An Experimental and Simulation Studies on Sound Absorption Coefficients of Banana Fibers and their Reinforced Composites

Article Preview

Abstract:

This research focuses on the simulation of sound absorption coefficient of banana fiber and experimentation of sound absorption coefficient of banana fiber epoxy composites. For simulation, ‘Mechel’ empirical model was used to manipulate the flow resistivity and ‘Delany and Bazley’ empirical model was used to develop the prediction of sound absorption coefficient at frequency ranges from 500 Hz to 6000 Hz. For experimentation, two-microphone transfer function impedance tube model was used to analyze the sound absorption coefficient at frequency ranges from 500 Hz to 6000 Hz. Based on simulation, it is predicted and analyzed that the sound absorption coefficient of banana fiber found to be as high as 0.97 for the effects on the material thickness of banana fiber and 0.64 for the effects on the fiber diameter size and flow resistivity of banana fiber in the frequency ranges from 500 Hz to 6000 Hz. According to experimental results, it is observed and analyzed that the sound absorption coefficient of banana epoxy composites found to be as high as 0.11 for untreated banana epoxy composites and 0.12 for treated banana epoxy composites in the frequency ranges from 500 Hz to 6000 Hz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-20

Citation:

Online since:

November 2016

Export:

Price:

* - Corresponding Author

[1] S. Biswas, G. Srikanth, S. Nangia., Proceed. of Ann. Conv. and Trade Show, Compos., 1 (2001) 1-9.

Google Scholar

[2] H. Lewis, in: Industrial Noise Control – Fundamental and Applications; Dekker, M. CRC Press, New York, 1994., pp.37-238.

Google Scholar

[3] Y. Shoshani, Y. Yakubov, Appl. Acoust., 59 (2000), 77.

Google Scholar

[4] H. -S., Murugan, Biores. Technol., 95 (2004), 61-65.

Google Scholar

[5] D. Murugan, S. Varughese, T. Swaminathan, Polym. Plast. Technol. Eng., 45(2006), 885-888.

Google Scholar

[6] F. Asdrubali, 19th Inter. Cong. On Acoust., 1 (2007), 1-6.

Google Scholar

[7] R. Zulkifli, Zulkarnain, M.J.M. Noor, Am. J. Appl. Sci., 7 (2010), 260-264.

Google Scholar

[8] F. D' Alessandro, G. Pispola, The 2005 Cong. And Expos. On Noise Cont. Eng., 1 (2005), 1-10.

Google Scholar

[9] H.S. Yang, D.J. Kim, H.J. Kim, Biores. Technol., 86 (2003), 117-121.

Google Scholar

[10] C.N. Wang, J.H. Torng, Appl Acoust., 62 (2001), 447-459.

Google Scholar

[11] T. Koizumi, N. Tsujiuchi, A. Adachi, High Perf. Struc. Compos., 4 (2002), 157-166.

Google Scholar

[12] J. Khedari, S. Charoenvai, J. Hirunlabh, S. Teekasap, Build Environ., 39 (2004), 59-65.

Google Scholar

[13] F.C. Lee, W.H. Chen J. Sound Vib., 4 (2001), 621-634.

Google Scholar

[14] S. Ersoy, H. Kucuk, Appl. Acoust., 3 (2009), 4610-4617.

Google Scholar

[15] H.S. Seddeq, Austr J. Basic Appl. Sci., 3 (2009), 4610-4617.

Google Scholar

[16] N.P. Cheremisinoff, in: Noise Control in Industry - A Practical Guide; Cheremisinoff, N.P., Elsevier (1996), pp.1-203.

Google Scholar

[17] X. Zhu, B. -J. Kim, Q Wang, Q. Wu, Bioresources., 9 (2014), 1764-1786.

Google Scholar

[18] H. Kuttruff, The J. of the Acoust. Soc. of America., 98 (1995), 228-293.

Google Scholar

[19] Y.Z. Shoshani, M.A. Wilding, Textile Res. J., 61 (1991), 736-742.

Google Scholar

[20] Y. Na, J. Lancaster, J. Casali, G. Cho, Textile Res. J. 77 (2007), 330-335.

Google Scholar

[21] M.D. Teli, A. Pal, D. Roy, Indian J. Fibre Textile Res., 32 (2007), 202-206.

Google Scholar

[22] S. Sengupta, Indian J. Fibre Textile Res., 35 (2010), 293-297.

Google Scholar

[23] M. Sfiligoj Smole, S. Hribernik, K. Stana Kleinschek, T. Kreze, in: Agricultural and Biological Scienes Advances in Agrophysical Research,; Grundas, S.; Stepniewski, A., InTech, Croatia (2013), pp.369-398.

Google Scholar

[24] A.G. Kulkarni, K.G. Satyanarayana, P.K. Rohatgi, K. Vijayan, J. of Mater. Sci., 18 (1983), 2290-2296.

Google Scholar

[25] F.P. Mechel, in: Formulas of Acoustics; Mechel F.P., Eds.; Springer: New York (2002), pp.1-1179.

Google Scholar

[26] M.E. Delany, E.N. Bazley, Appl. Acoust., 3 (1970), 105-116.

Google Scholar

[27] ASTM E1050-12. ASTM Int., 4 (2012), 1-14.

Google Scholar

[28] K.O. Ballagh, Appl. Acoust., 48 (1996), 101-120.

Google Scholar

[29] J.H. Conrad, in: Engineering Acoustics and Noise Control; Conrad, J.H. Prentice Hall: New Jersey (1983), pp.1-192.

Google Scholar

[30] E. Knapen, R. Lanoye, G. Vermeir, G. Van Gemert, 6th Int. Conf. on Mater. Sci. and rest., 1 (2003), 347-358.

Google Scholar

[31] A. Zent, J.T. Long, SAE Intern., 1 (2007), 1-4.

Google Scholar

[32] Y.H. Ren, X.N. Sun, H. Song, Adv. Mater. Res., 332 (2011), 959-962.

Google Scholar

[33] M.A. Ibrahim, R.W. Melik, Proceed. of the Math. And Phys. Soc. of Egypt., 1 (1978), 46.

Google Scholar

[34] C-H. Huang, J-H. Lin, C-H. Lou, Y. -T. Tsai, Fibers and Polym., 14 (2013)., 1378-1385.

Google Scholar

[35] S. Jiang, Y. Xu, H. Zhang, C.B. White, X. Yan, Appl. Acoust., 73 (2012), 243-247.

Google Scholar

[36] M. H Fouladi, M. Ayub, M.J.M. Nor, Appl. Acoust., 1 (2011), 35-42.

Google Scholar

[37] P. Gle, E. Gourdon, L. Arnaud, Appl. Acoust., 72(2011), 249-259.

Google Scholar