Research Progress of Effect of Heat Treatment on Microstructure, Phase Transformation Behaviors and Memory Properties in Ti-Ni Based Shape Memory Alloys

Article Preview

Abstract:

Ti-Ni based shape memory alloys (SMAs) are of excellent shape memory effect, superelasticity and damping property. These properties of the alloys can be fully displayed only after proper heat treatment. In this paper, the research progresses of the effect of the heat treatment on the microstructure, phase composition, phase transformation behaviors and shape memory properties in Ti-Ni based SMAs are reviewed, the correlation influence mechanism is summarized, and the future research directions in this field are pointed out. It is expected to provide reference for the development of Ti-Ni based SMAs and their heat treatment technologies.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1036)

Pages:

20-31

Citation:

Online since:

June 2021

Export:

Price:

* - Corresponding Author

[1] L. Sun, W. M Huang, Z Ding, et al, Stimulus-responsive shape memory materials: A review, Mater. Des. 33 (2012) 577-640.

Google Scholar

[2] H.J. Niu, C.X. Lin, Review of shape memory alloy application status, J. Tianjin Univ. Technol. 36 (2020) 1-6.

Google Scholar

[3] F. Xiao, H. Chen, X.J. Jin, Research progress in elastocaloric cooling effect basing on shape memory alloy, Acta Metall. Sin. 57 (2021) 29-41.

Google Scholar

[4] J.M. Jani, M. Leary, A Sunic, et al, A review of shape memory alloy research, applications and opportunities, Mater. Des. 56 (2014) 1078-1113.

Google Scholar

[5] D.C. Ren, H.B. Zhang, X.D. Zhao, et al, Influence of manufacturing parameters on the properties of electron beam melted Ti-Ni alloy, Acta Metall. Sin. 56 (2020) 1103-1112.

Google Scholar

[6] B.S. Shariat, Q. Meng, A.S. Mahmud, et al, Functionally graded shape memory alloys: Design, fabrication and experimental evaluation, Mater. Des. 124 (2017) 225-237.

DOI: 10.1016/j.matdes.2017.03.069

Google Scholar

[7] M.J. Jin, Y.W. Song, X.D. Wang, et al, Ultrahigh damping capacity achieved by modulating R phase in Ti49.2Ni50.8 shape memory alloy wires, Scr. Mater. 183 (2020) 102-106.

DOI: 10.1016/j.scriptamat.2020.03.017

Google Scholar

[8] Z.S. Yuan, D.Z. Lin, Y. Cui, et al, Research progress on the phase transformation behavior, microstructure and property of NiTi based high temperature shape memory alloys, Rare Met. Mater. Eng.. 47 (2018) 2269-2274.

Google Scholar

[9] S.W. Shi, Z.S. Yuan, Y.H. Wang, et al, Effect of heat treatment on microstructure and phase transformation behavior of NiTi shape memory alloys, Trans. Mater. Heat Treat. 38 (2017) 48-54.

Google Scholar

[10] H.B. Deng, Y. H. Chen, S. H. Li, et al, Research progress on the laser additive manufacturing technology of NiTi shape memory alloys, Rare Met. Mater. Eng. 48 (2019) 4119-4130.

Google Scholar

[11] L.P. Kang, H. Qian, Y.C. Guo, et al, Experimental investigation on mechanical properties of large size shape memory alloy bars under different heat treatments, J. Funct. Mater. 52 (2021) 1185-1191.

DOI: 10.3390/ma13173729

Google Scholar

[12] S. Saedi, A.S. Turabi, M.T. Andani, et al, The influence of heat treatment on the thermomechanical response of Ni-rich Ni Ti alloys manufactured by selective laser melting, J.Alloys Compd.. 677 (2016) 204-210.

DOI: 10.1016/j.jallcom.2016.03.161

Google Scholar

[13] Z.R. He, F. Wang, J.E. Zhou, Progress in studies on shape memory effect and its engineering applications of TiNi alloys, Trans. Mater. Heat Treat.. 26 (2005) 21-27.

Google Scholar

[14] J. Jiang, D.Q. Jiang, S.J. Hao, et al, Martensitic transformation and properties of in-situ Ni Ti-W composite, Heat Treat. Met.. 45 (2020) 136-141.

Google Scholar

[15] R. Li, L.B. Zeng, T Liu, et al, Study on friction characteristics of pure Ni/NiTi alloy at different temperatures, Mater. Rep.. 34 (2020) 297-303.

Google Scholar

[16] Z.R. He, Q. Wang, F. Wang, et al, Effects of annealing temperatures on microstructure and tensile properties of Ti-Ni-Cr low-temperature superelastic alloy, Rare Met. Mater. Eng.. 40 (2011) 1998-2001.

Google Scholar

[17] M.G. Li, D.Q. Sun, X.M. Qiu, Effects of Temperature on microstructure and mechanical behaviour of biomedical TiNi shape memory alloy wire, Rare Met. Mater. Eng.. 36 (2007) 998-1001.

Google Scholar

[18] Z.F. Ru, X.Y. Song, Y. Li, Effect of solution and aging treatments on the microstructure and mechanical properties of a Ni50Ti44Al6 alloy, J. Univ. Sci. Technol. Beijing. 34 (2012) 39-43.

Google Scholar

[19] Q. Wang, Z.R. He, D.W. Shao, Effects of solution annealing and aging on tensile property and microstructure of Ti-Ni-Cr shape memory alloy, Rare Met. Mater. Eng.. 41 (2012) 119-1195.

Google Scholar

[20] X.K. Meng, C.W. Zhao, Research progress on Ti-Ni-Hf high temperature shape memory alloy, Mater. Rep.. 27 (2013) 99-106.

Google Scholar

[21] Z.C. Zhu, Martensitic transformation (15), Heat Treat. Technol. Equip.. 35 (2014) 62-66.

Google Scholar

[22] L.Z. Zeng, B.H. Luo, B. Li, et al, Effects of solution-aging treatment on microstructures and properties of Ti-55.06%Ni-0.3%Cr alloy, Trans. Nonferrous Met. Soc. China. 25 (2015) 1865-1871.

DOI: 10.1016/s1003-6326(15)63793-1

Google Scholar

[23] J.K. Allafi , X. Ren, G. Eggeler, The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys, Acta Mater.. 50 (2002) 793-803.

DOI: 10.1016/s1359-6454(01)00385-8

Google Scholar

[24] Y. Liu, M. Blanc, G. Tan, et al, Effect of ageing on the transformation behaviour of Ti-49.5at.% Ni, Mater. Sci. Eng. A. 438 (2006) 617-621.

Google Scholar

[25] Z.R. He, Multi-stage reversible transformation types and their evolving processes of Ti-Ni shape memory alloys, Acta Metall. Sin.. 43 (2007) 353-357.

Google Scholar

[26] B. Li, B.H. Luo, Y.S. Ou, Martensitic transformation characteristics and properties of deformed Ti50Ni45Cu5 shape memory alloy, Chin. J. Rare Met.. 41 (2017) 870-876.

Google Scholar

[27] X.T. Zu, L.B. Lin, Z.G. Wang, et al, Influence of electron irradiation on the martensitic transformation of a binary TiNi shape memory alloy, J. Alloys Compd.. 351 (2003) 87-90.

DOI: 10.1016/s0925-8388(02)01080-0

Google Scholar

[28] X.D. Feng, H.J. Yu, J.M. Zhou, et al, Investigation of the contribution of R-phase transformation on the two-way shape memory effect, J. Sichuan Univ., Nat. Sci. Ed.. 5 (2004) 998-1002.

Google Scholar

[29] J. Frenzel, E.P. George, A. Dlouhy, et al, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Mater.. 58 (2010) 3444-3458.

DOI: 10.1016/j.actamat.2010.02.019

Google Scholar

[30] S.H. Chang, S.K. Wu, Internal friction of B2 → B19' martensitic transformation of Ti50Ni50 shape memory alloy under isothermal conditions, Mater. Sci. Eng. A. 454-455 (2007) 379-383.

DOI: 10.1016/j.msea.2006.11.157

Google Scholar

[31] J. Frenzel, E.P. George, A Dlouhy, et al, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Mater.. 58 (2010) 3444-3458.

DOI: 10.1016/j.actamat.2010.02.019

Google Scholar

[32] P. Filip, K Mazanec, J Lukacevic, Effect of forming and heat treatment on the transformation temperatures of TiNi alloys, Met. Mater.. 28 (1990) 41-44.

Google Scholar

[33] X.Y. Yu, Y. Zou, Effect of aging on behavior of multi-step martensitic phase transformation in Ni-rich Ti-50.7at% Ni shape memory alloy, Hot Work. Technol.. 46 (2017) 236-238.

Google Scholar

[34] X.Y. Yu, Y. Zou, Effect of predeformation and aging on recovery stress of Ti-50.7at% Ni temperature control alloy, Hot Work. Technol.. 48 (2019) 207-210.

Google Scholar

[35] N.C. Si, Y.J. Zhai, S.H. Si, et al, Effect of aging treatment on transformation behavior of TiNiCr shape memory alloys, Rare Met. Mater. Eng.. 40 (2011) 2147-2151.

Google Scholar

[36] K. Otsuka, X Ren, Martensitic transformations in nonferrous shape memory alloys, Mater. Sci. Eng. A. 273-275 (1999) 89-105.

DOI: 10.1016/s0921-5093(99)00291-9

Google Scholar

[37] S. Miyazaki, K. Otsuka, Deformation and transition behavior associated with the R-phase in Ti-Ni alloys, Metall. Mater. Trans. A. 17 (1986) 53-63.

DOI: 10.1007/bf02644442

Google Scholar

[38] J.I. Kim, S. Miyazaki, Effect of low-temperature aging on the R-phase transformation of a Ti-50.9Ni alloy, Mater. Sci. Forum. 394 (2002) 225-228.

DOI: 10.4028/www.scientific.net/msf.394-395.225

Google Scholar

[39] J.I. Kim, S. Miyazaki, Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9at%Ni alloy, Acta Mater.. 53 (2005) 4545-4554.

DOI: 10.1016/j.actamat.2005.06.009

Google Scholar

[40] M. Peng, Y. Ma, C.Y. Deng, et al, Molecular dynamics simulation of thermoelastic martensitic transformation in NiTi shape memory alloy, J. Mater. Sci. Eng.. 38 (2020) 840-846.

Google Scholar

[41] Y.Q. Du, Z.R. He, F. Wang, et al, Effect of annealing on microstructure and tensile properties of narrow hysteresis Ti-Ni-Cu-Cr shape memory alloy, Trans. Mater. Heat Treat.. 39 (2018) 30-35.

Google Scholar

[42] H. Zhao, C.Q. Liang, J.T. Liu, et al, Effect of aging treatment on superelasticity of a Ti48.8Ni50.8V0.4 alloy, J. Mater. Eng. Perform.. 21 (2012) 2566-2571.

Google Scholar

[43] X.L. Meng, W. Cai, Y.D. Fu, et al, Shape-memory behaviors in an aged Ni-rich TiNiHf high temperature shape-memory alloy, Intermetallics. 16 (2008) 698-705.

DOI: 10.1016/j.intermet.2008.02.005

Google Scholar

[44] X. Huang, Y. Liu, Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy, Scr. Mater.. 45 (2001) 153-160.

DOI: 10.1016/s1359-6462(01)01005-3

Google Scholar

[45] Y.X. Tong, J.T. Liu, F. Chen, et al, Effect of aging on martensitic transformation and superelasticity of TiNiCr shape memory alloy, Trans. Nonferrous Met. Soc. China. 24 (2014) 2598-2605.

DOI: 10.1016/s1003-6326(14)63388-4

Google Scholar

[46] Z.S. Yuan, Y.H. Wu, Y.H. Wang, et al, Effect of aging on superelasticity of nickel-titanium shape memory alloy wires, Heat Treat. Met.. 39 (2014) 78-81.

Google Scholar

[47] Y.I. Chumlyakov, I.V. Kireeva, I. Karaman, et al, Orientational dependence of shape memory effects and superelasticity in CoNiGa, NiMnGa, CoNiAl, FeNiCoTi, and TiNi single crystals, Russ. Phys. J.. 47 (2004) 893-911.

DOI: 10.1007/s11182-005-0030-4

Google Scholar

[48] Y.F. Li, X.Y. Kang, X.Q. Yin, et al, Microstructure and mechanical properties of cold-rolled Ti50Ni47Fe3 shape memory alloy, Trans. Nonferrous Met. Soc. China. 24 (2014) 2890-2895.

DOI: 10.1016/s1003-6326(14)63423-3

Google Scholar

[49] H. Zhang, Y.J. Li, G. Han, et al, Effect of heat treatment on mechanical properties of NiTi shape memory alloy, Heat Treat. Met.. 45 (2020) 94-99.

Google Scholar

[50] X.N. Zhang, B.Y. Xia, J. Song, et al, Effects of equal channel angular extrusion and aging treatment on R phase transformation behaviors and Ti3Ni4 precipitates of Ni-rich TiNi alloys, J. Alloys Compd.. 509 (2011) 6296-6301.

DOI: 10.1016/j.jallcom.2011.03.062

Google Scholar

[51] J. Song, L.M. Wang, X.N. Zhang, et al, Effects of second phases on mechanical properties and martensitic transformations of ECAPed TiNi and Ti-Mo based shape memory alloys, Trans. Nonferrous Met. Soc. China. 22 (2012) 1839-1848.

DOI: 10.1016/s1003-6326(11)61395-2

Google Scholar

[52] B. Wu, K.X Sun, H. Li, et al, Effect of heat treatment on superelastic hysteretic properties of shape memory alloys, J. Vib. Eng.. 13 (2000) 129-134.

Google Scholar