Carrier and Transition Metals (M = Nb, Cr and Fe) Doping Effects on Structure and Electronic Structure in Spinel Li4Ti5O12 Compounds

Article Preview

Abstract:

Spinel Li4Ti5O12 (LTO) is one of the most promising candidate anode material for Li-ion battery (LIB) known, as zero strain material, it has poor intrinsic electronic properties. In order to enhance it, we have investigated effect of doping on electronic conductivity of spinel LTO phase structure. We consider the carrier and transition metal doping effect on structure and electronic structure of spinel LTO. It is shown that the doping can improve the electronic conduction of spinel LTO. Our calculations were based on the projector augmented wave (PAW) method with the generalized gradient approximation (GGA+U+J0) including the Hubbard U parameter for exchange correlation functional within the framework of density functional theory (DFT).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 310)

Pages:

88-95

Citation:

Online since:

September 2020

Export:

Price:

* - Corresponding Author

[1] R. F. Nelson. Power requirements for batteries in hybrid electric vehicles, Journal of Power Sources 91 (2000) 2-26.

DOI: 10.1016/s0378-7753(00)00483-3

Google Scholar

[2] J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359-367.

DOI: 10.1038/35104644

Google Scholar

[3] M. Yoshio, H. Wang, K. Fukuda, et al. Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium-Ion Battery Anode Material, Journal of Electrochemical Society 147(2) (2000) 1245-1250.

DOI: 10.1149/1.1393344

Google Scholar

[4] Q. Zhang, X. Li, Recent developments in the doped-Li4Ti5O12anode materials of Lithium-ion batteries fir improving the rate capability, International Journal of Electrochemical Science 8 (2013) 6449-6456.

Google Scholar

[5] P. C. Tsai, W. D. Hsu, S. K. Lin. Atomistic structure and ab initio electrochemical properties of Li4Ti5O12 defect spinel for Li ion batteries, Journal of Material Chemistry A 2 (2014) 1589.

DOI: 10.1149/2.095403jes

Google Scholar

[6] N. Nitta, F. Wu, J. T. Lee, et al. Li-ion battery materials: present and future, Materials Today 18 (5) (2015) 252-264.

DOI: 10.1016/j.mattod.2014.10.040

Google Scholar

[7] E. Peled, C. Menachem, D. Bar-Tow, et al. Improved Graphite Anode for Lithium-Ion Batteries Chemically Bonded Solid Electrolyte Interface and Nanochannel Formation.

DOI: 10.1002/chin.199618007

Google Scholar

[8] E. Ferg, R. J. Gummov, A. de Kock, et al. Spinel anodes for Li-ion batteries, Journal of Electrochemical Society 141 (1994) L147-149.

DOI: 10.1149/1.2059324

Google Scholar

[9] A. Deschanvreser, B. Raveau, Z. Sekkal, Mise en evidence et etude cristallographioue d'une nouvelle solution solide de type spinelle Li3+XTi6-XO12 (0≤x≤0.33), Materials Research Bulletin 6 (1971) 699-704.

DOI: 10.1016/0025-5408(71)90103-6

Google Scholar

[10] D. Liu, C. Ouyang, J. Shui, J. Jiang, Z. Wang, L. Chen, Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12, Solid State Physics (b) 243 (8) (2006) 1835-1841.

DOI: 10.1002/pssb.200541404

Google Scholar

[11] T. Ohzuku, A. Ueda, N. Yamamoto, Zero-Strain Insertion Material of Li[Lil/3Ti5/3]O4 for Rechargeable Lithium Cells, Journal of the Electrochemical Society 142 (1995) 1431-1435.

DOI: 10.1149/1.2048592

Google Scholar

[12] S. Scharner, W. Weppner, P. Schmid-Beurmann, et al. Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel, Journal of the Electrochemical Society 146 (1999) 857-861.

DOI: 10.1149/1.1391692

Google Scholar

[13] J. F. Colin, V. Godbole, Petr. Novak, In situ neutron diffraction study of Li insertion in Li4Ti5O12, Electrochemistry Communication 12(6) (2010) 804-807.

DOI: 10.1016/j.elecom.2010.03.038

Google Scholar

[14] W. W. Lee, J. M. Lee, Novel synthesis of high performance anode materials for Lithium-ion batteries (LIBs), Journal of Material Chemistry A 2 (2014) 1589.

DOI: 10.1039/c3ta12830j

Google Scholar

[15] K. Amine, I. Belharouak, Z. Chen, et al. Nanostructures anode material for high-power battery system in electrical vehicles, Advanced Materials 22 (2010) 3052-3057.

DOI: 10.1002/adma.201000441

Google Scholar

[16] L. Kavan, M. Gratzel, Facile synthesis of nanocrystalline Li4Ti5O12(spinel) exhibiting fast Li insertion, Electrochemical and Solid-State Letters 5(2) (2002) A39-A42.

DOI: 10.1149/1.1432783

Google Scholar

[17] P. Poizot, S. Laruelle, S. Grugeon, et al. Nano-sized transition-metal oxides as negative-electride materials for lithium-ion batteries, Nature 407 (2000) 496-499.

DOI: 10.1038/35035045

Google Scholar

[18] S. Huang, Z. Wen, J. Zhang, et al. Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery, Solid State Ionics 177 (2006) 851-855.

DOI: 10.1016/j.ssi.2006.01.050

Google Scholar

[19] A. Erdas, S. Ozsan, M. O. Guler, et al. Sol-gel synthesis of Nanocomposite Cu-Li4Ti5O12 structures for ultrahigh rate Li-ion batteries, Acta Physica Polonica A 127(4) (2015) 1026-1028.

DOI: 10.12693/aphyspola.127.1026

Google Scholar

[20] L. Cheng, X. L. Li, H. J. Liu, et al, Carbon-coated Li4Ti5O12as a high rate electrode material for Li-ion intercalation, Journal of the Electrochemical Society 154(7) (2007) A692-A697.

DOI: 10.1149/1.2736644

Google Scholar

[21] Q. Zhang, W. Peng, Z. Wang, et al. Synthesis and characterization of Li4Ti5O12/graphene composite as anode material with enhanced electrochemical performance, Ionics 19 (2013) 717-723.

DOI: 10.1007/s11581-012-0813-x

Google Scholar

[22] Y. Y. Zhang, C. M. Zhang, Y. Lin, et al. Influence of Sc3+ doping in B-site on electrochemical performance of Li4Ti5O12 anode materials for lithium-ion battery, Journal of Power Sources 250 (2014) 50-57.

DOI: 10.1016/j.jpowsour.2013.10.137

Google Scholar

[23] J. Wolfenstine, J. L. Allen, Electrical conductivity and charge compensation in Ta doped Li4Ti5O12, Journal of Power Sources 180 (2008) 582-585.

DOI: 10.1016/j.jpowsour.2008.02.019

Google Scholar

[24] T. F. Yi, J. Shu, Y. R. Zhu, et al. High-performance Li4Ti5-xVxO12(0≤x≤0.33) as anode material for secondary lithium-ion battery, Electrochimica Acta 54 (2009) 7484-7470.

DOI: 10.1016/j.electacta.2009.07.082

Google Scholar

[25] B. B. Tian, H. Xiang, L. Zhang, et al. Niobium doped lithium titanate as a high rate anode material for Li-ion batteries, Electrochimica Acta 55 (2010) 5452-5458.

DOI: 10.1016/j.electacta.2010.04.068

Google Scholar

[26] H. Zhao, Y. Li, J. Lin, et al. Structural and electrochemical characteristics of Li4-xAlxTi5O12 as anode material for lithium-ion batteries, Electrochimica Acta 53 (2008) 7079-7083.

DOI: 10.1016/j.electacta.2008.05.038

Google Scholar

[27] W. Wang, B. Jiang, Z. Wang, et al. A nanoparticle Mg-doped Li4Ti5O12for high rate lithium-ion batteries, Electrochimica Acta 114 (2013) 198-204.

DOI: 10.1016/j.electacta.2013.10.035

Google Scholar

[28] L. Sarantuya, G. Sevjidsuren, P. Altantsog, N. Tsogbadrakh, Synthesis, Structure and Electronic Properties of Li4Ti5O12 Anode Material for Lithium ion Batteries, Solid State Phenomena 271 (2018) 9-17.

DOI: 10.4028/www.scientific.net/ssp.271.9

Google Scholar

[29] L. Sarantuya, N. Tsogbadrakh, G. Sevjidsuren, P. Altantsog, Study of Structure and Electronic Property of Spinel Li4Ti5O12 Anode Material, Proceedings of the International School on Material Science, Ulan-Ude, Russia (2016) 104-110.

Google Scholar

[30] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[31] W. Kohn, L. J. Sham. Self-Consistent equations including exchange and correlation effects, Physical Review 140 (1965) A1133-1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[32] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Physical Review 136 (1964) B864-871.

DOI: 10.1103/physrev.136.b864

Google Scholar

[33] P. Gianmozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazaaoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari R. M. Wentzcovich, Quantum ESPRESSO: A Modular and Open-source Software Project for Quantum Simulations of Materials, J. Phys.: Condens. Matter. 21 (2009) 395502.

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[34] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. -Y. Ko, A. Kokalj, E. Kucukbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. -V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Ponce, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced Capabilities for Materials Modelling with Quantum ESPRESSO, J. Phys.: Condens. Matter. 29 (2017) 465901.

DOI: 10.1088/1361-648x/aa8f79

Google Scholar

[35] H. J. Monkhorst, J. D. Pack, Special points for brillouin-zone integrations, Physical Review B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[36] S. Lkhagvajav, N. Tsogbadrakh, E. Enkhbayar, S. Galsan, P. Altantsog, Structural and Electronic Properties of the Spinel Li4Ti5O12, Mon. J. Chem. 20 (2019) 7-12.

DOI: 10.5564/mjc.v20i46.1236

Google Scholar

[37] M. Cococcioni, S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Physical Review B 71 (2005) 035105.

Google Scholar

[38] B. Himmetoglu, R. M. Wentzcovich, M. Cococcioni. First-principles study of electronic and structural properties of CuO, Physical Reveiw B 84 (2011) 115108.

DOI: 10.1103/physrevb.84.159905

Google Scholar

[39] H. Ge, H. Tian, H. Song, et al., Study on the energy band structure and photoelectrochemical performances of spinel Li4Ti5O12, Materials Research Bulletin 61 (2014) 459-462.

DOI: 10.1016/j.materresbull.2014.10.064

Google Scholar

[40] B. Tian, H. Xiang, L. Zhang, et al., Niobium doped lithium titanate as a high rate anode material fore Li-ion batteries, Electrochimica Acta 55(19) (2010) 5453-5458.

DOI: 10.1016/j.electacta.2010.04.068

Google Scholar

[41] D. Capsoni, M. Bini, V. Massarottu, et al., Cr and Ni Doping on Li4Ti5O12: Cation Distribution and Functional Properties, Journal of Physical Chemistry C 113(45) (2009) 19664-19671.

DOI: 10.1021/jp906894v

Google Scholar

[42] G. Kotliar, D. Vollhardt, Strongly Correlated Materials: Insights From Dynamical Mean-Field Theory, Physics Today 57 (2004) 53-59.

DOI: 10.1063/1.1712502

Google Scholar