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Abstract
Soil is dynamic living matrix and it is not only a critical resource in agricultural and food security but it is also 

towards maintenance of all life process. Pathogenic microorganisms affecting plant health are a major and chronic 
threat to sustainable agriculture and ecosystem stability worldwide. The chemical fertilizers used in the agriculture 
to increase yields, kill pathogens, pests, and weeds, have a big harmful impact on the ecosystem. Because of 
current public concerns about the side effects of agrochemicals, there is an increasing interest in improving the 
understanding of cooperative activities among plants and rhizosphere microbial populations. So, there is an urgent 
need of biological agents is accepted worldwide. The use of plant growth promoting Rhizobacteria (PGPR) is a 
better alternative to solve this problem. They play an important role to increase in soil fertility, plant growth promotion, 
and suppression of phytopathogens for development of ecofriendly sustainable agriculture. This review provides 
environment friendly approach to increase crop production and health, development of sustainable agriculture and 
commercialization by using of plant growth promoting rhizobacteria with global applicability. 
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Introduction
In modern cultivation process indiscriminate use of fertilizers, 

particularly the nitrogenous and phosphorus, has led to substantial 
pollution of soil, air and water. Excessive use of these chemicals 
exerts deleterious effects on soil microorganism, affects the fertility 
status of soil and also pollutes environment [1]. The application of 
these fertilizers on a long term basis often leads to reduction in pH 
and exchangeable bases thus making them unavailable to crops and 
the productivity of crop declines. To obviate this problem and obtain 
higher plant yields, farmers have become increasingly dependent on 
chemical sources of nitrogen and phosphorus. Besides being costly, the 
production of chemical fertilizers depletes nonrenewable resources, the 
oil and natural gas used to produce these fertilizers, and poses human 
and environmental hazards [2]. 

Over the last few decades, the agriculture policy in India has 
undergone a major change through diversification and emphasis on 
sustainable production system. Rhizosphere researches have been 
throwing up surprise and interesting ideas for research ever since the 
pleasant environment of microorganisms around plant root called 
rhizosphere. The term rhizosphere was introduced for the first time by 
Hiltner [3]. The major influences that the rhizosphere microorganisms 
have on plants today become important tool to guard the health of 
plants in ecofriendly manner [4]. These microorganisms can effect plant 
growth often referred to as a plant growth promotory rhizobacteria 
[5]. They are involved in various biotic activities of the soil ecosystem 
to make it dynamic for nutrient turn over and sustainable for crop 
production [6]. In recent years considerable attention has been paid 
to PGPR to replace agrochemicals (fertilizers and pesticides) for the 
plant growth promotion by a variety of mechanisms that involve soil 
structure formation, decomposition of organic matter, recycling of 
essential elements, solubilization of mineral nutrients, producing 
numerous plant growth regulators, degrading organic pollutants, 
stimulation of root growth, crucial for soil fertility, biocontrol of soil 
and seed borne plant pathogens and in promoting changes in vegetation 
[7]. An understanding of plant growth promoting rhizobacteria and 
their interactions with biotic and abiotic factors is indispensable in 

bioremediation techniques [8] energy generation processes and in 
biotechnological industries such as pharmaceuticals, food, chemical, 
and mining. Furthermore plant growth promoting rhizobacteria 
can reduce chemical fertilizers application and economically, 
environmentally beneficial for lower production cost as well as 
recognize the best soil and crop management practices to achieve more 
sustainable agriculture as well as fertility of soil [9].

Plant Growth Promoting Rhizobacterial Forms
 Plant growth promoting rhizobacteria can be classified into 

extracellular plant growth promoting rhizobacteria (ePGPR) and 
intracellular plant growth promoting rhizobacteria (iPGPR) [10]. The 
ePGPRs may exist in the rhizosphere, on the rhizoplane or in the spaces 
between the cells of root cortex while iPGPRs locates generally inside 
the specialized nodular structures of root cells. The bacterial genera 
such as Agrobacterium, Arthrobacter, Azotobacter, Azospirillum, 
Bacillus, Burkholderia, Caulobacter, Chromobacterium, Erwinia, 
Flavobacterium, Micrococcous, Pseudomonas and Serratia belongs to 
ePGPR [11]. The iPGPR belongs to the family of Rhizobiaceae includes 
Allorhizobium, Bradyrhizobium, Mesorhizobium and Rhizobium, 
endophytes and Frankia species both of which can symbiotically fix 
atmospheric nitrogen with the higher plants [12]. 

Plant Growth Promotion: Mechanism of Action
Plant growth promotion by plant growth promoting rhizobacteria 

is a well-known phenomenon and this growth enhancement is due 
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to certain traits of rhizobacteria. There are a number of mechanisms 
used by PGPR for enhancing plant growth and development in diverse 
environmental conditions (Figure 1). According to Kloepper and 
Schroth [13] plant growth promoting rhizobacteria mediated plant 
growth promotion occurs by the alteration of the whole microbial 
community in rhizosphere niche through the production of various 
substances. Generally, plant growth promoting rhizobacteria promote 
plant growth directly (Figure 1) by either often due to their ability 
for nutrient supply (nitrogen, phosphorus, potassium and essential 
minerals) or modulating plant hormone levels, or indirectly by 
decreasing the inhibitory effects of various pathogens on plant growth 
and development in the forms of biocontrol agents, root colonizers, 
and environmental protectors [13]. 

Direct mechanisms

Plant growth promoting rhizobacteria having direct mechanisms 
that facilitate nutrient uptake or increase nutrient availability by 
nitrogen fixation, solubilization of mineral nutrients, mineralize 
organic compounds and production of phytohormones [14,15]. 

Nitrogen fixation: Nitrogen is an essential element for all forms of 
life and it is the most vital nutrient for plant growth and productivity. 
Although the nitrogen presents 78 % of the atmosphere, it remains 
unavailable to the plants. Regrettably no plant species is capable for 
fixing atmospheric dinitrogen into ammonia and expend it directly 
for its growth. Thus the atmospheric nitrogen is converted into plant-
utilizable forms by biological nitrogen fixation (BNF) which changes 
nitrogen to ammonia by nitrogen fixing microorganisms using a 
complex enzyme system known as nitrogenase [16]. 

Plant growth promoting rhizobacteria have the ability to fix 
atmospheric nitrogen and provide it to plants by two mechanisms: 
symbiotic and non-symbiotic. Symbiotic nitrogen fixation is a 
mutualistic relationship between a microbe and the plant. The microbe 
first enters the root and later on form nodules in which nitrogen 
fixation occurs. Rhizobia are a vast group of rhizobacteria that have the 
ability to lay symbiotic interactions by the colonization and formation 
of root nodules with leguminous plants, where nitrogen is fixed to 

ammonia and make it available for the plant [11]. The plant growth 
promoting rhizobacteria widely presented as symbionts are Rhizobium, 
Bradyrhizobium, Sinorhizobium, and Mesorhizobium with leguminous 
plants, Frankia with non-leguminous trees and shrubs [17].

On the other hand, non-symbiotic nitrogen fixation is carried 
out by free living diazotrophs and this can stimulate non-legume 
plants growth such as radish and rice. Non-symbiotic Nitrogen 
fixing rhizospheric bacteria belonging to genera including Azoarcus, 
Azotobacter, Acetobacter, Azospirillum, Burkholderia, Diazotrophicus, 
Enterobacter, Gluconacetobacter, Pseudomonas and cyanobacteria 
(Anabaena, Nostoc) [12,18]. The genes for nitrogen fixation, called 
nif genes are found in both symbiotic and free living systems [19]. 
Nitrogenase (nif) genes include structural genes, involved in activation 
of the Fe protein, iron molybdenum cofactor biosynthesis, electron 
donation, and regulatory genes required for the synthesis and function 
of the enzyme. Inoculation by biological nitrogen fixing plant growth 
promoting rhizobacteria on crop provide an integrated approach for 
disease management, growth promotion activity, maintain the nitogen 
level in agricultural soil. 

Phosphate solubilization: Phosphorus is the most important 
key element in the nutrition of plants, next to nitrogen (N). It plays 
an important role in virtually all major metabolic processes in plant 
including photosynthesis, energy transfer, signal transduction, 
macromolecular biosynthesis and respiration [20]. It is abundantly 
available in soils in both organic and inorganic forms. Plants are 
unable to utilized phosphate because 95-99% phosphate present in 
the insoluble, immobilized, and precipitated form [21]. Plants absorb 
phosphate only in two soluble forms, the monobasic (H2PO4) and the 
diabasic (HPO4

2-) ions [12].

Plant growth promoting rhizobacteria present in the soil employ 
different strategies to make use of unavailable forms of phosphorus and 
in turn also help in making phosphorus available for plants to absorb. 
The main phosphate solubilization mechanisms employed by plant 
growth promoting rhizobacteria include: (1) release of complexing 
or mineral dissolving compounds e.g. organic acid anions, protons, 

Plant Growth Promoting Rhizobacteria (PGPR) 

Direct Plant Growth Promotion  
(Biofertilizer Activity) 

Indirect Plant Growth Promotion   
(Biopesticide Activity) 

Phytohormone Production (Phytostimulation Activity) Exo Polysaccharides Production 

Induced Systemic Resistance (ISR) Siderophore Production 

Potassium Solubilization 

 

Phosphate Solubilization 

Nitrogen Fixation Antibiotics Production 

Hydrolytic Enzymes Production 
 Siderophore Production 

Cytokinins and Gibberellins Production Ethylene Production Indole Acetic Acid Production 

Figure 1: Shematicdigram showing plant growth promoting bacteria affect plant growth directly and indirectly.
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hydroxyl ions, CO2, (2) liberation of extracellular enzymes (biochemical 
phosphate mineralization) and (3) the release of phosphate during 
substrate degradation (biological phosphate mineralization) [22]. 

Phosphate solubilizing PGPR included in the genera 
Arthrobacter, Bacillus, Beijerinckia, Burkholderia, Enterobacter, 
Erwinia, Flavobacterium, Microbacterium Pseudomonas, Rhizobium, 
Rhodococcus, and Serratia have attracted the attention of agriculturists 
as soil inoculums to improve plant growth and yield [12]. However, the 
beneficial effects of the inoculation with phosphate solubilizing bacteria 
used alone or in combination with other rhizospheric microbes have 
been also reported [23]. 

Potassium solubilization: Potassium (K) is the third major 
essential macronutrient for plant growth. The concentrations of 
soluble potassium in the soil are usually very low and more than 90% 
of potassium in the soil exists in the form of insoluble rocks and silicate 
minerals [24]. Moreover, due to imbalanced fertilizer application, 
potassium deficiency is becoming one of the major constraints in crop 
production. Without adequate potassium, the plants will have poorly 
developed roots, grow slowly, produce small seeds and have lower 
yields. This emphasized the search to find an alternative indigenous 
source of potassium for plant uptake and to maintain potassium status 
in soils for sustaining crop production [25]. 

Plant growth promoting rhizobacteria are able to solubilize 
potassium rock through production and secretion of organic acids 
[26]. Potassium solubilizing plant growth promoting rhizobacteria 
such as Acidothiobacillus ferrooxidans, Bacillus edaphicus, Bacillus 
mucilaginosus, Burkholderia, Paenibacillus sp. and Pseudomonas has 
been reported to release potassium in accessible form from potassium-
bearing minerals in soils [27]. Thus, application of potassium 
solubilizing plant growth promoting rhizobacteria as biofertilizer for 
agriculture improvement can reduce the use of agrochemicals and 
support ecofriendly crop production. 

Siderophore production: Iron is an essential micronutrient for 
almost all organisms in the biosphere. Despite the fact that iron is 
the fourth most abundant element on earth, in aerobic soils, iron is 
not readily assimilated by either bacteria or plants because ferric ion 
or Fe+3, which is the predominant form in nature, is only sparingly 
soluble so that the amount of iron available for assimilation by living 
organisms is extremely low [28]. Microorganisms have evolved 
specialized mechanisms for the assimilation of iron, including the 
production of low molecular weight iron-chelating compounds known 
as siderophores, which transport this element into their cells [29, 30]. 
Siderophores are divided into three main families depending on the 
characteristic functional group, i.e. hydroxamates, catecholates and 
carboxylates. At present more than 500 different types of siderophores 
are known, of which 270 have been structurally characterized [31]. 

Siderophores have been implicated for both direct and 
indirect enhancement of plant growth by plant growth promoting 
rhizobacteria. The direct benefits of bacterial siderophores on the 
growth of plants have been demonstrated by using radiolabeled ferric-
siderophores as a sole source of iron showed that plants are able to 
take up the labeled iron by a large number of plant growth promoting 
rhizobacteria including Aeromonas, Azadirachta, Azotobacter, Bacillus, 
Burkholderia, Pseudomonas, Rhizobium, Serratia and Streptomyces sp. 
[32] and enhanced chlorophyll level compared to un inoculated plants 
[33]. 

Phytohormone production: A wide range of microorganisms 
found in the rhizosphere are able to produce substances that regulate 

plant growth and development. Plant growth promoting rhizobacteria 
produce phytohormones such as auxins, cytokinins, gibberellins 
and Ethylene can affect cell proliferation in the root architecture by 
overproduction of lateral roots and root hairs with a subsequent 
increase of nutrient and water uptake [29]. 

Indole Acetic Acid (IAA): Among plant growth regulators, indole 
acetic acid (IAA) is the most common natural auxin found in plants 
and its positive effect on root growth [34]. Up to 80% of rhizobacteria 
can synthesize indole acetic acid (IAA) colonized the seed or root 
surfaces is proposed to act in conjunction with endogenous IAA in 
plant to stimulate cell proliferation and enhance the host’s uptake of 
minerals and nutrients from the soil [18]. Indole acetic acid affects 
plant cell division, extension, and differentiation; stimulates seed and 
tuber germination; increases the rate of xylem and root development; 
controls processes of vegetative growth; initiates lateral and adventitious 
root formation; mediates responses to light, gravity and florescence; 
affects photosynthesis, pigment formation, biosynthesis of various 
metabolites, and resistance to stressful conditions [35]. 

Tryptophan is an amino acid commonly found in root exudates, 
has been identified as main precursor molecule for biosynthesis of 
IAA in bacteria [36]. The biosynthesis of indole acetic acid by plant 
growth promoting rhizobacteria involves formation via indole-3-
pyruvic acid and indole-3-acetic aldehyde, which is the most common 
mechanism in bacteria like Pseudomonas, Rhizobium, Bradyrhizobium, 
Agrobacterium, Enterobacter and Klebsiella [37]. Root growth promotion 
by the free living PGPR e.g., Alkaligenes faecalis, Enterobacter cloacae, 
Acetobacter dizotrophicous, species of Azospirillum, Pseudomonas 
and Xanthomonas sp. has been related to low level of IAA secretion. 
However, microbially produced phytohormones are more effective due 
to the reason that the threshold between inhibitory and stimulatory 
levels of chemically produced hormones is low, while microbial 
hormones are more effective by virtue of their continuous slow release. 

Cytokinins and gibberellins: Several plant growth promoting 
rhizobacteria Azotobacter sp., Rhizobium sp., Pantoea agglomerans, 
Rhodospirillum rubrum, Pseudomonas fluorescens, Bacillus subtilis 
and Paenibacillus polymyxa can produce cytokinins or gibberellins 
or both can produce either cytokinins or gibberellins or both for 
plant growth promotion [38]. Some strains of phytopathogens can 
also synthesize cytokinins. However, it appears that plant growth 
promoting rhizobacteria produce lower cytokinin levels compared 
to phytopathogens so that the effect of the plant growth promoting 
rhizobacteria on plant growth is stimulatory while the effect of the 
cytokinins from pathogens is inhibitory.

Ethylene is a key phytohormone has a wide range of biological 
activities can affect plant growth and development in a large number 
of different ways including promoting root initiation, inhibiting 
root elongation, promoting fruit ripening, promoting lower wilting, 
stimulating seed germination, promoting leaf abscission, activating 
the synthesis of other plant hormones [39]. The high concentration of 
ethylene induces defoliation and other cellular processes that may lead 
to reduced crop performance [12]. The enzyme 1-aminocyclopropane-1 
carboxylic acid (ACC) is a pre-requisite for ethylene production, 
catalyzed by ACC oxidase. Iqbal MA et al. [40] reported improved 
nodule number, nodule dry weight, fresh biomass, grain yield, straw 
yield, and nitrogen content in grains of lentil as a result of lowering of 
the ethylene production via inoculation with plant growth promoting 
strains of Pseudomonas sp. containing ACC deaminase along with 
R. leguminosarum. Currently, bacterial strains exhibiting ACC 
deaminase activity have been identified in a wide range of genera 
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the fungus Thielaviopsis basicola [55], Pseudomonas putida against 
Macrophomina phaseolina in chickpea and Azotobacter chroococcum 
against Fusarium oxysporum in Sesamum indicum respectively in 
field condition [9]. In recent years, Pseudomonas fluorescens has 
been suggested as potential biological control agent due to its ability 
to colonize rhizosphere and protect plants against a wide range of 
important agronomic fungal diseases such as black root-rot of tobacco, 
root-rot of mustard and damping-off of sugar beet in field condition 
[56-58]. It has been demonstrated that inoculation of plant with 
arbascular mycorrhiza also improves plant growth. Some strains of 
Trichoderma have been widely used as biological control agents as 
well as plant growth promoters [59]. Inoculation with Trichoderma 
sp. has been the preferred choice for novel biocontrol agents against 
Aspergillus niger the causal agent of collar rot of peanut [60]. The use of 
multistrain inoculants are also be a good strategy that enables organisms 
to successfully survive, maintain themselves in communities. Singh 
et al. [61] recently showed the synergistic effect of antagonistic fungi 
Trichoderma with combined application of Pseudomonas and rhizobial 
strains can protect chickpea from infection by the collar rot pathogen 
Sclerotium rolfsii. 

Siderophore: Iron is an essential growth cofactor for living 
organisms. For the soil microorganisms, availability of solubilized 
ferric ion in soils is limited at neutral and alkaline pH. Siderophore 
producing plant growth promoting rhizobacteria can prevent the 
proliferation of pathogenic microorganisms by sequestering Fe3+ in the 
area around the root [62]. These siderophores binds with ferric ion and 
make siderophore-ferric complex which subsequently binds with iron-
limitation-dependent receptors at the bacterial cell surface. The Ferric 
ion is subsequently released and active in the cytoplasm as ferrous ion. 

Many plants can use various bacterial siderophores as iron sources, 
although the total concentrations are probably too low to contribute 
substantially to plant iron uptake. Various studies showed isolation 
of siderophore producing bacteria belonging to the Bradyrhizobium, 
Pseudomonas, Rhizobium, Serratia and Streptomyces genera from the 
rhizosphere [63].

Induced systemic resistance (ISR): Induced resistance may be 
defined as a physiological state of enhanced defensive capacity elicited 
in response to specific environmental stimuli and consequently the 
plant’s innate defenses are potentiated against subsequent biotic 
challenges [64]. Biopriming plants with some plant growth promoting 
rhizobacteria can also provide systemic resistance against a broad 
spectrum of plant pathogens. Diseases of fungal, bacterial, and 
viral origin and in some instances even damage caused by insects 
and nematodes can be reduced after application of plant growth 
promoting rhizobacteria [65]. Moreover, induced systemic resistance 
involves jasmonate and ethylene signaling within the plant and these 
hormones stimulate the host plant’s defense responses against a 
variety of plant pathogens [45]. Many individual bacterial components 
induce induced systemic resistance such as lipopolysaccharides (LPS), 
flagella, siderophores, cyclic lipopeptides, 2, 4-diacetylphloroglucinol, 
homoserine lactones, and volatiles like, acetoin and 2, 3-butanediol 
[66].

Exo polysaccharides production or biofilm formation: Certain 
bacteria synthesize a wide spectrum of multifunctional polysaccharides 
including intracellular polysaccharides, structural polysaccharides, 
and extracellular polysaccharides. Production of exo polysaccharides 
is generally important in biofilm formation; root colonization can 
affect the interaction of microbes with roots appendages. Effective 
colonization of plant roots by EPS-producing microbes helps to hold 

such as Acinetobacter, Achromobacter, Agrobacterium, Alcaligenes, 
Azospirillum, Bacillus, Burkholderia, Enterobacter, Pseudomonas, 
Ralstonia, Serratia and Rhizobium etc. [38]. 

In-direct mechanisms: Phytopathogenic microorganisms are 
a major and chronic threat to sustainable agriculture and ecosystem 
stability worldwide subverts the soil ecology, disrupt environment, 
degrade soil fertility and consequently show harmful effects on human 
health, along with contaminating ground water. Plant growth promoting 
rhizobacteria is a promising sustainable and environmentally friendly 
approach to obtain sustainable fertility of the soil and plant growth 
indirectly. This approach takes inspire a wide range of exploitation 
of plant growth promoting rhizobacteria led to reducing the need for 
agrochemicals (fertilizers and pesticides) for improve soil fertility by a 
variety of mechanisms that via production of antibiotics, siderophores, 
HCN, hydrolytic enzymes etc [41,42].

Antibiosis: The production of antibiotics is considered to be one 
of the most powerful and studied biocontrol mechanisms of plant 
growth promoting rhizobacteria against phytopathogens has become 
increasingly better understood over the past two decades [37]. A variety 
of antibiotics have been identified, including compounds such as 
amphisin, 2,4-diacetylphloroglucinol (DAPG), oomycin A, phenazine, 
pyoluteorin, pyrrolnitrin, tensin, tropolone, and cyclic lipopeptides 
produced by pseudomonads [43] and oligomycin A, kanosamine, 
zwittermicin A, and xanthobaccin produced by Bacillus, Streptomyces, 
and Stenotrophomonas sp. to prevent the proliferation of plant 
pathogens (Generally fungi) [44]. One problem with depending too 
much on antibiotic-producing plant growth promoting rhizobacteria 
as biocontrol agents is some phytopathogens may develop resistance 
to specifc antibiotics due to increased use of these strains. To prevent 
this from happening, some researchers have utilized biocontrol strains 
that synthesize one or more antibiotics [45]. In soils, antibiotic 2, 
4-diacetylphloroglucinol (2, 4- DAPG) producing Pseudomonas sp. 
was reported for biocontrol of disease in wheat caused by the fungus 
Gaeumanomyces graminis var. tritici [46]. Bacterization of wheat 
seeds with P. fluorescens strains producing the antibiotic phenazine-1-
carboxylic acid (PCA) resulted in significant suppression of take-all in 
about 60% of field trials [47]. Bacillus amyloliquefaciens is known for 
lipopeptide and polyketide production for biological control activity 
and plant growth promotion activity against soil borne pathogens 
[48]. Apart from the production of antibiotic, some rhizobacteria 
are also capable of producing volatile compound known as hydrogen 
cyanide (HCN) for biocontrol of black root rot of tobacco, caused 
by Thielaviopsis basicola [49]. Lanteigne et al. [50] also reported the 
production of DAPG and HCN by Pseudomonas contributing to the 
biological control of bacterial canker of tomato.

Lytic enzymes: Growth enhancement through enzymatic activity 
is another mechanism used by plant growth promoting rhizobacteria. 
Plant growth promoting rhizobacterial strains can produce certain 
enzymes such as chitinases, dehydrogenase, β-glucanase, lipases, 
phosphatases, proteases etc. [51,52] exhibit hyperparasitic activity, 
attacking pathogens by excreting cell wall hydrolases. Through the 
activity of these enzymes, plant growth promoting rhizobacteria play a 
very significant role in plant growth promotion particularly to protect 
them from biotic and abiotic stresses by suppression of pathogenic fungi 
including Botrytis cinerea, Sclerotium rolfsii, Fusarium oxysporum, 
Phytophthora sp., Rhizoctonia solani, and Pythium ultimum [53,54]. 

Numbers of reports have shown the effectiveness of plant growth 
promoting rhizobacteria as biocontrol agents including Pseudomonas 
fluorescens CHA0 suppresses black root rot of tobacco caused by 
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the free phosphorous from the insoluble one in soils and circulating 
essential nutrient to the plant for proper growth and development and 
protecting it from the attack of foreign pathogens. Other innumerable 
functions performed by EPS producing microbes constitute shielding 
from desiccation, protection against stress [67], attachment to 
surfaces plant invasion, and plant defense response in plant–microbe 
interactions [68]. Plant growth promoting rhizobacterial producing 
exo polysaccharides are highly important in promoting plant growth 
due to work as an active signal molecule during beneficial interactions, 
and provide defense response during infection process [69]. Some 
plant growth promoting rhizobacterial producing exo polysaccharides 
can also bind cations, including Na+ suggesting a role in mitigation of 
salinity stress by reducing the content of Na+ available for plant uptake 
[29]. 

Commercialization of PGPR 
The success and commercialization of plant growth promoting 

rhizobacterial strains depend on the linkages between the scientific 
organizations and industries. Numerous work done showed different 
stages in the process of commercialization include isolation of 
antagonist strains, screening, fermentation methods, mass production, 
formulation viability, toxicology, industrial linkages, quality control 
and field efficacy [70]. Moreover, commercial success of PGPR strains 
requires economical and viable market demand, consistent and broad 
spectrum action, safety and stability, longer shelf life, low capital costs 
and easy availability of career materials. 

Plant growth promotory bioformulations 

Bioformulations are best defined as biologically active products 
containing one or more beneficial microbial strains in an easy to use 
and economical carrier material. Most bioformulations are meant for 
field application, it is essential that suitable carrier materials are used 
to maintain cell viability under adverse environmental conditions. A 
good quality formulation promotes survival of bacteria maintaining 
available population sufficient to exude growth promoting effects on 
plants [71]. Plant growth promoting rhizobacterial bioformulation 
refers to preparations of microorganism that may be partial or 
complete substitute for chemical fertilization, pesticides, offer an 
environmentally sustainable approach to increase crop production and 
health. 

Formulation design

Formulation is the crucial issue for inoculants containing an 
effective bacterial strain and can determine the success or failure of a 
biological agent. The use of inoculant formulations involving carrier 
materials for the delivery of microbial cells to soil or the rhizosphere is 
an attractive option. Carrier materials are generally intended to provide 
a protective niche to microbial inoculants in soil, either physically, via 
the provision of a protective surface or pore space or nutritionally, via 
the provision of a specific substrate. 

Bioformulation of plant growth promoting rhizobacteria should 
be composed of a superior carrier material such as high water-
holding capacity, high water retention capacity, no heat production 
from wetting, nearly sterile, chemically uniform, physically uniform, 
nontoxic in nature, easily biodegradable, nonpolluting, nearly neutral 
pH (or easily adjustable pH), and supports bacterial growth and 
survival. Apart from these materials, many other synthetic and inert 
materials, such as vermiculite, ground rock phosphate, calcium sulfate, 
polyacrylamide gels, and alginate have also been evaluated [72]. 

Drying is a part of many procedures for development of formulation 
of microbial inoculants. Remarkably low percentage of endospore 
formers was observed that survived after drying [54]. One factor which 
can have a detrimental effect on dried microorganisms over the long 
term is humidity in the environment; increasing moisture content 
of the dried sample compromises viability. Storage under vacuum or 
in an inert atmosphere can prevent this but is costly and unwieldy. 
The use of each type of inoculant depends upon market availability, 
choice of farmers, cost, and the need of a particular crop under specific 
environmental conditions [73].

Future Research and Development Strategies for 
Sustainable Technology

The need of today’s world is high output yield and enhanced 
production of the crop as well as fertility of soil to get in an eco-
friendly manner. Hence, the research has to be focused on the new 
concept of rhizoengineering based on favorably partitioning of the 
exotic biomolecules, which create a unique setting for the interaction 
between plant and microbes [74]. Future research in rhizosphere 
biology will rely on the development of molecular and biotechnological 
approaches to increase our knowledge of rhizosphere biology and to 
achieve an integrated management of soil microbial populations. Fresh 
alternatives should be explored for the use of bioinoculants for other 
high value crops such as vegetables, fruits, and flowers. The application 
of multi strain bacterial consortium over single inoculation could be 
an effective approach for reducing the harmful impact of stress on 
plant growth. The addition of ice-nucleating plant growth promoting 
rhizobacteria could be an effective technology for enhancing plant 
growth at low temperature [53].

Research on nitrogen fixation and phosphate solubilization by 
plant growth promoting rhizobacteria is progress on but little research 
can be done on potassium solubilization which is third major essential 
macronutrient for plant growth. This will not only increase the field of 
the inoculants but also create confidence among the farmers for their 
use. In addition, future marketing of bioinoculant products and release 
of these transgenics into the environment as eco-friendly alternations 
to agrochemicals will depend on the generation of biosafety data 
required for the registration of plant growth promoting rhizobacterial 
agents. A part from that future research in optimizing growth 
condition and increased self life of PGPR products, not phytotoxic to 
crop plants, tolerate adverse environmental condition, higher yield and 
cost effective PGPR products for use of agricultural farmer will be also 
helpful.
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