Thermomechanical Controlled Rolling of Hot Coils of Steel Grade S355MC at the Wide-Strip Rolling Mill 1700

Article Preview

Abstract:

Тhere has been developed technology, and pilot batch of hot rolling coils (6×1500 mm, steel grade S355MC) has been produced using thermo-mechanical controlled process (TMCP) for the wide-strip rolling mill 1700. The integrated technology for TMCP coil production (steel grade S355MC) has been firstly developed for the rolling mill 1700 in accordance with EN 10149-2. Air cooling for coils to 450°C after coiling has been firstly used in the developed technology, which provides for decrease in air scale and improvement of surface quality for the customers. It is possible to manufacture rolled products up to 6×1500 mm (steel grade S355MC) in accordance with EN 10149-2 using the existing equipment without exceeding the existing process constraints during its operation and without upgrading. It is possible to further master the rolled products, which are manufactured according to the TMCP technology.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 291)

Pages:

63-71

Citation:

Online since:

May 2019

Export:

Price:

* - Corresponding Author

[1] Kukhar, V., Yelistratova, N., Burko, V., Nizhelska, Y., & Aksionova, O. (2018). Estimation of occupational safety risks at energetic sector of Iron and Steel Works. International Journal of Engineering & Technology, 7(2.23), 216. https://doi.org/10.14419/ijet.v7i2.23.11922.

DOI: 10.14419/ijet.v7i2.23.11922

Google Scholar

[2] Militzer, M. (2014). Thermomechanical Processed Steels. Comprehensive Materials Processing, 191-216. https://doi.org/10.1016/b978-0-08-096532-1.00115-1.

DOI: 10.1016/b978-0-08-096532-1.00115-1

Google Scholar

[3] Zinchenko, Y. A., Kurpe, A. G., & Bagmet, O. A. (2008). Prospects of the technology used to make skelp at the Azovstal Metallurgical Combine. Metallurgist, 52(7-8), 461-463. https://doi.org/10.1007/s11015-008-9065-4.

DOI: 10.1007/s11015-008-9065-4

Google Scholar

[4] Li, H., Li, Z., Guo, Y., Wang, Z., & Wang, G. (2013). Development of New Generation Cooling Control System After Rolling in Hot Rolled Strip Based on UFC. Journal of Iron and Steel Research, International, 20(7), 29-34. https://doi.org/10.1016/s1006-706x(13)60122-3.

DOI: 10.1016/s1006-706x(13)60122-3

Google Scholar

[5] Liu, E., Zhang, D., Sun, J., Peng, L., Gao, B., & Su, L. (2012). Algorithm Design and Application of Laminar Cooling Feedback Control in Hot Strip Mill. Journal of Iron and Steel Research, International, 19(4), 39-42. https://doi.org/10.1016/s1006-706x(12)60085-5.

DOI: 10.1016/s1006-706x(12)60085-5

Google Scholar

[6] Kukhar, V., Prysiazhnyi, A., Balalayeva, E., & Anishchenko, O. (2017). Designing of induction heaters for the edges of pre-rolled wide ultrafine sheets and strips correlated with the chilling end-effect. 2017 International Conference on Modern Electrical and Energy Systems (MEES). https://doi.org/10.1109/mees.2017.8248945.

DOI: 10.1109/mees.2017.8248945

Google Scholar

[7] Xu, Y., Yu, Y., Liu, X., & Wang, G. (2008). Modeling of microstructure evolution and mechanical properties during hot-strip rolling of Nb steels. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 15(4), 396-401. https://doi.org/10.1016/s1005-8850(08)60075-4.

DOI: 10.1016/s1005-8850(08)60075-4

Google Scholar

[8] Korczak, P., & Dyja, H. (2001). Investigation of microstructure prediction during experimental thermo-mechanical plate rolling. Journal of Materials Processing Technology, 109(1-2), 112–119. https://doi.org/10.1016/s0924-0136(00)00784-6.

DOI: 10.1016/s0924-0136(00)00784-6

Google Scholar

[9] Kong, X., & Lan, L. (2014). Optimization of Mechanical Properties of Low Carbon Bainitic Steel Using TMCP and Accelerated Cooling. Procedia Engineering, (81), 114-119. https://doi.org/10.1016/j.proeng.2014.09.136.

DOI: 10.1016/j.proeng.2014.09.136

Google Scholar

[10] Bhadeshia, H., & Honeycombe, R. (2017). Thermomechanical Treatment of Steels. Steels: Microstructure and Properties, 271-301. https://doi.org/10.1016/b978-0-08-100270-4.00010-x.

DOI: 10.1016/b978-0-08-100270-4.00010-x

Google Scholar

[11] Carretero Olalla, V., Bliznuk, V., Sanchez, N., Thibaux, P., Kestens, L. A. I., & Petrov, R. H. (2014). Analysis of the strengthening mechanisms in pipeline steels as a function of the hot rolling parameters. Materials Science and Engineering: A, (604), 46-56. https://doi.org/10.1016/j.msea.2014.02.066.

DOI: 10.1016/j.msea.2014.02.066

Google Scholar

[12] Zhao, J., Hu, W., Wang, X., Kang, J., Cao, Y., Yuan, G., … Misra, R. D. K. (2016). A Novel thermo-mechanical controlled processing for large-thickness microalloyed 560 MPa (X80) pipeline strip under ultra-fast cooling. Materials Science and Engineering: A, (673), 373-377. https://doi.org/10.1016/j.msea.2016.07.089.

DOI: 10.1016/j.msea.2016.07.089

Google Scholar

[13] Zhao, J., Hu, W., Wang, X., Kang, J., Yuan, G., Di, H., & Misra, R. D. K. (2016). Effect of microstructure on the crack propagation behavior of microalloyed 560MPa (X80) strip during ultra-fast cooling. Materials Science and Engineering: A, (666), 214-224. https://doi.org/10.1016/j.msea.2016.04.073.

DOI: 10.1016/j.msea.2016.04.073

Google Scholar

[14] Tan, W., Liu, Z., Wu, D., & Wang, G. (2009). Artificial Neural Network Modeling of Microstructure During C-Mn and HSLA Plate Rolling. Journal of Iron and Steel Research, International, 16(2), 80-83. https://doi.org/10.1016/s1006-706x(09)60032-7.

DOI: 10.1016/s1006-706x(09)60032-7

Google Scholar

[15] Dong, R., Sun, L., Liu, Z., Wang, X., & Liu, Q. (2008). Microstructures and Properties of X60 Grade Pipeline Strip Steel in CSP Plant. Journal of Iron and Steel Research, International, 15(2), 71-75. https://doi.org/10.1016/s1006-706x(08)60035-7.

DOI: 10.1016/s1006-706x(08)60035-7

Google Scholar

[16] Gervasyev, A., Carretero Olalla, V., Sidor, J., Sanchez Mouriño, N., Kestens, L. A. I., & Petrov, R. H. (2016). An approach to microstructure quantification in terms of impact properties of HSLA pipeline steels. Materials Science and Engineering: A, (677), 163-170. . https://doi.org/10.1016/j.msea.2016.09.043.

DOI: 10.1016/j.msea.2016.09.043

Google Scholar

[17] Lіvshic, D.A., Zіnchenko, Ju.A., Shahpazov, E.H., Matrosov, Ju.І., Ganoshenko, І.V., Goman, S.V., Shalіmov S.Ja., Kumurzh, E.V., Volodars'kij, V.V., Loskutov, O.Ju., Kojfman, O.A., & Kurpe O.G. (2012). Method of production of steel high-strength electric-welded, single-walled pipes of large diameter for main pipelines. Patent No 98214, Ukraine.

Google Scholar

[18] Lіvshic, D.A., Zіnchenko, Ju.A., Shahpazov, E.H., Matrosov, Ju.І., Ganoshenko, І.V., Goman, S.V., Shalіmov, S.Ja., Kumurzhi, E.V., Volodars'kij, V.V., Loskutov, O.Ju., Kojfman, O.A., & Kurpe O.G. (2011). Method of manufacturing steel high-strength pipes with two seams of large diameter for main pipelines. Patent No 96097, Ukraine.

Google Scholar

[19] Javaheri, V., Khodaie, N., Kaijalainen, A., & Porter, D. (2018). Effect of niobium and phase transformation temperature on the microstructure and texture of a novel 0.40% C thermomechanically processed steel. Materials Characterization, (142), 295-308. https://doi.org/10.1016/j.matchar.2018.05.056.

DOI: 10.1016/j.matchar.2018.05.056

Google Scholar

[20] Bright, G. W., Kennedy, J. I., Robinson, F., Evans, M., Whittaker, M. T., Sullivan, J., & Gao, Y. (2011). Variability in the mechanical properties and processing conditions of a High Strength Low Alloy steel. Procedia Engineering, (10), 106-111. https://doi.org/10.1016/j.proeng.2011.04.020.

DOI: 10.1016/j.proeng.2011.04.020

Google Scholar

[21] Tan, W., Han, B., Wang, S., Yang, Y., Zhang, C., & Zhang, Y. (2012). Effects of TMCP Parameters on Microstructure and Mechanical Properties of Hot Rolled Economical Dual Phase Steel in CSP. Journal of Iron and Steel Research, International, 19(6), 37-41. https://doi.org/10.1016/s1006-706x(12)60124-1.

DOI: 10.1016/s1006-706x(12)60124-1

Google Scholar

[22] Tang, S., Liu, Z.Y., Wang, G.D., Misra, R.D.K. (2013). Microstructural evolution and mechanical properties of high strength microalloyed steels: Ultra Fast Cooling (UFC) versus Accelerated Cooling (ACC), Materials Science & Engineering A (580), pp.257-265. https://doi.org/10.1016/j.msea.2013.05.016.

DOI: 10.1016/j.msea.2013.05.016

Google Scholar

[23] Zіnchenko, Ju.A., Pіsmar'ov, K.E., Kurpe, O.G., Murashkіn, O. V., Vasil'chenko S.E., Merkulova, N.O., Chalenko, O.G., Negrіj, S.D., Kulіsh, S.V. (2016). Method of production of high strength hot rolled. Patent No 110812, Ukraine.

Google Scholar

[24] Kukhar, V., Artiukh, V., Prysiazhnyi, A., & Pustovgar, A. (2018). Experimental Research and Method for Calculation of Upsetting-with-Buckling, Load at the Impression-Free (Dieless) Preforming of Workpiece, E3S Web of Conference (HRC 2017), Vol. 33, 02031 (2018). https://doi.org/10.1051/e3sconf/20183302031.

DOI: 10.1051/e3sconf/20183302031

Google Scholar

[25] Jiang, Z. Y., Tang, J., Sun, W., Tieu, A. K., & Wei, D. (2010). Analysis of tribological feature of the oxide scale in hot strip rolling. Tribology International, 43(8), 1339-1345. https://doi.org/10.1016/j.triboint.2009.12.070.

DOI: 10.1016/j.triboint.2009.12.070

Google Scholar

[26] Lee, J., Noh, W., Kim, D.-J., & Lee, M.-G. (2016). Spallation analysis of oxide scale on low carbon steel. Materials Science and Engineering: A, (676), 385-394. https://doi.org/10.1016/j.msea.2016.09.012.

DOI: 10.1016/j.msea.2016.09.012

Google Scholar