On the Physicochemical Mechanism of the Influence of Preliminary Mechanical Activation on Self-Propagating High-Temperature Synthesis

Article Preview

Abstract:

The analysis of physicochemical mechanism of the influence of mechanical activation (MA) of a charge mixture on the subsequent self-propagating high-temperature synthesis (SHS) of intermetallic compounds is performed. Numerical estimates have revealed an insignificant role of the energy stored in solid reactants due to cold work during MA. The characteristic time of relaxation of non-equilibrium vacancies, which were generated in metals by MA, during heating in the SHS wave is estimated, and their insignificant influence on the reaction kinetics at high temperatures is demonstrated. It is shown that a strong effect of preliminary MA on SHS can be attributed only to deformation-enhanced solid-state diffusion during MA, which can lead to the formation of a supersaturated solid solution and thus affect the conditions for nucleation of a product phase (intermetallic compound) upon heating.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 138)

Pages:

159-164

Citation:

Online since:

March 2008

Export:

Price:

[1] A.G. Merzhanov: Russ. Chem. Bull. Vol. 46 (1997), p.1.

Google Scholar

[2] B.B. Khina, B. Formanek and I. Solpan: Physica B Vol. 355 (2005), p.14.

Google Scholar

[3] B.B. Khina: J. Appl. Phys. Vol. 101 (2007), 063510.

Google Scholar

[4] F. Maglia, C. Milanese, U. Anselmi-Tamburini, S. Doppiu and G. Cocco: J. Mater. Res. Vol. 17 (2002), p.992.

DOI: 10.1557/jmr.2002.0295

Google Scholar

[5] E. Medda, F. Delogu and G. Cao: Mat. Sci. Eng. A Vol. 361 (2003), p.23.

Google Scholar

[6] C. Gras, E. Gaffet and F. Bernard: Intermetallics Vol. 14 (2006), p.521.

Google Scholar

[7] M.A. Korchagin, T.F. Grigor'eva, B.B. Bokhonov, M.R. Sharafutdinov, A.P. Barinova and N.Z. Lyakhov: Comb. Explos. Shock Waves Vol. 39 (2003), p.43; item., ibid., p.51.

DOI: 10.1023/a:1022197218749

Google Scholar

[8] C. Suryanarayana: Prog. Mater. Sci. Vol. 46 (2001), p.1.

Google Scholar

[9] V.K. Smolyakov: Comb. Explos. Shock Waves Vol. 41 (2005), p.319.

Google Scholar

[10] G.E. Dieter: Mechanical Metallurgy (McGraw-Hill, New York 1986).

Google Scholar

[11] L.V. Tikhonov, V.A. Kononenko, G.I. Prokopenko and V.A. Rafalovski: Structure and Properties of Metals and Alloys: A Handbook (Naukova Dumka, Kiev 1986) (in Russian).

Google Scholar

[12] Smithells Metals Reference Book, 7th edition (Butterworth-Heinemann, Oxford 1992).

Google Scholar

[13] F.R.N. Nabarro, Z.S. Basinski and D.B. Holt: Adv. Phys. Vol. 50 (1964), p.193.

Google Scholar

[14] B.S. Bokshtein: Diffusion in Metals (Metallugriya, Moscow 1978) (in Russian).

Google Scholar

[15] H.J. Fecht: Nature Vol. 356 (1992), p.133.

Google Scholar

[16] Y.H. Zhao, H.W. Sheng and K. Lu: Acta Mater. Vol. 49 (2001), p.365.

Google Scholar

[17] R.A. Johnson and N.Q. Lam: Phys. Rev. B Vol. 13 (1976), p.4364.

Google Scholar

[18] L.N. Larikov, V.M. Fal'chenko, V.F. Mazanko, S.M. Gurevich, G.K. Kharchenko and A.I. Ignatenko: Dokl. Akad. Nauk SSSR Vol. 221 (1975), p.1073 (in Russian).

Google Scholar

[19] B.B. Khina, F.G. Lovshenko, V.M. Konstantinov and B. Formanek: Metallofiz. Noveish. Tekhnol. Vol. 27 (2005), p.609 (in Russian).

Google Scholar

[20] B.B. Khina and B. Formanek: Def. Dif. For. Vol. 249 (2006), p.105.

Google Scholar

[21] B.M. Khusid and B.B. Khina: Phys. Rev. B Vol. 44 (1991), p.10778.

Google Scholar

[22] F. Hodaj, A.M. Gusak and P.J. Desre: Phil. Mag. A Vol. 77 (1998), p.1471.

Google Scholar

[23] A.M. Gusak, F. Hodaj and A.O. Bogatyrev: J. Phys. -Conden. Matter Vol. 13 (2001), p.2767.

Google Scholar