The Role of Notches on Fatigue Life of TWIP Steel in the HCF Regime

Article Preview

Abstract:

The present paper reports on the fatigue response of a commercial high manganese steel that features the twinning-induced plasticity (TWIP) effect in the high-cycle fatigue (HCF) regime. Specifically, attention was paid to the influence of the degree of pre-deformation and notches on the damage initiation and propagation in the TWIP steel studied. As monotonic pre-deformation significantly increases the fraction of twins and concomitant the strength of the steel, the fatigue properties and notch sensitivity are altered drastically. A thorough experimental approach including mechanical testing and microstructural characterization was employed to shed light on the microstructure-mechanical properties-relationships in order to deepen the understanding of the critical damage mechanisms. The current study clearly lays out that competing mechanisms effect the fatigue response of the TWIP steel, i.e. pre-deformation leads to strengthening but also induces damage. Since both effects evolve differently upon pre-deformation, fatigue performance can be optimized by appropriate amounts of pre-deformation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

2205-2210

Citation:

Online since:

January 2012

Export:

Price:

[1] I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov: Scripta Mater. Vol. 38 (1998), p.1009.

Google Scholar

[2] D. Canadinc, H. Sehitoglu, H.J. Maier, Y.I. Chulyakov: Acta Mater. Vol. 53 (2005), p.1831.

Google Scholar

[3] F.C. Chen, C.P. Chou, P. Li, S.L. Chu: Mater. Sci. Eng. Vol. A160 (1993), p.261.

Google Scholar

[4] G. Frommeyer, U. Brüx, P. Neumann: ISIJ International Vol. 43 (2003), p.438.

Google Scholar

[5] O. Grässel: Dissertation, Papierflieger, Clausthal-Zellerfeld (2000).

Google Scholar

[6] S. Allain, J. -P. Chateau, D. Dahmoun, O. Bouaziz: Mater. Sci. Eng. Vol. A 387-389 (2004), p.272.

Google Scholar

[7] O. Bouaziz, S. Allain, Y. Estrin: Scripta Mater. Vol. 62 (2010), p.713.

Google Scholar

[8] O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer: Int. J. Plasticity Vol. 16 (2000), p.1391.

Google Scholar

[9] E. Girault, P. Jacques, P. Ratchev, J. Van Humbeeck, B. Verlinden, E. Aernoudt: Mater. Sci. Eng. Vol. A 273-275 (1999), p.471.

DOI: 10.1016/s0921-5093(99)00330-5

Google Scholar

[10] A. Soulami, K.S. Choi, Y.F. Shen, W.N. Liu, X. Sun, M.A. Khaleel: Mater. Sci. Eng. Vol. A 528 (2011), p.1402.

Google Scholar

[11] T. Niendorf, C. Lotze, D. Canadinc, A. Frehn, H.J. Maier: Mater. Sci. Eng. Vol. A 499 (2009), p.518.

Google Scholar

[12] A.S. Hamada, L.P. Karjalainen, J. Puustinen: Mater. Sci. Eng. Vol. A 517 (2009), p.68.

Google Scholar

[13] A.S. Hamada, L.P. Karjalainen: Mater. Sci. Eng. Vol. A 527 (2010), p.5715.

Google Scholar

[14] T. Niendorf, F. Rubitschek, H.J. Maier, J. Niendorf, H.A. Richard, A. Frehn: Mater. Sci. Eng. Vol. A 527 (2010), p.2412.

DOI: 10.1016/j.msea.2009.12.012

Google Scholar

[15] T. Niendorf, F. Rubitschek, H.J. Maier, A. Frehn: Fatigue of Materials – Advances and Emergences in Understanding, Proc. Fat. Symp. MS&T'10, Wiley, Hoboken (2010), p.55.

DOI: 10.1002/9781118013373.ch5

Google Scholar

[16] J.S. Kallend, U.F. Kocks, A.D. Rollet, H.R. Wenk: Mater. Sci. Eng. A, Vol. A132 (1991), p.1.

Google Scholar

[17] C.J. Rüsing, T. Niendorf, J. Lackmann, A, Frehn, H.J. Maier: submitted for publication, (2011).

Google Scholar