Features of the Carbon Nanofibers Growth over Ni-Pd Catalyst Depending on the Reaction Conditions

Article Preview

Abstract:

Ni-Pd alloy was prepared by a co-precipitation technique. Catalytic decomposition of a model chlorinated hydrocarbon (1,2-dichloroethane) was performed in a quartz flow-through reactor system. Both the temperature regime and the composition of the reaction mixture were varied during the experiments. Concentration of 1,2-dichloroethane was found to affect significantly the kinetics of the process, the yield of the nanostructured carbon product and its textural and morphological characteristics. In terms of optimal temperature, the maximum carbon yield was obtained within a range of 650-670 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

144-148

Citation:

Online since:

April 2019

Export:

Price:

* - Corresponding Author

[1] T.V. Hughes and C.R. Chambers, U.S. Patent 405,480A. (1889).

Google Scholar

[2] J. Yu, E.G. Wang and X.D. Bai: Appl. Phys. Lett. Vol. 78 (2001), p.2226.

Google Scholar

[3] C.J. Kiely, I. Alexandrou, R. Aharonov and R.M. Devenish: Nature Vol. 383 (1996), p.321.

Google Scholar

[4] P. Milani, A. Schneuwly and R. Gallay: Appl. Phys. Lett. Vol. 75 (1999), p.2662.

Google Scholar

[5] R.J. Kottenstette, D.R. Tallant, W.G. Yelton: Appl. Phys. Lett. Vol. 80 (2002), p.3940.

Google Scholar

[6] G.G. Tibbetts and C. P. Jr. Beetz: J. Phys. D: Appl. Phys. Vol. 20 (1987), p.292.

Google Scholar

[7] I.V. Mishakov, A.A. Vedyagin, Y.I. Bauman, Y.V. Shubin and R.A. Buyanov, in: Carbon Nanofibers: Synthesis, Applications and Performance, edited by C.-S. Lee. Nova Science Publishers (2018).

Google Scholar

[8] S.Y. Gu, J. Ren and Q.L. Wu: Synthetic Metals Vol. 155 (2005), p.157.

Google Scholar

[9] O.C. Carneiro, N.M. Rodriguez and R.T.K. Baker: Carbon Vol. 43 (2005), p.2389.

Google Scholar

[10] T. Kato, T. Matsumoto, T. Saito, J.-I. Hayashi, K. Kusakabe and S. Morooka: Carbon Vol. 31 (1993), p.937.

Google Scholar

[11] D. Pradhan, M. Sharon, M. Kumar and Y. Ando: J. Nanosci. Nanotech. Vol. 3 (2003), p.215.

Google Scholar

[12] Y.-Y. Fan, H.-M. Cheng, Y.-L. Wei, G. Su, Z.-H. Shen: Carbon Vol. 38 (2000), p.789.

Google Scholar

[13] Y.I. Bauman, Y.V. Shorstkaya, I.V. Mishakov, P.E. Plyusnin, Y.V. Shubin, D.V. Korneev, V.O. Stoyanovskii and A.A. Vedyagin: Catal. Today Vol. 293–294 (2017), p.23.

DOI: 10.1016/j.cattod.2016.11.020

Google Scholar

[14] A.V. Rudnev, A.S. Lysakova, P.E. Plyusnin, Y.I. Bauman, Y.V. Shubin, I.V. Mishakov, A.A. Vedyagin and R.A. Buyanov: Inorg. Mater. Vol. 50 (2014), p.566.

DOI: 10.1134/s0020168514060156

Google Scholar

[15] I.V. Mishakov, V.V. Chesnokov, R.A. Buyanov, and N.A. Pakhomov: Kinet. Catal. Vol. 42 (2001), p.543.

Google Scholar

[16] Y.I. Bauman, I.V. Mishakov, D.V. Korneev, Y.V. Shubin, A.A. Vedyagin and R.A. Buyanov: Catal. Today Vol. 301 (2018), p.147.

DOI: 10.1016/j.cattod.2017.05.015

Google Scholar