An Innovative Industrial Process for Forging 7050 Al Alloy

Article Preview

Abstract:

The effect of an unconventional thermal treatment method aimed to improve toughness behavior in Al alloys is reported. The method involves solution heat treating and an intermediate warm working step, before final ageing thermal treatment on a AA7050 high resistance aluminum alloy. Results show the possibility to increase fracture toughness behavior without tensile and conductivity (IACS) properties loss by adopting a warm deformation process instead of the standard cold deformation. Moreover, the adoption of an intermediate warm deformation instead of standard cold deformation, allows to reduce material microstructural grain-size heterogeneity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1047-1052

Citation:

Online since:

December 2018

Export:

Price:

* - Corresponding Author

[1] American society of materials, ASM handbook, Volume 2, Properties and selection: Nonferrous Alloys and special purpose materials, (2005).

DOI: 10.31399/asm.hb.v02.9781627081627

Google Scholar

[2] X. Sauvage, S. Lee, K. Matsuda, Z. Horita, Origin of the influence of Cu or Ag micro-additions on the age hardening behavior of ultrafine-grained Al-Mg-Si alloys. Journal of Alloys and Compounds 710 (2017) 199-202.

DOI: 10.1016/j.jallcom.2017.03.250

Google Scholar

[3] L.F Mondolfo, Aluminum Alloys: Structure and Properties, Butterworth London, UK, 1976, pp.497-499.

Google Scholar

[4] H. Wang, Y. Yi, S. Huang, Microstructure Evolution and Mechanical Properties of 2219 Al Alloy During Aging Treatment, Journal of Materials Engineering and Performance, 26 (2017) 1475-1482.

DOI: 10.1007/s11665-017-2621-y

Google Scholar

[5] A. Alunni, F. Cianetti, A.Di Schino, F. Nobili, M. Richetta, C. Testani, Studio dell'effetto dei parametri microstrutturali sulla resistenza a fatica di campioni di lega AA2014-T6, La Metallurgia Italiana 5 (2017) 25-31.

Google Scholar

[6] D. Scott MacKenzie, Heat Treating Aluminum for Aerospace Applications, Heat Treating Progress, 2005, 37-43.

Google Scholar

[7] N.F. Mott, F.R.N. Nabarro,An attempt to estimate the degree of precipitation hardening, with a simple model, Proc. Phys. Soc., 52 (1940) 86-89.

DOI: 10.1088/0959-5309/52/1/312

Google Scholar

[8] C. Testani, F.M. Ielpo, E. Alunni, AA2618 and AA7075 alloys superplastic transition in isothermal hot-deformation tests, Materials and Design, 21 (2001) 305-310.

DOI: 10.1016/s0261-3069(99)00086-2

Google Scholar

[9] Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing, Acta Materialia 52 (2004) 4589-4599.

DOI: 10.1016/j.actamat.2004.06.017

Google Scholar

[10] C.G. Garay–Reyes, L. Gonzalez, E. Cuadros-Lugo, Correlation between tool flank wear, force signals and surface integrity when turning bars of Inconel 718 in finishing conditions, International Journal of Advanced Manufacturing Technology, 90 (2017) 3045-3053.

DOI: 10.1504/ijmmm.2014.059193

Google Scholar

[11] L. Pan, K. Liu, F. Breton, X. Chen, Effects of minor Cu and Mg additions on microstructure and material properties of 8xxx aluminum conductor alloys, Journal of Materials Research, 32 (2017) 1094-1104.

DOI: 10.1557/jmr.2017.56

Google Scholar

[12] Aerospace Structural Materials Handbook, DoD, Wright-Patterson Air Force Base.

Google Scholar

[13] F. Lu, F. Zhao, J. Zhang, Heat Treatment of metals, Journal of Iron and Steel Research, 42 (2017) 144-149.

Google Scholar

[14] F. Zhao, F. Lu, F. Guo, Comparative Analysis of Microstructures and Properties of Two Kinds of Thick Plates of 7050-T7451 Aluminum Alloy, Journal of Aeronautical Materials 35 (2015) 64-71.

Google Scholar

[15] R Kaibyshev, O Sitdikov, A Goloborodko, Grain refinement in as-cast 7475 aluminum alloy under hot deformation, Materials Science and Engineering A 344 (2003) 348-356.

DOI: 10.1016/s0921-5093(02)00440-9

Google Scholar

[16] M.R. Rokni, A. Zarei-HAnzaki, A. Roostaei, H.R. Abedi, An investigation into the hot deformation characteristics of 7075 aluminum alloy, Materials and Design 32 (2011) 2339-2344.

DOI: 10.1016/j.matdes.2010.12.047

Google Scholar

[17] D. Li, D. Zhang, S. Liu, Z. Shan, X. Zhang, Q. Wang, S. Han, Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation, Transactions of Nonferrous Metals Society of China 26 (2016) 1491-1497.

DOI: 10.1016/s1003-6326(16)64254-1

Google Scholar

[18] J.M. Sanchez, E. Rubio, M. Alvarez, M.A. Sebastian, M. Marcos, Microstructural characterisation of material adhered over cutting tool in the dry machining of aerospace aluminium alloys, Journal of Materials Processing Technology, 164-165 (2005) 911-918.

DOI: 10.1016/j.jmatprotec.2005.02.058

Google Scholar

[19] N.E. Prasad, R.J. Wanhill, Aerospace Materials and Material Technologies, Vol.1: Aerospace Materials, 2 (2017) 29-52.

Google Scholar

[20] K.F. Adam, Z. Long, D.P. Field, Analysis of Particle-Stimulated Nucleation (PSN)-Dominated Recrystallization for Hot-Rolled 7050 Aluminum Alloy, Metallurgical and Materials Transactions A, 48 (2017) 2062-2076.

DOI: 10.1007/s11661-017-3967-3

Google Scholar

[21] G. Maizza, R. Pero, M. Richetta, R. Montanari, Continuous dynamic recrystallization (CDRX) model for aluminum alloys Journal of Materials Science, 53 (2017) 4563-4573.

DOI: 10.1007/s10853-017-1845-4

Google Scholar

[22] C.G. Parker, D.P. Field, Observation of Structure Evolution during Annealing of 7xxx Series Al Deformed at High Temperature, Light Metals (2012) 383-386.

DOI: 10.1002/9781118359259.ch64

Google Scholar

[23] S. Wang, J. Luo, L. Hou, J. Zhang, L. Zhuang, Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression, Materials and Design 107, (2016) 277-289.

DOI: 10.1016/j.matdes.2016.06.023

Google Scholar

[24] S. Gourdet, F. Montheillet, Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals Acta Materialia, 50, (2002) 2801-2812.

DOI: 10.1016/s1359-6454(02)00098-8

Google Scholar

[25] H.J. McQueen, Development of dynamic recrystallization theory, Materials Science and Engineering A, 387–389 (2004) 203-208.

DOI: 10.1016/j.msea.2004.01.064

Google Scholar

[26] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena (2nd ed.), Elsevier, Amsterdam (2004).

Google Scholar