphate, Inter. J. Hydr. Energy 42 (2017) 21501-21517.

DOI: 10.1016/j.ijhydene.2017.01.188

Google Scholar

[19] A. Al-Othman, A.Y. Tremblay, W. Pell, S. Latief, Y. Liu, B.A. Peppley, M. Ternan , A modified silicic acid (Si) and sulphuric acid (S)–ZrP/PTFE/glycerol composite membrane for high temperature direct hydrocarbon fuel cells, J. Power Sources 224 (2013) 158-167.

DOI: 10.1016/j.jpowsour.2012.09.067

Google Scholar

[20] M. Díaz, A. Ortiz, I. Ortiz, Progress in the use of ionic liquids as electrolyte membranes in fuel cells, J. Membr. Sci. 469 (2014) 379-396.

DOI: 10.1016/j.memsci.2014.06.033

Google Scholar

[21] H. Mohammed, A. Al-Othman, P. Nancarrow, Y. El Sayed, M. Tawalbeh, Enhanced proton conduction in zirconium phosphate/ionic liquids materials for high-temperature fuel cells, Inter. J. Hydr. Energy, in press, https://doi.org/10.1016/j.ijhydene.2019.09.118.

DOI: 10.1016/j.ijhydene.2019.09.118

Google Scholar

[22] A.M. Youssef, S. Kamel, M. El-Sakhawy, M.A. El Samahy, Structural and electrical properties of paper–polyaniline composite, Carbohy. Polym. 90 (2012) 1003-1007, (2012).

DOI: 10.1016/j.carbpol.2012.06.034

Google Scholar

[23] I. Radev, G. Georgiev, V. Sinigersky, E. Slavcheva, Proton conductivity measurements of PEM performed in EasyTest Cell, Inter. J. Hydr. Energy 33 (2008) 4849-4855.

DOI: 10.1016/j.ijhydene.2008.06.056

Google Scholar

[24] J. Yang, P.K. Shen, J. Varcoe, Z. Wei, Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity, J. Power Sources 189 (2009) 1016-1019.

DOI: 10.1016/j.jpowsour.2008.12.076

Google Scholar

[25] S.M.J. Zaidi, Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate, Electrochim. Acta 50 (2005) 4771-4777.

DOI: 10.1016/j.electacta.2005.02.027

Google Scholar

[26] Suryani, Y.-N. Chang, J.-Y. Lai, and Y.-L. Liu, Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells, J. Membr. Sci. 403-404 (2012) 1-7.

DOI: 10.1016/j.memsci.2012.01.043

Google Scholar