Piezoelectric Based Lamb Waves Generation and Propagation in Orthotropic CFRP Plates: II. Influence of Interfacial Stress Distribution

Article Preview

Abstract:

This paper investigates the Lamb wave generation by the surface bonded circular piezoelectric (PZT) actuator and wave propagation within the orthotropic Carbon Fiber Reinforced Plastic (CFRP) plate considering the anisotropy of the elastic and damping properties of the materials; existence of the adhesive layer; and dependence of the interfacial stress distribution on the surface between host plate and actuator, on the anisotropy of the plate material, and on the excited frequency, wavelength and plate thickness. This part of our investigation includes FE based study of the shear stress distribution on the interface between circular PZT actuator and surface of orthotropic CFRP plate, and its dependence on the excited wavelength and plate thickness. The anisotropic elastic and damping properties of the plate material, which are used in the implemented finite element (FE) model, have been preliminary determined in the first part of our investigation. We compare the behavior of the wave generation, propagation and attenuation that are studied using this model with the similar dependencies obtained at the simulation of the non-dissipating plate excited by the periodical radially oriented force, which is distributed along the circumference bounding the actuator, i.e. 3D pin-force excitation case. The proposed results can be used at the design of SHM for the composite structures with the structural anisotropy and damping, and at making a reasonable choice of the frequency, type, dimensions and optimum placement of the actuators and sensors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

227-235

Citation:

Online since:

July 2019

Export:

Price:

* - Corresponding Author

[1] J.L. Rose: Ultrasonic guided waves in solid media (Cambridge University Press, 2014).

Google Scholar

[2] T. Kundu, P. Kapur, T.E. Matikas and P.D. Nicolau: Rev. Prog. Q. Vol. 15 (1996) p.231.

Google Scholar

[3] S.S. Kessler, S.M. Spearing and C. Soutis: Smart Mater. Struct. Vol. 11(2002) p.269.

Google Scholar

[4] M. Gresil and V. Giurgiutiu: J. Intel. Mat. Syst. Str. Vol. 26(16) (2015) p.19.

Google Scholar

[5] V. Jawali, P. Parasivamurthy and A. Nagesh: Mat. Sci. Forum Vols. (783-786) (2014) p.2296.

Google Scholar

[6] Z. Su and I. Ye: Proc. Inst. Mech. Engrs. Vol. 218 Part L: J. Mater. Design and Appl. (2004) p.95.

Google Scholar

[7] E. Glushkov et al.: J. Acoust. Soc. Am. Vol. 132 (2) (2012) p.119.

Google Scholar

[8] I. Kim and A. Chattopadhyay: J. Intel. Mat. Syst. Str. Vol. 26 (8) (2015) p.2515.

Google Scholar

[9] P.-C. Ostiguy, N. Quaegebeur, M. Bilodeau and P. Masson: Proc. SPIE 9438, Health Monitoring of Structural and Biological Systems 2015, (March 23, 2015) 14 p.

DOI: 10.1117/12.2083959

Google Scholar

[10] A. Raghavan and C.E.S. Cesnik: Proc. of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf. (23 - 26 Apr. 2007, Honolulu, Hawaii),15 p.

DOI: 10.2514/6.2007-1725

Google Scholar

[11] A. Ghoshal et al.: J. Intel. Mat. Syst. Str. Vol. 14 (2003) p.521.

Google Scholar

[12] K.-H. Im et al.: AIP Conf. Proc. Vol.1096 (2009) p.1033.

Google Scholar

[13] Z. Sun, B. Rocha, K.-T. Wu and N. Mrad: Int. J. Aero. Eng. Vol. 2013 (2013) 22 p.

Google Scholar

[14] V. Giurgiutiu: J. Intel. Mat. Syst. Str. Vol. 16 (2005) p.291.

Google Scholar

[15] N. Hu, Y. Liu, X. Peng and B. Yan: J. Compos. Mater. Vol. 44 (2010) p.1643.

Google Scholar

[16] D. Kim and M. Philen: J. Intel. Mat. Syst. Str. Vol. 21 (2010) p.1011.

Google Scholar

[17] T. Stepinski, M. Manka and A. Martowicz: NDT&E Int. Vol.86 (2017) p.199.

Google Scholar

[18] H. Kim, K. Jhang, M. Shin and J. Kim: NDT&E Int. Vol. 39 (4) (2006) p.312.

Google Scholar

[19] F. Yan, R.L. Royer Jr. and J.L. Rose: J. Intel. Mat. Syst. Str. Vol.20 (2010) p.377.

Google Scholar

[20] K.J. Schubert, C. Brauner and A.S. Herrmenn: Struct Health Monit. Vol. 13(2) (2014) p.158.

Google Scholar

[21] O. Rabinovitch and J.R. Vinson: J. Intel. Mat. Syst. Str. Vol. 13 (2002) p.689.

Google Scholar

[22] L. Yu, G. Bottai-Santoni and V. Giurgitiutiu: Int. J. Eng. Sci. Vol. 48 (2010) p.848.

Google Scholar

[23] K.R. Mulligan et al.: Struct. Health Monit. Vol. 13(1) (2014) p.68.

Google Scholar

[24] S. Kapuria and J.K. Agrahari: J. Intel. Mat. Syst. Str. Vol. 29 (4) (2018) p.585.

Google Scholar

[25] M. Shevtsova et al. Part I of this paper.

Google Scholar