18CrNiMo7-6 with TRIP-Effect for Increasing the Damage Tolerance of Gear Components — Part I: Alloy Design

Article Preview

Abstract:

High performance components such as gear wheels shall be resistant to rolling-contactfatigue. This type of failure is usually caused by effects occurring on a microscopic scale, such ascrack initiation at non-metallic inclusions. Much effort has been invested so far in improving thesteel cleanliness. However, these high performance components often do not reach the desiredservice life. Preliminary failure within the guarantee terms still occurs which leads to high warrantycosts. Alternative to improving steel cleanliness, the damage tolerance of high performancecomponents could be increased by inducing the TRIP-effect around the crack tip. Due to high localstrain hardening, martensite transformation occurs. The high compressive stresses related to it coulddelay or stop crack propagation by reducing stress concentrations via plastic deformation. As aresult, rolling-contact fatigue resistance of carburized steels may be increased and preliminaryfailure may be avoided. Part I of this study focuses on modifying the chemical composition ofconventional 18CrNiMo7-6 steel with Al to develop a high-strength, yet ductile matrix with a highwork hardening potential. Dilatometric tests on laboratory melts analyze the possibility of adjustinga microstructure able to produce a TRIP-effect. Both isothermal annealing and Quenching andPartitioning (Q&P) are used to stabilize residual austenite and optimum process routes areidentified.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 783-786)

Pages:

633-638

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] D. McVittie, Wind Turbine Gearbox Reliability: The Natute of the Problem, Presentation Gear Engineers, Inc., (2006).

Google Scholar

[2] A. P. Voskamp, Microstructural Changes during Rolling Contact Fatigue, Dissertation, Technical University Delft, (1997).

Google Scholar

[3] H. Schlicht, HTM Journal of Heat Treatment and Materials 59 (2004) 363.

Google Scholar

[4] H. Schlicht, HTM Journal of Heat Treatment and Materials 57 (2002) 174.

Google Scholar

[5] E. Tonicello, D. Girodin, C. Sidoroff, A. Fazekas, M. Perez, Material Science and Technology 28 (2012) 23.

Google Scholar

[6] N. Weinhold, Neue Energie 09 (2006) 24.

Google Scholar

[7] P. J. Tavner, J. Xiang, F. Spinato, Wind Energy 10 (2007) 1.

Google Scholar

[8] V.F. Zackay, E.R. Parker, D. Fahr, R. Bush, Transactions of the American Society of Metals 60 (1967) 252–259.

Google Scholar

[9] J. Van Slycken, P. Verleysen, J. Degrieck, J. Bouquerel, B.C. De Cooman, Materials Science and Engineering A 460–461 (2007) 516–524.

DOI: 10.1016/j.msea.2007.01.075

Google Scholar

[10] J. Imlau, Zusammenhang zwischen Mikorstruktur, Schädigungsverlauf und mechanischen Eigenschaften bei TRIP-Stählen, Dissertation, RWTH Aachen, (2008).

Google Scholar

[11] H. Berns, W. Theisen, Eisenwerkstoffe – Stahl und Gusseisen, Springer Verlag Berlin Heidelberg, fourth ed., (2008).

Google Scholar

[12] E. P. Kwon , S. Fujieda, K. Shinoda, S. Suzuki, Key Engineering Materials 508 (2012) 128-132.

Google Scholar

[13] K. Sugimoto, D. Fiji, N. Yoshikawa, Procedia Engineering 2 (2010) 359–362.

Google Scholar

[14] E. Girault, A. Mertens, P. Jacques, Y. Houbaert, B. Verlinden, J. Van Humbeeck, Scripta Materialia 44 (2001) 885–892.

DOI: 10.1016/s1359-6462(00)00697-7

Google Scholar

[15] T. Bhattacharyya, S. B. Singh, S. Das, A. Haldar, D. Bhattacharjee, Materials Science and Engineering A 528A (2010) 2394-2400.

Google Scholar

[16] J. F. Chinella, B. Pothier, M. G. H. Wells Processing, Mechanical Properties, and Ballistic Impact Effects of Austempered Ductile Iron, Army Research Laboratory (ARL-TR-1741) (1998) 2-3.

Google Scholar

[17] A. J. Shutts, J. G. Speer, D. K. Matlock, D.V. Edmonds, F. Rizzo, E.B. Damm, 2006 New Developments in Long and Forged Products Proceedings, (2006).

Google Scholar

[18] Speer,J., D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Materialia 51 (2003) 2611–2622.

DOI: 10.1016/s1359-6454(03)00059-4

Google Scholar

[19] D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer, Science and Engineering A 438–440 (2006) 25–34.

DOI: 10.1016/j.msea.2006.02.133

Google Scholar

[20] D. V. Edmonds, K. He, M. K. Miller, F. C. Rizzo, A. Clarke, D. K. Matlock, J. G. Speer, Materials Science Forum 539-543 (2007) 4819-4825.

DOI: 10.4028/www.scientific.net/msf.539-543.4819

Google Scholar

[21] J. Herrmann, Untersuchungen zur Struktur und zum mechanischen Verhalten von Fe-reichen Fe-Al-Legierungen, VDI Verlag, Düsseldorf, (2000).

Google Scholar

[22] E. De Moor, J.G. Speer, D.K. Matlock, C. Föjer, J. Penning, Materials Science & Technology 2009 Conference and Exhibition (2009) 1554-1563.

Google Scholar

[23] E. Houdremont, Handbuch der Sonderstahlkunde, 2. Edition, Springer -VerIag . Berlin / Göttingen I Heidelberg, Verlag Stahleisen m. b. H., Düsseldorf, (1956).

DOI: 10.1002/maco.19570080821

Google Scholar

[24] S. Papaefthymiou, W. Bleck, S. Kruijver, J. Sietsma, L. Zhao, S. van der Zwaag, Materials Science and Technology 20 (2004) 201.

Google Scholar

[25] J. G. Speer, . F C. R. Assunção, D. K. Matlock, D. V. Edmonds, Materials Research 8 (2005) 417-423.

Google Scholar