Effects of Current Density on the Properties of Microarc Oxidation Coatings Formed on Aluminum Alloy in Silicate-Na2MoO4 Electrolyte

Article Preview

Abstract:

Microarc oxidation (MAO) coatings on ZL108 aluminum alloy were prepared in the silicate-Na2MoO4 electrolytes with different current density. The MAO process was studied by measuring the voltage as a function of time. The microstructure, compositions, distribution of element and corrosion resistance of the MAO coatings were investigated by SEM, XRD, EDS, XPS and polarization curve, respectively. With the increasing of current density, the final voltage in the microarc discharge process increased. The results shown that the MAO coatings were mainly composed of mullite, γ-Al2O3, Si, little MoO2 and MoO3. The micropore size, thickness, compositions, distribution of element of the MAO coatings depended on the current density and the amount of MoO2 and MoO3. The corrosion resistance improved as the porosity of the MAO coatings decreasing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

398-403

Citation:

Online since:

March 2015

Export:

Price:

* - Corresponding Author

[1] H.Y. Zheng Y.K. Wang B.S. Li,G.R. Han, The effects of Na2WO4 concentration on the properties of microarc oxidation coatings on aluminum alloy, Mater Lett. 59(2005) 139-142.

DOI: 10.1016/j.matlet.2004.06.025

Google Scholar

[2] Lei Wen, Yaming Wang, Yu Zhou, Lixin Guo, Jia-Hu Ouyang, EIS study of a self-repairing microarc oxidation coating, Corros Sci. 53(2011) 518-523.

DOI: 10.1016/j.corsci.2010.10.010

Google Scholar

[3] Hongping Duan, Keqin Du, Chuanwei Yan, Fuhui Wang, Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D, Electrochim. Acta . 51(2006) 2898-2908.

DOI: 10.1016/j.electacta.2005.08.026

Google Scholar

[4] C.E. Barchiche,E. Rocca,C. Juers,J. Hazan,J. Steinmetz, Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods, Electrochim. Acta 52(2007) 417.

DOI: 10.1016/j.electacta.2007.04.030

Google Scholar

[5] C.E. Barchiche,E. Rocca,J. Hzan, Corrosion behaviour of Sn-containing oxide layer on AZ91D alloy formed by plasma electrolytic oxidation, Surf. Coat. Technol. 202(2008) 4145-4152.

DOI: 10.1016/j.surfcoat.2008.03.010

Google Scholar

[6] R. Arrabal,E. Matykina,F. Viejo,P. Skeldon G.E. Thompson, Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings, Corros. Sci. 50(2008) 1744-1752.

DOI: 10.1016/j.corsci.2008.03.002

Google Scholar

[7] Wenbin Xue, Xiuling Shi, Ming Hua, Yongliang Li, Preparation of anti-corrosion films by microarc oxidation on an Al-Si alloy, Appl Surf Sci. 253(2007) 6118-6124.

DOI: 10.1016/j.apsusc.2007.01.018

Google Scholar

[8] Krysman. W, Kurze. P, Dittrich.K. H, Schneide.H. G, Process characteristics and parameters of oxidation by spark, Crystal. Res. Technol. 19 (1984) 973-979.

DOI: 10.1002/crat.2170190721

Google Scholar

[9] Liu Jian Ping, Kuang Ya Fei, Microarc anodization technique and its development, Material Reviews, 5(1998) 27.

Google Scholar

[10] Ding Jun, Liang Jun, Hu Li-tian, Hao Jing-cheng, Xue Qun-ji. Trans, Effects of sodium tungstate on characteristics of microarc oxidation coatings formed on magnesium alloy in silicate-KOH electrolyte, Nonferrous Met. Soc. China. 17(2007) 244-249.

DOI: 10.1016/s1003-6326(07)60079-x

Google Scholar

[11] I.V. Lukiyanchuk V.S. Rudnev V.G. Kuryavyi, D.L. Boguta, S.B. Bulanova P.S. Gordienko, Surface morphology, composition and thermal behavior of tungsten-containing anodic spark coatings on aluminium alloy, Thin Solid Films, 446(2004) 54.

DOI: 10.1016/s0040-6090(03)01318-x

Google Scholar

[12] Guan Yong-jun, Xia Yuan, Correlation between discharging property and coatings microstructure during plasma electrolytic oxidation, Trans. Nonferrous Met. Soc. China. 16(2006) 1097-1102.

DOI: 10.1016/s1003-6326(06)60384-1

Google Scholar

[13] F. Monfort, E. Matykina, A. Berkani, P. Skeldon, G.E. Thompson,H. Habazaki, K. Shimizu, Species separation during coating growth on aluminum by spark anodizing, Surf. Coat. Technol. 201 (2007) 8671-8676.

DOI: 10.1016/j.surfcoat.2006.05.044

Google Scholar

[14] K. Shimizu, K. Kobayashi, P. Skeldon, G.E. Thompson, G.C. Wood , The behaviour of chromium species incorporated into anodic oxide films on bismuth, Corros. Sci. 38(1996) 487-495.

DOI: 10.1016/0010-938x(96)00145-x

Google Scholar

[15] H.M. Nykyforchyn, M.D. Klapkiv, V.M. Posuvailo, Properties of synthesised oxide-ceramic coatings in electrolyte plasma on aluminium alloys , Surf. Coat. Technol. 100(1998) 219-221.

DOI: 10.1016/s0257-8972(97)00617-8

Google Scholar

[16] Mo Shaobo, Yang Yezhi, An XPS Study of Electronic Structure of Potassium Molybdenum Bronze, Chinese J Chem. Phys. 10(1997)259-261.

Google Scholar

[17] Wang Cheng, Jiang Feng, Lin Haichao, The molybdate conversion coatings on LY12 aluminum alloy, Rare Metal Mat Eng. 32(2003) 130-133.

Google Scholar

[18] Chun-Chieh Tseng, Jeou-Long Lee, Tzu-Hsuan Kuo, Shien-Nan Kuo, Kuo-Hui Tseng, The influence of sodium tungstate concentration and anodizing conditions on microarc oxidation (MAO) coatings for aluminum alloy, Surf. Coat. Technol. 206(2012).

DOI: 10.1016/j.surfcoat.2012.02.002

Google Scholar