Short-Time Effect of Multi-Walled Carbon Nanotubes on Some Histological and Biochemical Parameters in Marine Bivalves Crenomytilus grayanus (Dunker, 1853) and Swiftopecten swifti (Bernardi, 1858)

Article Preview

Abstract:

The marine bivalves, mussels Crenomytilus grayanus (Dunker, 1853) and scallops Swiftopecten swifti (Bernardi, 1858), were in vivo exposed to 12-14 nm multi-walled carbon nanotubes (MWNTs) for up to 48 h. Microscopic analysis in combination with the RAMAN spectrophotometry revealed the MWNT aggregates on the gills surface and inside the gut of all exposed individuals. After 48 h exposure, there were no changes in the total cell count, the average cell size and granularity in the hemolymph of mussels, while in the scallops the total hemocyte count was significantly reduced, and the average hemocyte granularity increased. Biochemical markers of oxidative stress (activity of glutathione-S-transferase and catalase, concentration of reduced glutathione, and the degree of lipid peroxidation) did not change significantly in the digestive gland of both mussels and scallops. In hemolymph, catalase activity increased as compared to control in both mussels and scallops. Moreover, concentration of reduced glutathione increased in hemolymph of scallops on the second day of exposure to MWNTs. The data obtained indicate that MWNTs may affect different bivalve mollusks more or less strongly under the same exposure conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

225-231

Citation:

Online since:

January 2017

Export:

Price:

* - Corresponding Author

[1] A. Vianello, A. Boldrin, P. Guerriero, V. Moschino, R. Rella, A. Sturaro, L. Da Ros, Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification, Estuar Coast Shelf Sci. 130 (2013).

DOI: 10.1016/j.ecss.2013.03.022

Google Scholar

[2] J.A. Ivar Do Sul, M.F. Costa, The present and future of microplastic pollution in the marine environment (Review), Environ Pollut. 185 (2014) 352-364.

DOI: 10.1016/j.envpol.2013.10.036

Google Scholar

[3] M.N. Moore, Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int. 32 (2006) 967-976.

DOI: 10.1016/j.envint.2006.06.014

Google Scholar

[4] A. Baun, N.B. Hartmann, K. Grieger, K.O. Kusk, Ecotoxicity of engineered nanoparticles to aquatic invertebrates: A brief review and recommendations for future toxicity testing, Ecotoxicology. 17, 5 (2008) 387-395.

DOI: 10.1007/s10646-008-0208-y

Google Scholar

[5] K. Tiede, M. Hassellov, E. Breitbarth, Q. Chaudhry, A.B. Boxall, Considerations for environmental fate and ecotoxicity testing to support environmental risk assessment for engineered nanoparticles, J Chromatogr A. 1216 (2009) 503-509.

DOI: 10.1016/j.chroma.2008.09.008

Google Scholar

[6] L. Canesi, C. Ciacci, R. Fabbri, A. Marcomini, G. Pojana, G. Gallo, Bivalve molluscs as a unique target group for nanoparticle toxicity, Mar Environ Res. 76 (2012) 16-21.

DOI: 10.1016/j.marenvres.2011.06.005

Google Scholar

[7] T.L. Rocha, T. Gomes, V.S. Sousa, N.C. Mestre, M.J. Bebianno, Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: An overview, Mar Environ Res. 111 (2015) 74-88.

DOI: 10.1016/j.marenvres.2015.06.013

Google Scholar

[8] E. Oberdörster, Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass, Environ Health Perspect. 112 (2004) 1058-1062.

DOI: 10.1289/ehp.7021

Google Scholar

[9] F. Gagnè, J. Auclair, P. Turcotte, M. Fournier, C. Gagnon, S. Sauvé, C. Blaise,  Ecotoxicity of Cd-Te quantum dots to freshwater mussel: impacts on immune system, oxidative stress and genotoxicity, Aquat Toxicol. 86 (2008) 333-340.

DOI: 10.1016/j.aquatox.2007.11.013

Google Scholar

[10] A. Koehler, U. Marx, K. Broeg, S. Bahns, J. Bressling, Effects of nanoparticles in Mytilus edulis gills and hepatopancreas – A new threat to marine life? Mar Environ Res. 66 (2008) 12-14.

DOI: 10.1016/j.marenvres.2008.02.009

Google Scholar

[11] S. Tedesco, H. Doyle, G. Redmond, D. Sheehan, Gold nanoparticles and oxidative stress in Mytilus edulis, Mar Environ Res. 66 (2008) 131-133.

DOI: 10.1016/j.marenvres.2008.02.044

Google Scholar

[12] S. Tedesco, H. Doyle, J. Blasco, G. Redmond, D. Sheehan, Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis, Aquat Toxicol. 100, 2 (2010) 178-186.

DOI: 10.1016/j.aquatox.2010.03.001

Google Scholar

[13] A.H. Ringwood, N. Levi Polyachenko, D.L. Carroll, Fullerene exposures with oysters: embryonic, adult, and cellular responses, Environ. Sci. Technol. 43 (2009) 7136-7141.

DOI: 10.1021/es900621j

Google Scholar

[14] T. Galloway, C. Lewis, I. Dolciotti, B.D. Johnston, J. Moger, F. Regoli, Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete, Environ Pollut. 158 (2010) 1748-1755.

DOI: 10.1016/j.envpol.2009.11.013

Google Scholar

[15] E.J. Petersen, R.A. Pinto, D.J. Mai, P.F. Landrum, W.J. Jr. Weber, Influence of polyethyleneimine graftings of multi-walled carbon nanotubes on their accumulation and elimination by and toxicity to Daphnia magna, Environ. Sci. Technol. 45 (2011).

DOI: 10.1021/es1030239

Google Scholar

[16] C. Falugi, M.G. Aluigi, M.C. Chiantore, D. Privitera, P. Ramoino, M.A. Gatti, A. Fabrizi, A. Pinsino, V. Matranga, Toxicity of metal oxide nanoparticles in immune cells of the sea urchin, Mar Environ Res. 76 (2012) 114-121.

DOI: 10.1016/j.marenvres.2011.10.003

Google Scholar

[17] T.L. Rocha, T. Gomes, C. Cardoso, J. Letendre, J.P. Pinheiro, V.S. Sousa, M.R. Teixeira, M.J. Bebianno, Immunocytotoxicity, cytogenotoxicity and genotoxicity of cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis, Mar Environ Res. 101 (2014).

DOI: 10.1016/j.marenvres.2014.07.009

Google Scholar

[18] C. Barmo, C. Ciacci, B. Canonico, R. Fabbri, K. Cortese, T. Balbi, A. Marcomini, G. Pojana, G. Gallo, L. Canesi, In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis, Aquat Toxicol. 132-133 (2013).

DOI: 10.1016/j.aquatox.2013.01.014

Google Scholar

[19] A.A. Anisimova, V.V. Chaika, V.L. Kuznetsov, K.S. Golokhvast, Study of the influence of multi-walled carbon nanotubes (12–14 nm) on the main target tissues of the bivalve Modiolus modiolus, Nanotechnol Russia. 10, 3-4 (2015) 278-287.

DOI: 10.1134/s1995078015020020

Google Scholar

[20] M.A. Browne, A. Dissanayake, T.S. Galloway, D.M. Lowe, R.C. Thompson, Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L), Environ. Sci. Technol. 42 (2008) 5026-5031.

DOI: 10.1021/es800249a

Google Scholar

[21] A. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel, Science. 311 (2006) 622-627.

DOI: 10.1126/science.1114397

Google Scholar

[22] S.V. Yavnov, S.E. Pozdnyakov (Eds. ), Atlas of the bivalve mollusks of the Far Eastern seas of Russia, Dyuma, Vladivostok, (2000).

Google Scholar

[23] V.L. Kuznetsov, K.V. Elumeeva, A.V. Ishchenko, N. Yu. Beylina, A.A. Stepashkin, S.I. Moseenkov, L.M. Plyasova, I. Yu. Molina, A.I. Romanenko, O.B. Anikeeva, E.N. Tkachev, Multi-walled carbon nanotubes with ppm level of impurities, Phys Status Solidi B. 247, 11-12 (2010).

DOI: 10.1002/pssb.201000211

Google Scholar

[24] V.L. Kuznetsov, D.V. Krasnikov, A.N. Schmakov, K.V. Elumeeva, In situ and ex situ time resolved study of multi-component Fe-Co oxide catalyst activation during MWNT synthesis, Phys Status Solidi B. 249 (2012) 2390-2394.

DOI: 10.1002/pssb.201200120

Google Scholar

[25] S.A. Danilenko, O.N. Lukyanova, Molecular biomarkers of the physiological state of mitten crab Eriocheir japonica (de Haan, 1835) in the estuarine zones of Peter the Great Bay (Sea of Japan), Inland Water Biol. 7, 3 (2014) 264-272.

DOI: 10.1134/s1995082914030043

Google Scholar

[26] V.E. Kagan, Y.Y. Tyurina, V.A. Tyurin, N.V. Konduru, A.I. Potapovich, A.N. Osipov, E.R. Kisin, D. Schwegler-Berry, R. Mercer, V. Castranova, A.A. Shvedova, Direct and indirect effects of single walled carbon nanotubes on RAW 264. 7 macrophages: role of iron, Toxicol Lett. 165 (2006).

DOI: 10.1016/j.toxlet.2006.02.001

Google Scholar

[27] Y. Rodriguez-Yanez, B. Munoz, A. Albores, Mechanisms of toxicity by carbon nanotubes, Toxicol Mech Method. 23 (2013) 178-195.

Google Scholar

[28] P. Moller, D.V. Christophersen, D.M. Jensen, A. Kermanizadeh, M. Roursgaard, N.R. Jacobsen, J.G. Hemmingsen, P.H. Danielsen, Y. Cao, K. Jantzen, H. Klingberg, L.G. Hersoug, S. Loft, Role of oxidative stress in carbon nanotube-generated health effects, Arch Toxicol. 88 (2014).

DOI: 10.1007/s00204-014-1356-x

Google Scholar

[29] P. Khalid,  M.A. Hussain, V.B. Suman, A.B. Arun, Toxicology of carbon nanotubes - A Review, IJAER. 11, 1 (2016) 148-157.

Google Scholar

[30] J. Dong, Q. Ma, Advances in mechanisms and signaling pathways of carbon nanotube toxicity, Nanotoxicology. 9 (2015) 658-676.

DOI: 10.3109/17435390.2015.1009187

Google Scholar

[31] S. Funahashi, Y. Okazaki, D. Ito, A. Asakawa, H. Nagai, M. Tajima, S. Toyokuni, Asbestos and multi-walled carbon nanotubes generate distinct oxidative responses in inflammatory cells, J Clin Biochem Nutr. 56 (2015) 111-117.

DOI: 10.3164/jcbn.14-92

Google Scholar