Super-Paramagnetic Nanoparticles with Spinel Structure: A Review of Synthesis and Biomedical Applications

Article Preview

Abstract:

The study of ceramic materials has attracted the attention of many researchers due to the possibility of their use in nanotechnology. The spinel ferrites form a large group of materials with a broad range of applications. Some examples include electronic devices such as high-frequency transformer cores, antenna rods, induction-tuners, among many others. However, when the ferritic materials display superparamagnetic behavior, their potential for biological applications like drug delivery, hyperthermia, resonance magnetic imaging and magnetic separation, become amazingly high. Therefore, the superparamagnetism is a characteristic strongly desired for spinel ferrites. Since this phenomenon is size-dependent, the methodologies to synthesize these materials has emerged as a crucial step in order to obtain the desired properties. In this regarding, several synthetic processes have been developed. For example, co-precipitation is a fast and cheap method to synthesize superparamagnetic spinel ferrites. However, methodologies involving microwave, ultrasound or polymers frequently result in these kind of materials. Therefore, this review brings a brief historic introduction about spinel ferrites as well as essential concepts to understand their structure and magnetic properties. In addition to this, recent advances in synthesis and applications of the superparamagnetic spinel ferrites are mentioned. Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 241)

Pages:

139-176

Citation:

Online since:

October 2015

Export:

Price:

[1] M. Sugimoto, The Past, Present, and Future of Ferrites, Journal of the American Ceramic Society 82 (1999) 269-280.

Google Scholar

[2] R. Valenzuela, Magnetic ceramics, Cambridge University Press, (1994).

Google Scholar

[3] S. Hilpert, V. Verf, Genetische und konstitutive Zusammenhänge in den magnetischen Eigenschaften bei Ferriten und Eisenoxyden, Berichte der deutschen chemischen Gesellschaft 42 (1909) 2248-2261.

DOI: 10.1002/cber.190904202121

Google Scholar

[4] Y. Kato, T. Takei, Characteristics of Metallic Oxide Magnet, Journal of Institute of Electrical Engineers of Japan 53 (1933) 408-412.

Google Scholar

[5] T. Takei, T. Yasuda, S. Isshibara, On the High-Temperature Magnetization of Ferrites, Eletrotech. J 4 (1940) 75-79.

Google Scholar

[6] L. Néel, Théorie du trainage magnétique des ferromagnétiques au grains fin avec applications aux terres cuites, Ann. Géophys 5 (1949) 99-136.

Google Scholar

[7] E. Albers-Schoenberg, Ferrites for Microwave Circuits and Digital Computers, Journal of Applied Physics 25 (1954) 152.

DOI: 10.1063/1.1721594

Google Scholar

[8] A.H. Bobeck, Properties and Device Applications of Magnetic Domains in Orthoferrites, Bell System Technical Journal 46 (1967) 1901-(1925).

DOI: 10.1002/j.1538-7305.1967.tb03177.x

Google Scholar

[9] A. Bobeck, R. Fischer, A. Perneski, J. Remeika, L. Van Uitert, Application of orthoferrites to domain-wall devices, IEEE Transactions on Magnetics 5 (1969) 544-553.

DOI: 10.1109/tmag.1969.1066480

Google Scholar

[10] J.F. Dillon, E.M. Gyorgy, J.P. Remeika, Photoinduced Magnetic Anisotropy and Optical Dichroism in Silicon-Doped Yttrium Iron Garnet, Physical Review Letters 22 (1969) 643-645.

DOI: 10.1103/physrevlett.22.643

Google Scholar

[11] C.L. Hogan, The Ferromagnetic Faraday Effect at Microwave Frequencies and its Applications, Bell System Technical Journal 31 (1952) 1-31.

DOI: 10.1002/j.1538-7305.1952.tb01374.x

Google Scholar

[12] C. Walcott, J. Gould, J. Kirschvink, Pigeons have magnets, Science 205 (1979) 1027-1029.

DOI: 10.1126/science.472725

Google Scholar

[13] J.L. Gould, J.L. Kirschvink, K.S. Deffeyes, Bees have magnetic remanence, Science (New York) 201 (1978) 1026-1028.

DOI: 10.1126/science.201.4360.1026

Google Scholar

[14] R.B. Frankel, R.P. Blakemore, R.S. Wolfe, Magnetite in freshwater magnetotactic bacteria, Science (New York, N.Y. ) 203 (1979) 1355-1356.

DOI: 10.1126/science.203.4387.1355

Google Scholar

[15] K.J. Widder, A.E. Senyei, D.G. Scarpelli, Magnetic Microspheres: A Model System for Site Specific Drug Delivery in Vivo, Experimental Biology and Medicine 158 (1978) 141-146.

DOI: 10.3181/00379727-158-40158

Google Scholar

[16] R.K. GILCHRIST, R. MEDAL, W.D. SHOREY, R.C. HANSELMAN, J.C. PARROTT, C.B. TAYLOR, Selective inductive heating of lymph nodes, Annals of surgery 146 (1957) 596-606.

DOI: 10.1097/00000658-195710000-00007

Google Scholar

[17] P.C. Fannin, Measurement of the Neel relaxation of magnetic particles in the frequency range 1 kHz to 160 MHz, Journal of Physics D: Applied Physics 24 (1991) 76-77.

DOI: 10.1088/0022-3727/24/1/013

Google Scholar

[18] P. Tartaj, M. a. d.P. Morales, S. Veintemillas-Verdaguer, T. Gonz lez-Carre o, C.J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine, Journal of Physics D: Applied Physics 36 (2003) R182-R197.

DOI: 10.1088/0022-3727/36/13/202

Google Scholar

[19] D.S. Mathew, R. -S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chemical Engineering Journal 129 (2007) 51-65.

DOI: 10.1016/j.cej.2006.11.001

Google Scholar

[20] R.J. Hill, J.R. Craig, G.V. Gibbs, Systematics of the spinel structure type, Physics and Chemistry of Minerals 4 (1979) 317-339.

DOI: 10.1007/bf00307535

Google Scholar

[21] V.G. Harris, Modern Microwave Ferrites, IEEE Transactions on Magnetics 48 (2012) 1075-1104.

Google Scholar

[22] W.H. Bragg, The structure of magnetite and the spinels, Nature 95 (1915) 561.

Google Scholar

[23] W. Galvão, R. Freire, T. Ribeiro, I. Vasconcelos, L. Costa, V. Freire, F. Sales, J. Denardin, P. Fechine, Cubic superparamagnetic nanoparticles of NiFe2O4 via fast microwave heating, Journal of Nanoparticle Research 16 (2014) 1-10.

DOI: 10.1007/s11051-014-2803-6

Google Scholar

[24] B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, John Wiley & Sons, (2009).

Google Scholar

[25] E.U. Condon, G.H. Shortley, The Theory of Atomic Spectra, Cambridge University Press (1935).

Google Scholar

[26] F.C. Romeijn, Physical and crystallographical properties of some spinels, Philips Research Reports 8 (1953) 304-342.

Google Scholar

[27] M.A. Hakim, S.K. Nath, S.S. Sikder, K. Hanium Maria, Cation distribution and electromagnetic properties of spinel type Ni–Cd ferrites, Journal of Physics and Chemistry of Solids 74 (2013) 1316-1321.

DOI: 10.1016/j.jpcs.2013.04.011

Google Scholar

[28] C. Venkataraju, G. Sathishkumar, K. Sivakumar, Effect of cation distribution on the structural and magnetic properties of nickel substituted nanosized Mn–Zn ferrites prepared by co-precipitation method, Journal of Magnetism and Magnetic Materials 322 (2010).

DOI: 10.1016/j.jmmm.2009.08.043

Google Scholar

[29] R. Freire, T. Ribeiro, I. Vasconcelos, J. Denardin, E. Barros, G. Mele, L. Carbone, S. Mazzetto, P. Fechine, MZnFe2O4 (M= Ni, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis, Journal of Nanoparticle Research 15 (2013).

DOI: 10.1007/s11051-013-1616-3

Google Scholar

[30] N. Pailhé, A. Wattiaux, M. Gaudon, A. Demourgues, Correlation between structural features and vis-NIR spectra of α-Fe2O3 hematite and AFe2O4 spinel oxides (A=Mg, Zn), Journal of Solid State Chemistry 181 (2008) 1040-1047.

DOI: 10.1016/j.jssc.2008.02.009

Google Scholar

[31] K.B. Modi, P.Y. Raval, S.J. Shah, C.R. Kathad, S.V. Dulera, M.V. Popat, K.B. Zankat, K.G. Saija, T.K. Pathak, N.H. Vasoya, V.K. Lakhani, U. Chandra, P.K. Jha, Raman and Mossbauer spectroscopy and X-ray diffractometry studies on quenched copper-ferri-aluminates, Inorganic chemistry 54 (2015).

DOI: 10.1021/ic502497a

Google Scholar

[32] F. Nakagomi, S.W. da Silva, V.K. Garg, A.C. Oliveira, P.C. Morais, A. Franco, Influence of the Mg-content on the cation distribution in cubic MgxFe3−xO4 nanoparticles, Journal of Solid State Chemistry 182 (2009) 2423-2429.

DOI: 10.1016/j.jssc.2009.06.036

Google Scholar

[33] S.W. da Silva, F. Nakagomi, M.S. Silva, A. Franco, V.K. Garg, A.C. Oliveira, P.C. Morais, Raman study of cations' distribution in ZnxMg1−xFe2O4 nanoparticles, Journal of Nanoparticle Research 14 (2012) 798.

DOI: 10.1007/s11051-012-0798-4

Google Scholar

[34] Y. Liu, J.W. Fergus, C.D. Cruz, Electrical properties, cation distributions, and thermal expansion of manganese cobalt chromite spinel oxides, Journal of the American Ceramic Society 96 (2013) 1841-1846.

DOI: 10.1111/jace.12254

Google Scholar

[35] C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings, Journal of the American Chemical Society 122 (2000).

DOI: 10.1021/ja000784g

Google Scholar

[36] S.M. Yunus, H. Yamauchi, A.K.M. Zakaria, N. Igawa, A. Hoshikawa, Y. Ishii, Cation distribution and crystallographic characterization of the quaternary spinel system MgxCo1-xCrxFe2-xO4, Journal of Alloys and Compounds 454 (2015) 10-15.

DOI: 10.1016/j.jallcom.2006.12.022

Google Scholar

[37] T. Sawabe, T. Yano, Neutron irradiation effect on site distribution of cations in non-stoichiometric magnesium aluminate spinel, Journal of Nuclear Materials 373 (2008) 328-334.

DOI: 10.1016/j.jnucmat.2007.06.013

Google Scholar

[38] M. Veverka, Z. Jirák, O. Kaman, K. Knížek, M. Maryško, E. Pollert, K. Závěta, A. Lančok, M. Dlouhá, S. Vratislav, Distribution of cations in nanosize and bulk Co-Zn ferrites., Nanotechnology 22 (2011) 345701.

DOI: 10.1088/0957-4484/22/34/345701

Google Scholar

[39] M. Hashim, S.S. Meena, R.K. Kotnala, S.E. Shirsath, P. Bhatt, S. Kumar, E. Şentürk, R. Kumar, N. Gupta, Alimuddin, Exploring the structural, Mössbauer and dielectric properties of Co2+ incorporated Mg0. 5Zn0. 5-xCoxFe2O4 nanocrystalline ferrite, Journal of Magnetism and Magnetic Materials 360 (2014).

DOI: 10.1016/j.jmmm.2014.01.047

Google Scholar

[40] L. Néel, Proprietes Magnetiques Des Ferrites - Ferrimagnetisme Et Antiferromagnetisme, Annales de Physique 3 (1948) 137-198.

Google Scholar

[41] J. Estelrich, E. Escribano, J. Queralt, M.A. Busquets, Iron Oxide Nanoparticles for Magnetically-Guided and Magnetically-Responsive Drug Delivery, International Journal of Molecular Sciences 16 (2015) 8070-8101.

DOI: 10.3390/ijms16048070

Google Scholar

[42] N.A. Spaldin, Magnetic Materials: Fundamentals and Device Applications, Cambridge University Press, (2003).

Google Scholar

[43] A. Kolhatkar, A. Jamison, D. Litvinov, R. Willson, T. Lee, Tuning the Magnetic Properties of Nanoparticles, International Journal of Molecular Sciences 14 (2013) 15977-16009.

DOI: 10.3390/ijms140815977

Google Scholar

[44] S.P. Gubin, Magnetic nanoparticles, John Wiley & Sons, (2009).

Google Scholar

[45] W.F. Brown, Thermal Fluctuations of a Single-Domain Particle, Journal of Applied Physics 34 (1963) 1319.

Google Scholar

[46] Y.V. Kolen'ko, M. Bañobre-López, C. Rodríguez-Abreu, E. Carbó-Argibay, A. Sailsman, Y. Piñeiro-Redondo, M.F. Cerqueira, D.Y. Petrovykh, K. Kovnir, O.I. Lebedev, J. Rivas, Large-Scale Synthesis of Colloidal Fe3O4 Nanoparticles Exhibiting High Heating Efficiency in Magnetic Hyperthermia, The Journal of Physical Chemistry C 118 (2014).

DOI: 10.1021/jp500816u

Google Scholar

[47] K. Mandel, F. Hutter, C. Gellermann, G. Sextl, Stabilisation effects of superparamagnetic nanoparticles on clustering in nanocomposite microparticles and on magnetic behaviour, Journal of Magnetism and Magnetic Materials 331 (2013) 269-275.

DOI: 10.1016/j.jmmm.2012.11.053

Google Scholar

[48] T.M. El-Alaily, M.K. El-Nimr, S.A. Saafan, M.M. Kamel, T.M. Meaz, S.T. Assar, Construction and calibration of a low cost and fully automated vibrating sample magnetometer, Journal of Magnetism and Magnetic Materials 386 (2015) 25-30.

DOI: 10.1016/j.jmmm.2015.03.051

Google Scholar

[49] M. Kooti, L. Matturi, Microwave-Assisted Fabrication of γ-Fe2O3 Nanoparticles from Tris (acetylacetonato) Iron (III), Int. Nano Lett. 1 (2011) 38-42.

Google Scholar

[50] A. Salunkhe, V. Khot, J. Ruso, S. Patil, Synthesis and magnetostructural studies of amine functionalized superparamagnetic iron oxide nanoparticles, RSC Advances 5 (2015) 18420-18428.

DOI: 10.1039/c5ra00049a

Google Scholar

[51] M.C. Mascolo, Y. Pei, T.A. Ring, Room temperature co-precipitation synthesis of magnetite nanoparticles in a large ph window with different bases, Materials 6 (2013) 5549-5567.

DOI: 10.3390/ma6125549

Google Scholar

[52] X. Li, Q. Li, Z. Xia, W. Yan, Effects on direct synthesis of large scale mono-disperse Ni0. 5 Zn0. 5 Fe2O4 nanosized particles, Journal of Alloys and Compounds 458 (2008) 558-563.

DOI: 10.1016/j.jallcom.2007.04.214

Google Scholar

[53] D.M.T. Dang, C.M. Dang, E. Fribourg–Blanc, Investigation of the influence of different surfactants on controlling the size of silver nanoparticles, International Journal of Nanotechnology 12 (2015) 505-514.

DOI: 10.1504/ijnt.2015.067908

Google Scholar

[54] R. Valenzuela, M.C. Fuentes, C. Parra, J. Baeza, N. Duran, S. Sharma, M. Knobel, J. Freer, Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method, Journal of Alloys and Compounds 488 (2009).

DOI: 10.1016/j.jallcom.2009.08.087

Google Scholar

[55] M. Mascolo, Y. Pei, T. Ring, Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases, Materials 6 (2013) 5549-5567.

DOI: 10.3390/ma6125549

Google Scholar

[56] T. Kikuchi, R. Kasuya, S. Endo, A. Nakamura, T. Takai, N. Metzler-Nolte, K. Tohji, J. Balachandran, Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia, Journal of Magnetism and Magnetic Materials 323 (2011) 1216-1222.

DOI: 10.1016/j.jmmm.2010.11.009

Google Scholar

[57] J. Baumgartner, A. Dey, P.H. Bomans, C. Le Coadou, P. Fratzl, N.A. Sommerdijk, D. Faivre, Nucleation and growth of magnetite from solution, Nature materials 12 (2013) 310-314.

DOI: 10.1038/nmat3558

Google Scholar

[58] V.F. Castro, A.A. de Queiroz, Pontos quânticos magneto ativos: uma nova fronteira para a medicina terapêutica e diagnóstica, Rev Bras Fís Méd 4 (2011) 15-18.

Google Scholar

[59] A. -H. Lu, E.L. Salabas, F. Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angewandte Chemie International Edition 46 (2007) 1222-1244.

DOI: 10.1002/anie.200602866

Google Scholar

[60] E. Kim, K. Lee, Y. -M. Huh, S. Haam, Magnetic nanocomplexes and the physiological challenges associated with their use for cancer imaging and therapy, Journal of Materials Chemistry B 1 (2013) 729-739.

DOI: 10.1039/c2tb00294a

Google Scholar

[61] I.P. De Berti, M. Cagnoli, G. Pecchi, J. Alessandrini, S. Stewart, J. Bengoa, S. Marchetti, Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors, Nanotechnology 24 (2013).

DOI: 10.1088/0957-4484/24/17/175601

Google Scholar

[62] C. Li, R. Wei, Y. Xu, A. Sun, L. Wei, Synthesis of hexagonal and triangular Fe3O4 nanosheets via seed-mediated solvothermal growth, Nano Research 7 (2014) 536-543.

DOI: 10.1007/s12274-014-0421-3

Google Scholar

[63] G. Sharma, P. Jeevanandam, Synthesis of self-assembled prismatic iron oxide nanoparticles by a novel thermal decomposition route, RSC Advances 3 (2013) 189-200.

DOI: 10.1039/c2ra22004k

Google Scholar

[64] W. Xiao, X. Liu, X. Hong, Y. Yang, Y. Lv, J. Fang, J. Ding, Magnetic-field-assisted synthesis of magnetite nanoparticles via thermal decomposition and their hyperthermia properties, CrystEngComm 17 (2015) 3652-3658.

DOI: 10.1039/c5ce00442j

Google Scholar

[65] M.A.Z. Arruda, R.E. Santelli, Mecanização no preparo de amostras por microondas: o estado da arte, Química Nova 20 (1997) 643.

DOI: 10.1590/s0100-40421997000600012

Google Scholar

[66] E. Grant, B.J. Halstead, Dielectric parameters relevant to microwave dielectric heating, Chemical Society Reviews 27 (1998) 213-224.

DOI: 10.1039/a827213z

Google Scholar

[67] A. Loupy, Microwaves in organic synthesis, Wiley-VCH; John Wiley, distributor](2006).

Google Scholar

[68] S. Horikoshi, N. Serpone, Microwaves in nanoparticle synthesis: fundamentals and applications, John Wiley & Sons, (2013).

Google Scholar

[69] C.R. Strauss, R.W. Trainor, Developments in microwave-assisted organic chemistry, Australian Journal of Chemistry 48 (1995) 1665-1692.

DOI: 10.1071/ch9951665

Google Scholar

[70] W.S. Galvão, R.M. Freire, T.S. Ribeiro, I.F. Vasconcelos, L.S. Costa, V.N. Freire, F.A.M. Sales, J.C. Denardin, P.B.A. Fechine, Cubic superparamagnetic nanoparticles of NiFe2O4 via fast microwave heating, Journal of Nanoparticle Research 16 (2014).

DOI: 10.1007/s11051-014-2803-6

Google Scholar

[71] J.P. Lorimer, T.J. Mason, Sonochemistry. Part 1—the physical aspects, Chem. Soc. Rev. 16 (1987) 239-274.

DOI: 10.1039/cs9871600239

Google Scholar

[72] C. Leonelli, T.J. Mason, Microwave and ultrasonic processing: now a realistic option for industry, Chemical Engineering and Processing: Process Intensification 49 (2010) 885-900.

DOI: 10.1016/j.cep.2010.05.006

Google Scholar

[73] C. Wang, H. Cheng, Y. Sun, Q. Lin, C. Zhang, Rapid Sonochemical Synthesis of Luminescent and Paramagnetic Copper Nanoclusters for Bimodal Bioimaging, ChemNanoMat 1 (2015) 27-31.

DOI: 10.1002/cnma.201500004

Google Scholar

[74] R. Dolores, S. Raquel, G. -L. Adianez, Sonochemical synthesis of iron oxide nanoparticles loaded with folate and cisplatin: Effect of ultrasonic frequency, Ultrasonics sonochemistry 23 (2015) 391-398.

DOI: 10.1016/j.ultsonch.2014.08.005

Google Scholar

[75] Y. Wang, I. Nkurikiyimfura, Z. Pan, Sonochemical Synthesis of Magnetic Nanoparticles, Chemical Engineering Communications 202 (2015) 616-621.

DOI: 10.1080/00986445.2013.858039

Google Scholar

[76] P. Sivakumar, P.K. Nayak, B. Markovsky, D. Aurbach, A. Gedanken, Sonochemical synthesis of LiNi0. 5Mn1. 5O4 and its electrochemical performance as a cathode material for 5V Li-ion batteries, Ultrasonics Sonochemistry 26 (2015) 332-339.

DOI: 10.1016/j.ultsonch.2015.02.007

Google Scholar

[77] N. Basavegowda, K. Mishra, Y.R. Lee, Sonochemically synthesized ferromagnetic Fe3O4 nanoparticles as a recyclable catalyst for the preparation of pyrrolo [3, 4-c] quinoline-1, 3-dione derivatives, RSC Adv. 4 (2014) 61660-61666.

DOI: 10.1039/c4ra11623b

Google Scholar

[78] S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles, Journal of the American Chemical Society 124 (2002) 8204-8205.

DOI: 10.1021/ja026501x

Google Scholar

[79] F. Dang, N. Enomoto, J. Hojo, K. Enpuku, Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol–water mixed solvent, Ultrasonics sonochemistry 16 (2009) 649-654.

DOI: 10.1016/j.ultsonch.2008.11.003

Google Scholar

[80] A. -L. Morel, S.I. Nikitenko, K. Gionnet, A. Wattiaux, J. Lai-Kee-Him, C. Labrugere, B. Chevalier, G. Deleris, C. Petibois, A. Brisson, Sonochemical approach to the synthesis of Fe3O4@ SiO2 core-shell nanoparticles with tunable properties, Acs Nano 2 (2008).

DOI: 10.1021/nn800091q

Google Scholar

[81] Z. Zou, K. Lin, L. Chen, J. Chang, Ultrafast synthesis and characterization of carbonated hydroxyapatite nanopowders via sonochemistry-assisted microwave process, Ultrasonics sonochemistry 19 (2012) 1174-1179.

DOI: 10.1016/j.ultsonch.2012.04.002

Google Scholar

[82] K. Pemartin, C. Solans, J. Alvarez-Quintana, M. Sanchez-Dominguez, Synthesis of Mn–Zn ferrite nanoparticles by the oil-in-water microemulsion reaction method, Colloids and Surfaces A: Physicochemical and Engineering Aspects 451 (2014) 161-171.

DOI: 10.1016/j.colsurfa.2014.03.036

Google Scholar

[83] L.E. Scriven, Equilibrium bicontinuous structure, Nature 263 (1976) 123-125.

Google Scholar

[84] L. Wang, M. Cole, J. Li, Y. Zheng, Y.P. Chen, K.P. Miller, A.W. Decho, B.C. Benicewicz, Polymer grafted recyclable magnetic nanoparticles, Polymer Chemistry 6 (2015) 248-255.

DOI: 10.1039/c4py01134a

Google Scholar

[85] F. Chen, Q. Gao, J. Ni, The grafting and release behavior of doxorubincin from Fe3O4@ SiO2 core–shell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery, Nanotechnology 19 (2008) 165103.

DOI: 10.1088/0957-4484/19/16/165103

Google Scholar

[86] L.M. Magno, W. Sigle, P.A. van Aken, D.G. Angelescu, C. Stubenrauch, Microemulsions as reaction media for the synthesis of bimetallic nanoparticles: size and composition of particles, Chemistry of Materials 22 (2010) 6263-6271.

DOI: 10.1021/cm101811g

Google Scholar

[87] C. Okoli, M. Sanchez-Dominguez, M. Boutonnet, S. Järås, C. n. Civera, C. Solans, G.R. Kuttuva, Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles, Langmuir 28 (2012) 8479-8485.

DOI: 10.1021/la300599q

Google Scholar

[88] G. Zhou, Z. Luo, X. Fu, Preparation of Starch Nanoparticles in a Water-in-Ionic Liquid Microemulsion System and Their Drug Loading and Releasing Properties, Journal of agricultural and food chemistry 62 (2014) 8214-8220.

DOI: 10.1021/jf5018725

Google Scholar

[89] N. Rezlescu, E. Rezlescu, L. Sachelarie, P.D. Popa, C. Doroftei, Structural and catalytic properties of mesoporous nanocrystalline mixed oxides containing magnesium, Catalysis Communications 46 (2014) 51-56.

DOI: 10.1016/j.catcom.2013.11.021

Google Scholar

[90] X. Huang, J. Zhang, S. Xiao, T. Sang, G. Chen, Unique electromagnetic properties of the zinc ferrite nanofiber, Materials Letters 124 (2014) 126-128.

DOI: 10.1016/j.matlet.2014.03.049

Google Scholar

[91] E. Ranjith Kumar, R. Jayaprakash, G. Sarala Devi, P. Siva Prasada Reddy, Synthesis of Mn substituted CuFe2O4 nanoparticles for liquefied petroleum gas sensor applications, Sensors and Actuators B: Chemical 191 (2014) 186-191.

DOI: 10.1016/j.snb.2013.09.108

Google Scholar

[92] Y. Liu, M. Yuan, L. Qiao, R. Guo, An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites, Biosensors and Bioelectronics 52 (2014) 391-396.

DOI: 10.1016/j.bios.2013.09.020

Google Scholar

[93] D. Ling, N. Lee, T. Hyeon, Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications, Accounts of Chemical Research (2015).

DOI: 10.1021/acs.accounts.5b00038

Google Scholar

[94] C. Xu, S. Sun, New forms of superparamagnetic nanoparticles for biomedical applications, Advanced Drug Delivery Reviews 65 (2013) 732-743.

DOI: 10.1016/j.addr.2012.10.008

Google Scholar

[95] N.C. Bigall, E. Dilena, D. Dorfs, M. -L. Beoutis, G. Pugliese, C. Wilhelm, F. Gazeau, A.A. Khan, A.M. Bittner, M.A. Garcia, M. Garcia-Hernandez, L. Manna, T. Pellegrino, Hollow Iron Oxide Nanoparticles in Polymer Nanobeads as MRI Contrast Agents, The Journal of Physical Chemistry C 119 (2015).

DOI: 10.1021/jp508951t

Google Scholar

[96] S. Patra, E. Roy, P. Karfa, S. Kumar, R. Madhuri, P.K. Sharma, Dual-Responsive Polymer Coated Superparamagnetic Nanoparticle for Targeted Drug Delivery and Hyperthermia Treatment, ACS Applied Materials & Interfaces 7 (2015) 9235-9246.

DOI: 10.1021/acsami.5b01786

Google Scholar

[97] S. Laurent, S. Dutz, U.O. Häfeli, M. Mahmoudi, Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles, Advances in Colloid and Interface Science 166 (2011) 8-23.

DOI: 10.1016/j.cis.2011.04.003

Google Scholar

[98] C.P. Slichter, Principles of Magnetic Resonance, 3rd ed., Springer, New York, (1990).

Google Scholar

[99] N. Lee, T. Hyeon, Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents, Chemical Society Reviews 41 (2012) 2575-2589.

DOI: 10.1039/c1cs15248c

Google Scholar

[100] E.M. Haacke, R.W. Brown, M.R. Thompson, R. Venkatesan, Magnetic resonance imaging: physical principles and sequence design, Wiley, New York, (1999).

Google Scholar

[101] D. Kozlowska, P. Foran, P. MacMahon, M.J. Shelly, S. Eustace, R. O'Kennedy, Molecular and magnetic resonance imaging: The value of immunoliposomes, Advanced Drug Delivery Reviews 61 (2009) 1402-1411.

DOI: 10.1016/j.addr.2009.09.003

Google Scholar

[102] T. -H. Shin, Y. Choi, S. Kim, J. Cheon, Recent advances in magnetic nanoparticle-based multi-modal imaging, Chemical Society Reviews (2015).

DOI: 10.1039/c4cs00345d

Google Scholar

[103] C. Sun, J.S.H. Lee, M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery, Advanced Drug Delivery Reviews 60 (2008) 1252-1265.

DOI: 10.1016/j.addr.2008.03.018

Google Scholar

[104] J. Wang, Y. Huang, A. E. David, B. Chertok, L. Zhang, F. Yu, V. C. Yang, Magnetic Nanoparticles for MRI of Brain Tumors, Current Pharmaceutical Biotechnology 13 (2012) 2403-2416.

DOI: 10.2174/138920112803341824

Google Scholar

[105] A.J. Cole, V.C. Yang, A.E. David, Cancer theranostics: the rise of targeted magnetic nanoparticles, Trends in Biotechnology 29 (2011) 323-332.

DOI: 10.1016/j.tibtech.2011.03.001

Google Scholar

[106] Y. -X.J. Wang, Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application, Quantitative Imaging in Medicine and Surgery 1 (2011) 35-40.

Google Scholar

[107] N.C. Balci, R.C. Semelka, Contrast Agents for MR Imaging of the Liver, Radiologic Clinics 43 (2001) 887-898.

DOI: 10.1016/j.rcl.2005.05.004

Google Scholar

[108] A. Singh, S.K. Sahoo, Magnetic nanoparticles: a novel platform for cancer theranostics, Drug Discovery Today 19 (2014) 474-481.

DOI: 10.1016/j.drudis.2013.10.005

Google Scholar

[109] T.P. Murillo, C. Sandquist, P.M. Jacobs, G. Nesbit, S. Manninger, E.A. Neuwelt, Imaging brain tumors with ferumoxtran-10, a nanoparticle magnetic resonance contrast agent, Therapy 2 (2005) 871-882.

DOI: 10.1586/14750708.2.6.871

Google Scholar

[110] W.S. Enochs, G. Harsh, F. Hochberg, R. Weissleder, Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent, Journal of Magnetic Resonance Imaging 9 (1999) 228-232.

DOI: 10.1002/(sici)1522-2586(199902)9:2<228::aid-jmri12>3.0.co;2-k

Google Scholar

[111] Y. -w. Jun, Y. -M. Huh, J. -s. Choi, J. -H. Lee, H. -T. Song, KimKim, S. Yoon, K. -S. Kim, J. -S. Shin, J. -S. Suh, J. Cheon, Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging, Journal of the American Chemical Society 127 (2005).

DOI: 10.1021/ja0422155

Google Scholar

[112] J. -H. Lee, Y. -M. Huh, Y. -w. Jun, J. -w. Seo, J. -t. Jang, H. -T. Song, S. Kim, E. -J. Cho, H. -G. Yoon, J. -S. Suh, J. Cheon, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat Med 13 (2007) 95-99.

DOI: 10.1038/nm1467

Google Scholar

[113] J. Mohapatra, A. Mitra, H. Tyagi, D. Bahadur, M. Aslam, Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents, Nanoscale 7 (2015) 9174-9184.

DOI: 10.1039/c5nr00055f

Google Scholar

[114] Z. Zhao, Z. Zhou, J. Bao, Z. Wang, J. Hu, X. Chi, K. Ni, R. Wang, X. Chen, Z. Chen, J. Gao, Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging, Nat. Commun. 4 (2013).

DOI: 10.1038/ncomms3266

Google Scholar

[115] Z. Zhou, Z. Zhao, H. Zhang, Z. Wang, X. Chen, R. Wang, Z. Chen, J. Gao, Interplay between Longitudinal and Transverse Contrasts in Fe3O4 Nanoplates with (111) Exposed Surfaces, ACS Nano 8 (2014) 7976-7985.

DOI: 10.1021/nn5038652

Google Scholar

[116] Z. Zhou, Y. Sun, J. Shen, J. Wei, C. Yu, B. Kong, W. Liu, H. Yang, S. Yang, W. Wang, Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy, Biomaterials 35 (2014) 7470-7478.

DOI: 10.1016/j.biomaterials.2014.04.063

Google Scholar

[117] S. Balasubramaniam, S. Kayandan, Y. -N. Lin, D.F. Kelly, M.J. House, R.C. Woodward, T.G. St. Pierre, J.S. Riffle, R.M. Davis, Toward Design of Magnetic Nanoparticle Clusters Stabilized by Biocompatible Diblock Copolymers for T2-Weighted MRI Contrast, Langmuir 30 (2014).

DOI: 10.1021/la403591z

Google Scholar

[118] M.E. Materia, P. Guardia, A. Sathya, M. Pernia Leal, R. Marotta, R. Di Corato, T. Pellegrino, Mesoscale Assemblies of Iron Oxide Nanocubes as Heat Mediators and Image Contrast Agents, Langmuir 31 (2015) 808-816.

DOI: 10.1021/la503930s

Google Scholar

[119] A.B. Salunkhe, V.M. Khot, S.H. Pawar, Magnetic Hyperthermia with Magnetic Nanoparticles: A Status Review, Current Topics in Medicinal Chemistry 14 (2014) 572-594.

DOI: 10.2174/1568026614666140118203550

Google Scholar

[120] J.J.W. Lagendijk, Hyperthermia treatment planning, Physics in Medicine and Biology 45 (2000) R61.

Google Scholar

[121] A. Jordan, Thermotherapy using Magnetic Nanoparticles: Principles and Clinical Application of Nanotherapy, in: M. Mason, S. Fantechi, R. Tomellini (Eds. ) Euro Nano Forum Proceedings, Edinburgh, 2005, pp.76-80.

Google Scholar

[122] R.W. Rand, H.D. Snow, D.G. Elliott, G.M. Haskins, Induction heating method for use in causing necrosis of neoplasm, Google Patents, (1985).

Google Scholar

[123] A. Ito, H. Honda, T. Kobayashi, Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of heat-controlled necrosis, with heat shock protein expression, Cancer Immunol. Immunother. 55 (2006).

DOI: 10.1007/s00262-005-0049-y

Google Scholar

[124] M. Wankhede, A. Bouras, M. Kaluzova, C.G. Hadjipanayis, Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy, Expert Review of Clinical Pharmacology 5 (2012) 173-186.

DOI: 10.1586/ecp.12.1

Google Scholar

[125] A. Ito, M. Shinkai, H. Honda, T. Kobayashi, Medical application of functionalized magnetic nanoparticles, Journal of Bioscience and Bioengineering 100 (2005) 1-11.

DOI: 10.1263/jbb.100.1

Google Scholar

[126] R.T. Gordon, J.R. Hines, D. Gordon, Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations, Medical Hypotheses 5 (1979) 83-102.

DOI: 10.1016/0306-9877(79)90063-x

Google Scholar

[127] D. C.F. Chan, D. B. Kirpotin, P. A. Bunn Jr, Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer, Journal of Magnetism and Magnetic Materials 122 (1993) 374-378.

DOI: 10.1016/0304-8853(93)91113-l

Google Scholar

[128] A. Jordan, P. Wust, H. Fählin, W. John, A. Hinz, R. Felix, Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia, International Journal of Hyperthermia 9 (1993) 51-68.

DOI: 10.3109/02656739309061478

Google Scholar

[129] A. Jordan, R. Scholz, P. Wust, H. Fähling, F. Roland, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, Journal of Magnetism and Magnetic Materials 201 (1999).

DOI: 10.1016/s0304-8853(99)00088-8

Google Scholar

[130] A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, R. Felix, Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia, Journal of Magnetism and Magnetic Materials 225 (2001).

DOI: 10.1016/s0304-8853(00)01239-7

Google Scholar

[131] N. Kawai, A. Ito, Y. Nakahara, M. Futakuchi, T. Shirai, H. Honda, T. Kobayashi, K. Kohri, Anticancer effect of hyperthermia on prostate cancer mediated by magnetite cationic liposomes and immune-response induction in transplanted syngeneic rats, The Prostate 64 (2005).

DOI: 10.1002/pros.20253

Google Scholar

[132] J. -t. Jang, H. Nah, J. -H. Lee, S.H. Moon, M.G. Kim, J. Cheon, Critical Enhancements of MRI Contrast and Hyperthermic Effects by Dopant-Controlled Magnetic Nanoparticles, Angewandte Chemie International Edition 48 (2009) 1234-1238.

DOI: 10.1002/anie.200805149

Google Scholar

[133] K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, A. Jordan, Intracranial Thermotherapy using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme, J. Neurooncol. 81 (2007).

DOI: 10.1007/s11060-006-9195-0

Google Scholar

[134] P. Wust, U. Gneveckow, M. Johannsen, D. Böhmer, T. Henkel, F. Kahmann, J. Sehouli, R. Felix, J. Ricke, A. Jordan, Magnetic nanoparticles for interstitial thermotherapy – feasibility, tolerance and achieved temperatures, International Journal of Hyperthermia 22 (2006).

DOI: 10.1080/02656730601106037

Google Scholar

[135] B. Thiesen, A. Jordan, Clinical applications of magnetic nanoparticles for hyperthermia, International Journal of Hyperthermia 24 (2008) 467-474.

DOI: 10.1080/02656730802104757

Google Scholar

[136] J. -H. Lee, J. -t. Jang, J. -s. Choi, S.H. Moon, S. -h. Noh, J. -w. Kim, J. -G. Kim, I. -S. Kim, K.I. Park, J. Cheon, Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat Nano 6 (2011) 418-422.

DOI: 10.1038/nnano.2011.95

Google Scholar

[137] T. Sadhukha, T.S. Wiedmann, J. Panyam, Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy, Biomaterials 34 (2013) 5163-5171.

DOI: 10.1016/j.biomaterials.2013.03.061

Google Scholar

[138] R. Di Corato, A. Espinosa, L. Lartigue, M. Tharaud, S. Chat, T. Pellegrino, C. Ménager, F. Gazeau, C. Wilhelm, Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs, Biomaterials 35 (2014) 6400-6411.

DOI: 10.1016/j.biomaterials.2014.04.036

Google Scholar

[139] O. Veiseh, J.W. Gunn, M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Advanced Drug Delivery Reviews 62 (2010) 284-304.

DOI: 10.1016/j.addr.2009.11.002

Google Scholar

[140] D. Singh, J.M. McMillan, X. -M. Liu, H.M. Vishwasrao, A.V. Kabanov, M. Sokolsky-Papkov, H.E. Gendelman, Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues, Nanomedicine 9 (2014) 469-485.

DOI: 10.2217/nnm.14.4

Google Scholar

[141] B. Chertok, B.A. Moffat, A.E. David, F. Yu, C. Bergemann, B.D. Ross, V.C. Yang, Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors, Biomaterials 29 (2008) 487-496.

DOI: 10.1016/j.biomaterials.2007.08.050

Google Scholar

[142] T. Leakakos, C. Ji, G. Lawson, C. Peterson, S. Goodwin, Intravesical administration of doxorubicin to swine bladder using magnetically targeted carriers, Cancer Chemother Pharmacol 51 (2003) 445-450.

DOI: 10.1007/s00280-003-0597-9

Google Scholar

[143] S. Goodwin, C. Peterson, C. Hoh, C. Bittner, Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy, Journal of Magnetism and Magnetic Materials 194 (1999) 132-139.

DOI: 10.1016/s0304-8853(98)00584-8

Google Scholar

[144] Y. Yoshida, S. Fukui, S. Fujimoto, F. Mishima, S. Takeda, Y. Izumi, S. Ohtani, Y. Fujitani, S. Nishijima, Ex vivo investigation of magnetically targeted drug delivery system, Journal of Magnetism and Magnetic Materials 310 (2007) 2880-2882.

DOI: 10.1016/j.jmmm.2006.11.123

Google Scholar

[145] A. Senyei, K. Widder, G. Czerlinski, Magnetic guidance of drug-carrying microspheres, Journal of Applied Physics 49 (1978) 3578-3583.

DOI: 10.1063/1.325219

Google Scholar

[146] K.J. Widder, A.E. Senyei, D.F. Ranney, Magnetically Responsive Microspheres and Other Carriers for the Biophysical Targeting of Antitumor Agents, in: A.G.F.H.I.J.K. Silvio Garattini, R.J. Schnitzer (Eds. ) Advances in Pharmacology, Academic Press, 1979, pp.213-271.

DOI: 10.1016/s1054-3589(08)60246-x

Google Scholar

[147] T. Kato, R. Nemoto, H. Mori, R. Abe, K. Unno, A. Goto, H. Murota, M. Harada, M. Homma, Magnetic Microcapsules for Targeted Delivery of Anticancer Drugs, in: T.M.S. Chang (ed. ) Microencapsulation and Artificial Cells, Humana Press, 1984, pp.199-211.

DOI: 10.1007/978-1-4612-5182-8_22

Google Scholar

[148] K.J. Widder, R.M. Morris, G.A. Poore, D.P. Howard, A.E. Senyei, Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: Total remission in Yoshida sarcoma-bearing rats, European Journal of Cancer and Clinical Oncology 19 (1983).

DOI: 10.1016/0277-5379(83)90408-x

Google Scholar

[149] K.J. Widder, P.A. Marino, R.M. Morris, D.P. Howard, G.A. Poore, A.E. Senyei, Selective targeting of magnetic albumin microspheres to the Yoshida sarcoma: Ultrastructural evaluation of microsphere disposition, European Journal of Cancer and Clinical Oncology 19 (1983).

DOI: 10.1016/0277-5379(83)90409-1

Google Scholar

[150] A.S. Lübbe, C. Bergemann, W. Huhnt, T. Fricke, H. Riess, J.W. Brock, D. Huhn, Preclinical Experiences with Magnetic Drug Targeting: Tolerance and Efficacy, Cancer Research 56 (1996) 4694-4701.

Google Scholar

[151] A.S. Lübbe, C. Bergemann, H. Riess, F. Schriever, P. Reichardt, K. Possinger, M. Matthias, B. Dörken, F. Herrmann, R. Gürtler, P. Hohenberger, N. Haas, R. Sohr, B. Sander, A. -J. Lemke, D. Ohlendorf, W. Huhnt, D. Huhn, Clinical Experiences with Magnetic Drug Targeting: A Phase I Study with 4'-Epidoxorubicin in 14 Patients with Advanced Solid Tumors, Cancer Research 56 (1996).

Google Scholar

[152] M. Arruebo, R. Fernández-Pacheco, M.R. Ibarra, J. Santamaría, Magnetic nanoparticles for drug delivery, Nano Today 2 (2007) 22-32.

DOI: 10.1016/s1748-0132(07)70084-1

Google Scholar

[153] M. Knobel, W.C. Nunes, L.M. Socolovsky, E. De Biasi, J.M. Vargas, J.C. Denardin, Superparamagnetism and Other Magnetic Features in Granular Materials: A Review on Ideal and Real Systems, Journal of Nanoscience and Nanotechnology 8 (2008).

DOI: 10.1166/jnn.2008.15348

Google Scholar

[154] M. -Y. Hua, H. -W. Yang, H. -L. Liu, R. -Y. Tsai, S. -T. Pang, K. -L. Chuang, Y. -S. Chang, T. -L. Hwang, Y. -H. Chang, H. -C. Chuang, C. -K. Chuang, Superhigh-magnetization nanocarrier as a doxorubicin delivery platform for magnetic targeting therapy, Biomaterials 32 (2011).

DOI: 10.1016/j.biomaterials.2011.08.014

Google Scholar

[155] A. Barreto, V. Santiago, R. Freire, S. Mazzetto, J. Denardin, G. Mele, I. Cavalcante, M. Ribeiro, N. Ricardo, T. Gonçalves, L. Carbone, T. Lemos, O. Pessoa, P. Fechine, Magnetic Nanosystem for Cancer Therapy Using Oncocalyxone A, an Antitomour Secondary Metabolite Isolated from a Brazilian Plant, International Journal of Molecular Sciences 14 (2013).

DOI: 10.3390/ijms140918269

Google Scholar

[156] I. Šafařı́k, M. Šafařı́ková, Use of magnetic techniques for the isolation of cells, Journal of Chromatography B: Biomedical Sciences and Applications 722 (1999) 33-53.

DOI: 10.1016/s0378-4347(98)00338-7

Google Scholar

[157] H. Gu, K. Xu, C. Xu, B. Xu, Biofunctional magnetic nanoparticles for protein separation and pathogen detection, Chemical Communications (2006) 941-949.

DOI: 10.1039/b514130c

Google Scholar

[158] L. Zhang, X. Zhu, D. Jiao, Y. Sun, H. Sun, Efficient purification of His-tagged protein by superparamagnetic Fe3O4/Au–ANTA–Co2&#xa0; + nanoparticles, Materials Science and Engineering: C 33 (2013) 1989-(1992).

DOI: 10.1016/j.msec.2013.01.011

Google Scholar

[159] C.M. Earhart, C.E. Hughes, R.S. Gaster, C.C. Ooi, R.J. Wilson, L.Y. Zhou, E.W. Humke, L. Xu, D.J. Wong, S.B. Willingham, E.J. Schwartz, I.L. Weissman, S.S. Jeffrey, J.W. Neal, R. Rohatgi, H.A. Wakelee, S.X. Wang, Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips, Lab on a Chip 14 (2014).

DOI: 10.1039/c3lc50580d

Google Scholar

[160] M. Bradshaw, T.D. Clemons, D. Ho, L. Gutierrez, F.J. Lazaro, M.J. House, T.G. St. Pierre, M.W. Fear, F.M. Wood, K.S. Iyer, Manipulating directional cell motility using intracellular superparamagnetic nanoparticles, Nanoscale 7 (2015) 4884-4889.

DOI: 10.1039/c4nr06594h

Google Scholar

[161] WHO/UNICEF, Progress on Drinking Water and Sanitation, Update (2014).

Google Scholar

[162] K. Mandel, F. Hutter, The magnetic nanoparticle separation problem, Nano Today 7 (2012) 485-487.

DOI: 10.1016/j.nantod.2012.05.001

Google Scholar

[163] Q. Ge, J. Su, T. -S. Chung, G. Amy, Hydrophilic Superparamagnetic Nanoparticles: Synthesis, Characterization, and Performance in Forward Osmosis Processes, Industrial & Engineering Chemistry Research 50 (2011) 382-388.

DOI: 10.1021/ie101013w

Google Scholar

[164] M.M. Ling, T. -S. Chung, X. Lu, Facile synthesis of thermosensitive magnetic nanoparticles as smart, draw solutes in forward osmosis, Chemical Communications 47 (2011) 10788-10790.

DOI: 10.1039/c1cc13944d

Google Scholar

[165] Q. Zhao, N. Chen, D. Zhao, X. Lu, Thermoresponsive Magnetic Nanoparticles for Seawater Desalination, ACS Applied Materials & Interfaces 5 (2013) 11453-11461.

DOI: 10.1021/am403719s

Google Scholar

[166] X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Research 47 (2013) 3931-3946.

DOI: 10.1016/j.watres.2012.09.058

Google Scholar

[167] D. Wang, D. Astruc, Fast-Growing Field of Magnetically Recyclable Nanocatalysts, Chemical Reviews 114 (2014) 6949-6985.

DOI: 10.1021/cr500134h

Google Scholar

[168] L.M. Rossi, N.J.S. Costa, F.P. Silva, R. Wojcieszak, Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond, Green Chemistry 16 (2014) 2906-2933.

DOI: 10.1039/c4gc00164h

Google Scholar

[169] S.R. Chowdhury, E.K. Yanful, Arsenic and chromium removal by mixed magnetite–maghemite nanoparticles and the effect of phosphate on removal, Journal of Environmental Management 91 (2010) 2238-2247.

DOI: 10.1016/j.jenvman.2010.06.003

Google Scholar

[170] N. Wang, L. Zhu, D. Wang, M. Wang, Z. Lin, H. Tang, Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2, Ultrasonics Sonochemistry 17 (2010) 526-533.

DOI: 10.1016/j.ultsonch.2009.11.001

Google Scholar

[171] E.R. Monazam, R.W. Breault, R. Siriwardane, Kinetics of Magnetite (Fe3O4) Oxidation to Hematite (Fe2O3) in Air for Chemical Looping Combustion, Industrial & Engineering Chemistry Research 53 (2014) 13320-13328.

DOI: 10.1021/ie501536s

Google Scholar

[172] X. Zhang, M. Lin, X. Lin, C. Zhang, H. Wei, H. Zhang, B. Yang, Polypyrrole-Enveloped Pd and Fe3O4 Nanoparticle Binary Hollow and Bowl-Like Superstructures as Recyclable Catalysts for Industrial Wastewater Treatment, ACS Applied Materials & Interfaces 6 (2014).

DOI: 10.1021/am404440d

Google Scholar