Morphology of Nanostructured TiO2 Surfaces for Biomedical Implants Developed by Electrochemical Anodization

Article Preview

Abstract:

Ti6Al4V alloy is widely used for biomedical implants, and the modification of its surface, at nanoscale level, is a method to enhance its osseointegration. We modified the Ti6Al4V surface, with an initial micro rough topography, by using electrochemical anodization in 1M H3PO4 + 0.5 wt% HF electrolyte, and anodization potential of 20 V. By using short anodization duration, 5 min, or 15 min, the oxide layer presents a nanoporous morphology, and do not cover the entire surface. At an anodization time of 30 min, our results demonstrate the synthesis of continuous, highly ordered nanotubular TiO2 layer (diameter of nanotubes: 25-90 nm, thickness of the layer: 350-450 nm), superimposed over a micro rough topography, the oxide layer exhibiting a good adherence to the substrate, coherence and no brittleness. Anodization time of 2 hours provides the results very similar with those obtained at 30 min in terms of nanotubular layer topography, but some drawbacks appear in terms of surface coverage and continuity of the layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-98

Citation:

Online since:

September 2017

Export:

Price:

* - Corresponding Author

[1] W. Wang, C.K. Poh, Titanium alloys in orthopaedics, in J. Sieniawski, W. Ziaja (Eds. ) Titanium alloys – advances in properties control, InTech. (2013) 1-20.

DOI: 10.5772/56197

Google Scholar

[2] K. Gulati, S. Ivanovski, Dental implants modified with drug releasing titania nanotubes: therapeutic potential and developmental chalanges, Expert Opinion on Drug Delivery. 14 (8) (2016) 1009-1024.

DOI: 10.1080/17425247.2017.1266332

Google Scholar

[3] M. Kulkarni, A. Mazare, P. Schmuki, A. Iglic, Biomaterial surface modification of titanium and titanium alloys for medical applications, in A. Seifalian, A. Mel, D. M. Kalaskar (Eds. ) Nanomedicine, One Central Press. (2014) 111-135.

Google Scholar

[4] K. Gulati, S. Maher, D.M. Findlay, D. Losic, Titania nanotubes for orchestrating osteogenesis at the bone-implant interface, Nanomedicine, 11(14) (2016) 1847-1864.

DOI: 10.2217/nnm-2016-0169

Google Scholar

[5] A. Mazare, Corrosion, antibacterial activity and haemocompatibility of TiO2 nanotubes as a function of their annealing temperature, Corrosion Science, 103 (2016) 215-222.

DOI: 10.1016/j.corsci.2015.11.021

Google Scholar

[6] S. Minagar, J. Wang, C.C. Berndt, E.P. Ivanova, C. Wen, Cell response of anodized nanotubes of titanium and titanium alloys, Journal of Biomedical Materials Research A, 9999A (2013) 1-14.

DOI: 10.1002/jbm.a.34575

Google Scholar

[7] M. Kulkarni, A. Mazare, E. Gongadze, S. Perutkova, V. Kralj-Iglič, I. Milosev, P. Schmuki, A. Iglic, M. Mozetic, Titanium nanostructures for biomedical applications, Nanotechnology, 26 (2015) 062002.

DOI: 10.1088/0957-4484/26/6/062002

Google Scholar

[8] D. Karazisis, A.M. Ballo, S. Petronis, H. Agheli, L. Emanuelsson, P. Thomsen, O. Omar, The role of well-defined nanotopography of titanium implants on osseointegration: cellular and molecular events in vivo, Int. J. of Nanomed. 11 (2016).

DOI: 10.2147/ijn.s101294

Google Scholar

[9] K. Narendrakumar, M. Kulkarni, O. Addison, A. Mazare, I. Junkar, P. Schmuki, R. Sammons, A. Iglic, Adherence of oral streptococci to nanostructured titanium surfaces, Dental Materials. 31 (2015) 1460-1468.

DOI: 10.1016/j.dental.2015.09.011

Google Scholar

[10] E. Beltrán-Partida, A. Moreno-Ulloa, B. Valdez-Salas, C. Velasquillo, M. Carrillo, A. Escamilla, E. Valdez, F. Villarreal, Improved osteoblast and chondrocyte adhesion and viability by surface-modified Ti6Al4V alloy with anodized TiO2 nanotubes using a super-oxidative solution, Materials. 8 (2015).

Google Scholar

[11] P. Roy, S. Berger, P. Schmuki, P., TiO2 Nanotubes: Synthesis and Applications, Angew. Chem. Int. Ed. 50 (2011) 2904-2939.

DOI: 10.1002/anie.201001374

Google Scholar

[12] E. Krasicka-Cydzik, Anodic layer formation on titanium and its alloys for biomedical applications, in A.K.M. Nurul Amin (Ed. ), Titanium alloys – towards achieving enhanced properties for diversified application, In Tech. (2012) 175-200.

DOI: 10.5772/34395

Google Scholar

[13] M. Kulkarni, A. Mazare, P. Schmuki, A. Iglic, Influence of anodization parameters on morphology of TiO2 nanostructured surfaces, Advanced Material Letters. 7 (1) (2016) 23-28.

DOI: 10.5185/amlett.2016.6156

Google Scholar

[14] K. Gulati, A. Santos, D. Findlay, D. Losic, Optimizing the anodization conditions for the growth of titania nanotubes on curved surfaces, Journal of Physical Chemistry C. 119 (2015) 16033-16045.

DOI: 10.1021/acs.jpcc.5b03383

Google Scholar

[15] A. Mazare, M. Dilea, D. Ionita, I. Demetrescu, Electrochemical behavior in simulated body fluid of TiO2 nanotubes on TiAlNB alloy elaborated in various anodizing electrolite, Surf. Interface Anal. 46 (2014) 186-192.

DOI: 10.1002/sia.5364

Google Scholar

[16] K. Lee, A. Mazare, P. Schmuki, One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes, Chemical Reviews. 114 (2014) 9385-9454.

DOI: 10.1021/cr500061m

Google Scholar

[17] N.A. Al-Mobarak, A.A. Al-Swayih, Development of titanium surgery implants for improving osseointegration through formation of a titanium nanotube layer, Int. J. Electrochem. Sci. 9 (2014) 32-45.

DOI: 10.1016/s1452-3981(23)07696-4

Google Scholar

[18] G. Strnad, C. Petrovan, O. Russu, L. Jakab-Farkas, TiO2 nanostructured surfaces for biomedical applications developed by electrochemical anodization, IoP Conf. Series: Materials Science and Engineering. 161 (2016) 012-051.

DOI: 10.1088/1757-899x/161/1/012051

Google Scholar

[19] G. Strnad, L. Jakab-Farkas, D. Portan, Current-time dependence in self-organized TiO2 layers synthesis by electrochemical anodization, Academic Journal of Manufacturing Technology. 14(4) (2016) 112-118.

Google Scholar

[20] G. Strnad, L. Jakab-Farkas, C. Petrovan, O. Russu, Influence of surface preparation on morphology of self-organized nanotubular oxide layers developed on Ti6Al4V alloy, submitted to Procedia Engineering. 181 (2017) 242-248.

DOI: 10.1016/j.proeng.2017.02.385

Google Scholar

[21] G. Strnad, Z. Sallo-German, L. Jakab-Farkas, C. Petrovan, D. Portan, Influence of electrical parameters on morphology of nanostructured TiO2 layers developed by electrochemical anodization, submitted to MATEC Web of Conferences, accepted (2017).

DOI: 10.1051/matecconf/201711204021

Google Scholar