Enhancement in Photocatalytic Activity of Nano-TiO2 Photocatalyst by Carbon Doping

Article Preview

Abstract:

The carbon doped TiO2 nanoparticles with different amount of carbon content were prepared using starch as the carbon source. The physical properties of the as-prepared catalyst were determined using X-ray diffraction, transmission electron microscopy and UV-vis diffuse reflectance spectroscopy. The results showed that carbon was successfully doped into TiO2 and the optical response of TiO2 was shifted from UV to the visible light region. The photocatalytic activity of these catalysts was evaluated by the degradation of phenol under UV and visible light irradiation. C-doped TiO2 nanocomposites showed better photocatalytic activity than the undoped TiO2 nanoparticles. The degradation rate of phenol on C-doped TiO2 was higher than those of pure TiO2 under visible light. As the results, C-doped TiO2 possessed better absorption ability of visible light. The kinetic studies revealed that the degradation of phenol follows pseudo first order reaction relationship.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

271-284

Citation:

Online since:

May 2013

Export:

Price:

[1] P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res. 8 (2004) 501.

DOI: 10.1016/s1093-0191(03)00032-7

Google Scholar

[2] US EPA, National Emission Standards for Hazardous Air Pollutants, 40 CFR, Part 63, 2006.

Google Scholar

[3] T. Kudo, Y. Nakamura, A. Ruike, Development of rectangular column structured titanium oxide photocatalysts anchored on silica sheets by a wet process, Res. Chem. Intermed. 29 (2003) 631.

DOI: 10.1163/156856703322539663

Google Scholar

[4] D. Bahnemann, Photocatalytic water treatment: solar energy applications, Solar Energy. 77 (2004) 445.

DOI: 10.1016/j.solener.2004.03.031

Google Scholar

[5] C. Guillard, J. Disdier, J.M. Herrmann, C. Lehaut, T. Chopin, S. Malato, J. Blanco, Comparison of various titania samples of industrial origin in the solar photocatalytic detoxification of water containing 4-chlorophenol, Catal. Today. 54 (1999) 217.

DOI: 10.1016/s0920-5861(99)00184-4

Google Scholar

[6] W.A. Zeltner, D.T. Tompkin, Shedding light on photocatalysis, Ashrae Transactions, American Society of Heating and Air-Conditioning Engineers Inc. 2 (2005) 532.

Google Scholar

[7] Y.N. Tan, C.L. Wong, and A.R. Mohamed, Review Article An Overview on the Photocatalytic Activity of Nano-Doped-TiO2 in the Degradation of Organic Pollutants, International Scholarly Research Network ISRN Materials Science, Vol. 2011, Article ID 261219-18.

DOI: 10.5402/2011/261219

Google Scholar

[8] A. Di Paola, G. Cufalo, M. Addamo et al., Photocatalytic activity of nano crystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermo-hydrolysis of TiCl4 in aqueous chloride solutions, Colloids and Surfaces A. 317 (2008) no. 1–3, 366–376.

DOI: 10.1016/j.colsurfa.2007.11.005

Google Scholar

[9] G.T. Lim, K.H. Kim, J.Park, S.H. Ohk, J.H. Kim, D.L. Cho, Synthesis of carbon-doped photocatalytic TiO2 nano-powders by AFD process, Journal of Industrial and Engineering Chemistry 16 (2010) 723–727.

DOI: 10.1016/j.jiec.2010.07.012

Google Scholar

[10] B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugesan, Photocatalytic degradation of reactive yellow 17 dye in aqueous solution in the presence of TiO2 with cement binder Chemosphere 46 (2002) 1173.

DOI: 10.1016/s0045-6535(01)00284-3

Google Scholar

[11] S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison, Sol. Energy Mater. Sol. Cells 77 (2003) 65.

DOI: 10.1016/s0927-0248(02)00255-6

Google Scholar

[12] W.S. Kuo, P.H. Ho, Solar Photocatalytic degradation of methylene blue in water, Chemosphere 45 (2001) 77.

DOI: 10.1016/s0045-6535(01)00008-x

Google Scholar

[13] J. Tang, Z. Zou, J. Ye, Substitution Effects of Ca2+ by Sr2+ and Ba2+ on Structural Properties and Photocatalytic Behaviors of CaIn2O4, Chem. Mater. 16 (2004) 1644.

Google Scholar

[14] A. Kudo, R. Niishiro, A. Iwase, and H. Kato, Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts, Chemical Physics 339 (2007) no. 1–3, 104–110.

DOI: 10.1016/j.chemphys.2007.07.024

Google Scholar

[15] X. Wang, S. Meng, X. Zhang, H. Wang, W. Zhong, and Q. Du, Multi-type carbon doping of TiO2 photocatalyst, Chemical Physics Letters 444 (2007) no. 4–6, 292–296.

DOI: 10.1016/j.cplett.2007.07.026

Google Scholar

[16] X. Fan, X. Chen, S. Zhu et al., The structural, physical and photocatalytic properties of the mesoporous Cr-doped TiO2, Journal of Molecular Catalysis A 284 (2008) no. 1-2, 155–160.

DOI: 10.1016/j.molcata.2008.01.005

Google Scholar

[17] D.S. Kim, S.J. Han, and S.Y. Kwak, Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size, Journal of Colloid and Interface Science 316 (2007) no. 1, 85–91.

DOI: 10.1016/j.jcis.2007.07.037

Google Scholar

[18] Y. Wang, C.Y. Liu, X. Zheng, J. Chen, T. Shen, Synthesis of CaIn2O4 Rods and Its Photocatalytic Performance Under Visible-light Irradiation, Colloid Surf. A 131 (1998) 271.

Google Scholar

[19] V. Subramanian, E. Wolf, P. Kamat, Semiconductor –metal composite nano-structure to what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films, J. Phys. Chem. B 105 (2001) 11493.

DOI: 10.1021/jp011118k

Google Scholar

[20] Y. Liu, C. Liu, Q.H. Rong, Z. Zhang, Characteristics of the silver-doped TiO2 nanoparticles, Appl. Surf. Sci. 220 (2003) 7.

Google Scholar

[21] N. Sobana, M. Muruganadham, M. Swaminathan, Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes, J. Mol. Catal. A: Chem. 258 (2006) 124.

DOI: 10.1016/j.molcata.2006.05.013

Google Scholar

[22] A. Sclafani, J.M. Herrmann, Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media, J. Photochem. Photobiol. A: Chem. 113 (1998) 181.

DOI: 10.1016/s1010-6030(97)00319-5

Google Scholar

[23] K. Suriye, P. Praserthdam, and B. Jongsomjit, Impact of Ti3+ present in titania on characteristics and catalytic properties of the Co/TiO2 catalyst, Industrial and Engineering Chemistry Research 44 (2005) no. 17, 6599–6604.

DOI: 10.1021/ie0500366

Google Scholar

[24] M. Atashfaraz, M. Shariaty-Niassar, S. Ohara et al., Effect of titanium dioxide solubility on the formation of BaTiO3 nanoparticles in supercritical water, Fluid Phase Equilibria 257 (2007) no. 2, 233–237.

DOI: 10.1016/j.fluid.2007.03.025

Google Scholar

[25] K.J. Zhang, W. Xu, X.J. Li, S.J. Zheng, G. Xu, and J.H. Wang, Photocatalytic oxidation activity of titanium dioxide film enhanced by Mn non-uniform doping, Transactions of Nonferrous Metals Society of China, 16 (2006) no. 5, 1069–1075.

DOI: 10.1016/s1003-6326(06)60379-8

Google Scholar

[26] M. Wang, G. Song, J. Li, L. Miao, and B. Zhang, Direct hydrothermal synthesis and magnetic property of titanate nanotubes doped magnetic metal ions, Journal of University of Science and Technology Beijing 15 (2008) no. 5, 644–648.

DOI: 10.1016/s1005-8850(08)60120-6

Google Scholar

[27] R.F. Chen, C.X. Zhang, J. Deng, and G.Q. Song, Preparation and photocatalytic activity of Cu2+ doped TiO2/SiO2, International Journal of Minerals, Metallurgy and Materials 16 (2009) no 2, 220–225.

DOI: 10.1016/s1674-4799(09)60037-6

Google Scholar

[28] J.C. Xu, M. Lu, X.Y. Guo, H.L. Li, Zinc ions surface doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water, Journal of Molecular Catalysis A 226 (2005) no. 1, 123–127.

DOI: 10.1016/j.molcata.2004.09.051

Google Scholar

[29] R. Janes, L.J. Knightley, C.J. Harding, Structural and spectroscopic studies of iron (III) doped titania powders prepared by sol-gel synthesis and hydrothermal processing, Dyes and Pigments 62 (2004) no. 3, 199–212.

DOI: 10.1016/j.dyepig.2003.12.003

Google Scholar

[30] L. Deng, S. Wang, D. Liu et al., Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity, Catalysis Letters 129 (2009) no. 3-4, 513–518.

DOI: 10.1007/s10562-008-9834-5

Google Scholar

[31] C.C. Tsai, H. Teng, Chromium-doped titanium dioxide thin-film photoanodes in visible-light-induced waterli cleavage, Applied Surface Science 254 (2008) no. 15, 4912– 4918.

DOI: 10.1016/j.apsusc.2008.01.140

Google Scholar

[32] M. Asilt¨urk, F. Sayilkan, E. Arpac, Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation, Journal of Photochemistry and Photobiology A 203 (2009) no. 1, 64-71.

DOI: 10.1016/j.jphotochem.2008.12.021

Google Scholar

[33] M. Sathish, B. Viswanathan, R.P. Viswanath, C.S. Gopinath, Synthesis, characterization, electronic structure and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst, Chem. Mater. 17 (2005) 6349.

DOI: 10.1021/cm052047v

Google Scholar

[34] R. Gandhe, J.B. Fernandes, A simple method to synthesis visible light active N-doped anatase (TiO2) photocatalyst, J. Solid State Chem. 178 (2005) 2953.

Google Scholar

[35] P. Bonamali, M. Sharon, G. Nogami, Preparation and characterization of TiO2/Fe2O3 binary mixed oxides and its photocatalytic properties, Mater. Chem. Phys. 59 (1999) 254.

DOI: 10.1016/s0254-0584(99)00071-1

Google Scholar

[36] S. Livraghi, K. Elghniji, A. M. Czoska, M. C. Paganini, E. Giamello, and M. Ksibi, Nitrogen-doped and nitrogen fluorine- codoped titanium dioxide. Nature and concentration of the photoactive species and their role in determining the photocatalytic activity under visible light, Journal of Photochemistry and Photobiology A 205 (2009) no. 2-3, 93– 97.

DOI: 10.1016/j.jphotochem.2009.04.010

Google Scholar

[37] J. G. Yu, W. G. Wang, B. Cheng, and B. L. Su, Enhancement of photocatalytic activity of Mesporous TiO2 powders by hydrothermal surface fluorination treatment, Journal of Physical Chemistry C 113 (2009) no. 16, 6743–6750.

DOI: 10.1021/jp900136q

Google Scholar

[38] T. Ohno, F. Tanigawa, K. Fjihara, S. Izumi, M. Matsumura, Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder. Journal Photochem. Photobiol. A: Chem. 127 (2001) 107–110.

DOI: 10.1016/s1010-6030(99)00128-8

Google Scholar

[39] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett. 81 (2002) 454.

DOI: 10.1063/1.1493647

Google Scholar

[40] B.O. Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737–740.

DOI: 10.1038/353737a0

Google Scholar

[41] I. Ganesh, A. K. Gupta, P. P. Kumar, P. S. C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and Characterization of Ni-Doped TiO2 Materials for Photocurrent and Photocatalytic Applications, The Scientific World Journal (2012) Article ID 127326, 1-16.

DOI: 10.1100/2012/127326

Google Scholar

[42] Y.Y. Gurkan, E. Kasapbasi, Z. Cinar, Enhanced solar photocatalytic activity of TiO2 by selenium(IV) ion-doping:Characterization and DFT modeling of the surface, Chemical Engineering Journal 214 (2013) 34–44.

DOI: 10.1016/j.cej.2012.10.025

Google Scholar

[43] D. Zhang, Chemical synthesis of Ni/TiO2 nanophotocatalyst for UV/visible light assisted degradation of organic dye in aqueous solution, J Sol-Gel Sci Technol 58 (2011) 312–318

DOI: 10.1007/s10971-010-2393-4

Google Scholar

[44] L.D. Gomathi, K. Rajashekhar Eraiah, A kinetic model based on non-linear regression analysis is proposed for the degradation of phenol under UV/solar light using nitrogen doped TiO2. Journal Molecular Catalysis A: Chemical 334 (2011) 65–76.

DOI: 10.1016/j.molcata.2010.10.025

Google Scholar