Crystallite Size Determination of MgO Nanopowder from X-Ray Diffraction Patterns Registered in GIXD Technique

Article Preview

Abstract:

The problem of the crystallite size determination for nanomaterials from X-ray diffraction data obtained in asymmetrical GIXD geometry was analyzed. The studies were performed on nanocrystalline MgO powder prepared by sol-gel synthesis. The nanopowder was preliminary characterized from X-ray diffraction pattern registered in classical Bragg-Brentano geometry and electron microscope observation. The estimated crystallite size, calculated form Williamson-Hall method, equals to 5 nm whereas the lattice distortion is negligible (0.1%). The X-ray diffraction patterns were registered in 30-135º 2θ range using tunnel GIXD technique for the incident α angle: 0.25; 0.5; 1; 2.5 and 5 degrees, respectively. Additional broadening of diffraction lines originated from applied geometry was observed. The calculated crystallite size deviate significantly in comparison to results obtained from classical Bragg-Brentano data. Corrections for additional line broadening were determined, which should be applied for accurate crystallite size calculation in studies of thin nanocrystalline layers using GIXD technique.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 163)

Pages:

177-182

Citation:

Online since:

June 2010

Export:

Price:

[1] E. Bontempi, P. Colombi, L.E. Depero, L. Cartechini, F. Presciutti, B.G. Brunetti, A. Sgamellotti: Appl. Phys. A 83 (2006), pp.543-546.

DOI: 10.1007/s00339-006-3524-1

Google Scholar

[2] G. Brezesinski, F. Bringezu, G. Weidemann: Thin Solid Films 327-329 (1998), pp.256-261.

DOI: 10.1016/s0040-6090(98)00640-3

Google Scholar

[3] S.A.W. Verclas, P.B. Howes, K. Kjaer, A. Wurlitzer, M. Weygand, G. Büldt, N.A. Dencher, M. Lösche: J. Mol. Biol. 287 (1999), pp.837-843.

DOI: 10.1006/jmbi.1999.2644

Google Scholar

[4] H. Fujisawa, M. Okaniwa, H. Nonomura, M. Shimizu, H. Niu: J. Europ. Ceram. Soc. 24 (2004), pp.1641-1645.

Google Scholar

[5] T. Goryczka, G. Dercz, L. Pająk, E. Łągiewka: Solid State Phen. 130 (2007), pp.281-283.

DOI: 10.4028/www.scientific.net/ssp.130.281

Google Scholar

[6] J. Titus, H.W. Schock, R. W. Birkmire, W.N. Shafarman, U.P. Singh: MRS Spring Meeting Proceedings Volume 668 (2001) H1. 5.

Google Scholar

[7] S. Li, Ch. Potter, D. Palmer, D.D. Eberl, T. Klemmer, J. Spear, C. Reiss, D. Brown, A. Morrone: Trans. Magnet. 37 (2001), p.1947-(1949).

DOI: 10.1109/20.951017

Google Scholar

[8] E. Lucas, S. Decker, A. Khaleel, A. Seitz, S. Fultz, A. Ponce, W. Li, C. Carnes, K.J. Klabunde: Chem. Eur. J. 7 (2001), pp.2505-2510.

DOI: 10.1002/1521-3765(20010618)7:12<2505::aid-chem25050>3.0.co;2-r

Google Scholar

[9] V.R. Choudhary, V.H. Rane and R.V. Gadre: J. Catal. 145 (1994), pp.300-311.

Google Scholar

[10] R.M. Morris, K.J. Klabunde: Inorg. Chem. 22 (1983), pp.682-687.

Google Scholar

[11] S. Utamapanya, K.J. Klabunde, J.R. Schlup: Chem. Mater. 3 (1991), p.175.

Google Scholar

[12] Y. Zeng, T. Lu, P. Zou, S. Zhu, L. Wang, L. Shen: Mat. Res. Soc. Symp. Proc. 792 (2004) R9. 15. 1.

Google Scholar

[13] H.M. Rietveld: J. of Appl. Cryst. 2 (1969), pp.65-71.

Google Scholar

[14] Card No 4-0829, Powder Diffraction Files PDF-2, International Center for Diffraction Data.

Google Scholar

[15] G.K. Williamson and W.H. Hall: Acta Metall. Vol. 1 (1953), pp.22-31.

Google Scholar

[16] B.D. Cullity: Elements of X-ray diffraction, 2 nd Addison-Wesley, Massachusetts (1978).

Google Scholar