High Temperature Properties of CoFe/CoNi and Fe/CoNi Biphase Microwires

Article Preview

Abstract:

The objective of this work has been to analyze the high-temperature behavior of magnetically single-and biphase microwires because of its interest from fundamental and applications viewpoints. Two alloy compositions with amorphous structure covered by glass have been prepared as magnetically single phase microwires by quenching & drawing technique: CoFe-based with near zero saturation magnetostriction constant and Fe-based with positive saturation magnetostriction constant. The same wires were used as the core for magnetically biphase microwires. Second CoNi phase was deposited by electroplating. Magnitudes as saturation magnetization and hysteresis parameters are determined in the temperature range from room temperature up to 1200 K. We proceed to a comparative analysis of their magnetic behaviour at different temperatures as well as after cooling down to room temperature. Information on the Curie temperature of different phases and on the influence of heating process on the magnetic properties is thus derived.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 233-234)

Pages:

265-268

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] M. Vazquez, Advanced Magnetic Microwires, Handbook of Magnetism and Advanced Magnetic Materials, 2007, vol. 4, p.2193–2221.

Google Scholar

[2] A. Zhukov, V. Zhukova, Nova Science Publishers, 2009, vol. 11788, p.162.

Google Scholar

[3] M. Vazquez, H. Chiriac, A. Zhukov, et al, Phys. Stat. Sol. A, 2010, pp.1-9.

Google Scholar

[4] M. Ipatov, V. Zhukova, A.K. Zvezdin, et al, J. Appl. Phys., 2009, vol. 106, p.103902.

Google Scholar

[5] K. Richter, R. Varga, et al, Appl. Phys. Lett., 2010, vol. 96, p.182507.

Google Scholar

[6] V. Rodionova, M. Ipatov, M. Ilyn, V. Zhukova, et al, J. Appl. Phys., 2010, vol. 108, p.016103.

Google Scholar

[7] H. Chiriac, S. Corodeanu, M. Lostun, G. Stoian, et al, J. Appl. Phys., 2011, vol. 109, p.063902.

Google Scholar

[8] K. Pirota, M. Hernandez-Velez, et al, Adv. Funct. Mater., 2004, vol. 14, No. 3, p.266–268.

Google Scholar

[9] M. Vazquez, K. Pirota, J. Torrejón, et al, J. Magn. Magn. Mat., 2006, vol. 304, pp.197-202.

Google Scholar

[10] J. Torrejón, G. Badini, K. Pirota, M. Vázquez, Acta Materialia, 2007, vol. 55, p.4271.

DOI: 10.1016/j.actamat.2007.03.023

Google Scholar

[11] J. Escrig, S. Allende, D. Altbir, M. Bahiana, et al, J. Appl. Phys., 2009, vol. 105, p.023907.

Google Scholar

[12] J. Torrejon, G. Badini-Confalonieri, et al, J. Appl. Phys., 2008, vol. 103, p. 07E712.

Google Scholar

[13] G. Infante, G. A. Badini-Confalonieri, et al, J. Phys D: Appl. Phys., 2010, vol. 43, p.345002.

Google Scholar

[14] H. Lumá, M. Vázquez, et al, J. Magn. Magn. Mat., 1999, vol. 196-197, pp.821-823.

Google Scholar

[15] M. Vázquez, A. Zhukov, et al, Mater. Sci. and Engineer. A, 2004, vol. 375-377, pp.1145-1148.

Google Scholar

[16] V. Rodionova, A. Nikoshin, et al, IEEE Trans Magn., 2011, vol. 47, № 10, pp.3787-3790.

Google Scholar

[17] J. Torrejon, G. A. Badini-Confalonieri, et al, Sensor Letters, 2007, vol. 5, p.153 – 156.

Google Scholar