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Introduction
Enterococci are known as a bacterial entity since the turn of the 20th 

century but until the mid 1980s they belonged to the genus Streptococcus. 
With the introduction of molecular techniques the intestinal Lancefield 
group D streptococci were separated into an individual genus termed 
Enterococcus [1]. Nowadays almost 40 different species belong to this 
genus [2]. For decades majority of enterococcal infections (about 85%) 
were caused by Streptococcus/Enterococcus faecalis and the residual, 
up to 15% by Streptococcus/Enterococcus faecium [3]. Insofar early 
characterization and typing approaches targeted mainly E. faecalis and 
its known virulence determinants in relation to the technical possibilities 
of that time. The so-called Maekawa collection contained 21 serotype E. 
faecalis strains differentiated via the polysaccharide capsule and other 
surface determinants of E. faecalis [4,5]. Isolates of E. faecium do not 
contain a capsule locus and cannot be typed by serological assays. In 
the last two decades two aspects increased the medical importance of E. 
faecium. First, the selection and spread of various types of vancomycin 
resistance among enterococci is mainly associated with E. faecium 
and less with E. faecalis. Second, the increased medical importance 
of enterococci as a nosocomial pathogen is mainly due to increasing 
numbers of (hospital-associated) E. faecium and less to E. faecalis. Both 
aspects increased the typing requirements and interest especially for E. 
faecium. To the best of our knowledge today, population biology of E. 
faecium differs from that of E. faecalis to a certain extent [6,7]. This 
requires to be considered when assessing available techniques for strain 
typing and characterization. Since typing is mainly applied for VRE 
isolates, typing of E. faecium is within the focus of this short overview.

Typing parameters and outcomes are always in relation to 
the quality of the available strain sample to be analyzed and the 
corresponding epidemiological context to be addressed. Different 
questions may require different typing techniques providing different 
levels of discriminatory power; which means that the highest level of 
discrimination may not be suitable for more general aspects and broader 
epidemiological correlations. Additional aspects to be considered 
concern ease of use/applicability, time of analysis and personal input 
(number, qualification), costs, reproducibility of data and results (intra 
and interlab) and routes of data storage, exchange and comparison. 
Elucidating a local VRE outbreak requires different techniques than 
following the dissemination of epidemic strain types across the country 
or across borders and for investigating population biological aspects 
over longer time periods.

Serotyping
Serotyping is a classical typing method assessing differences in 

immunologic responses to typable bacteria infecting model hosts and 
resembling differences in surface structures of investigated micro-
organisms. A serotyping scheme on a historical collection of E. faecalis 
strains was proposed by Maekawa and co-workers [4]. Rabbit antisera 
against a large number of E. faecalis strains were raised capable to 
classify 21 distinct serotype strains and to prepare 21 monospecific 
typing antisera. Diversity of Maekawa type strains T1-T21 was later on 
confirmed by MLST and capsule locus analyses [6]. Due to a number 
of reasons (unknown target; less easy to use; limited discrimination) 
serotyping has never reached a broader acceptance and is from 
nowadays perspectives somehow outdated. 

Ribotyping 
Ribotyping is a classical typing method targeting the ribosomal 

DNA by hybridization or amplification techniques. It is still widely 
used for typing of pathogens such as Clostridium difficile where it 
is considered as a reference method (see Table 1 for background 
information on the corresponding techniques and for references). For 
enterocococcal typing it has its limited use for distinct scenarios [8]. 
However, the depths of analysis, particularly its discriminatory power 
is rather limited and thus its application and usefulness for typing 
enterococci is minor [9,10]. 

PCR-based typing/rep-PCR typing 
The zenith of PCR-based typing goes back to the 1990s when PCR 

became prominent for many applications including typing of bacteria 
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Abstract
With their increased frequency of occurrence as a nosocomial pathogen and thus their elevated overall medical 

importance, the demand to characterize and differentiate strains of Enterococcus faecalis and E. faecium has risen. 
Available techniques vary in ease of use, demands in costs, manpower and time, inter- and intra-laboratory comparability 
and reproducibility of results, portability of data and discriminatory power. Analysing outbreaks by sophisticated 
molecular techniques requires methods with a different discrimination than methods to detect and follow transmission 
of epidemic strains over longer time periods. The latter is especially critical for bacteria showing a rather flexible 
genome such as Enterococcus. The value and application for commonly used techniques for typing (vancomycin-
resistant) enterococci is discussed including ribotyping, PCR-based typing, macrorestriction analysis in Pulsed-Field 
Gel Electrophoresis (PFGE), Amplified Fragment Length Polymorphism (AFLP), Multiple Locus Variable Number of 
Tandem Repeat Analyses (MLVA), Multi-Locus Sequence Typing (MLST) and some specialist approaches (resistance 
cluster typing, plasmid typing, next generation sequencing).
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[11]. From a today’s perspective amplification-based techniques appear 
outdated due a number of insuperable limitations and disadvantages 
coming along with the technique itself, which appear as such in 
relation to sequence-based techniques (see the following). Major 
limitations in pattern stability (reproducibility) and resolutionary/
discriminatory power are partly overcome by a highly standardized 
approach via a commercial kit in combination with a highly sensitive 
and precise capillary-based fragment pattern analysis (DiversiLab®, 
bioMérieux, Marcy-l’Étoile, France). However, it is recommended by 
the manufacturer for typing of various bacteria including enterococci 
in the context of outbreak investigations which has been published 
recently [12,13]. Nevertheless, its discriminatory power has not 
been shown unambiguously on a reference strain sample set and its 
application will still be limited due to specific equipment requirements 
and comparably high costs.

Macrorestriction Analysis in Pulsed-Field Gel 
Electrophoresis (PFGE)

Macrorestriction analysis in pulsed-field gel electrophoresis 
casually called “PFGE typing” was introduced in the early 1990s for 
bacterial strain typing. It involves a very time-consuming procedure, 
requires a high technical standard and demands qualified and 
experienced personal on one hand for the lab work and on the other 
hand for data evaluation [14,15]. Despite these high technical demands 
on experience and standardization and its obvious limitations, PFGE 
typing still is considered as the “gold standard” for enterococcal strain 
typing, especially for elucidating supposed outbreak scenarios [16-
18]. As described recently, rates of recombination, to be comparably 
high in Enterococcus in general, may be less pronounced in hospital-
associated strain types, mostly prevalent among the nosocomial setting 
and responsible for the majority of outbreaks [7]. This is in line with 
recognition of certain VRE strain types prevalent for longer periods 
and in many hospitals, even country-wide (Figure 1) [19,20].

Nevertheless, the method is purely DNA fragment-based 
(without any further information) and less portable challenging the 
intra-laboratory comparability of images and fragment patterns. A 
harmonised protocol as established for MRSA strain typing [21,22] 
does not exist for VRE and thus inter-laboratory comparison of data is 
even more challenging. When using PFGE for VRE typing international 
agreements to standardize data interpretation and analysis as suggested 
by some experts, a number of them especially evaluated for VRE, 
should be considered [15,23]. 

Amplified Fragment Length Polymorphism (AFLP)
Amplified fragment length’ polymorphism (AFLP, also fluorescent 

fAFLP) is a restriction and amplification-based typing technique which 
has been introduced about 10 years ago for bacterial strain typing [24]. 
It was the first method to address and open our current understanding 
of the population biology of E. faecium. According to AFLP data and 
subsequent fragment pattern analysis, hospital strains of E. faecium 
constitute an individual subgroup (at this time called C1) which could 
be differentiated from strains of commensal (human/animal) and 
environmental as well as probiotic/food origin [25]. AFLP has already 
been replaced quite shortly after its introduction by alternative DNA-
based techniques with similar or better performance such as MLVA 
and MLST (see next chapters). AFLP has lately been used as a frontline 
tool for bacterial genus and species prediction in a medium throughput 
dimension. It is obvious that with the broader application of MALDI-
TOF MS for routine bacterial species identification, also this application 
field will decline [26,27]. 

Multiple Locus Variable Number of Tandem Repeat 
Analysis (MLVA)

MLVA has first been introduced as a typing tool to further 
differentiate highly clonal bacterial species such as Bacillus anthracis 
and other high threat pathogens about 10 years ago [28,29]. It 
determines DNA repeat regions and its variations in number and 
composition. Since majority of these repeat regions (5-8 different per 
genome) are comparably small (<50 bp), their analyses require some 
technical demands, e. g. capillary sequencers, which in addition allow 
multiplexing with differently labeled primers for repeat amplifcation 
and detection [30]. A MLVA typing scheme for E. faecium was 
introduced in 2004 [31]. The six identified discriminatory Variable-
Number Tandem Repeat (VNTR) loci were of comparably long repeat 
lengths (123–279 bp) allowing an agarose gel based analysis. MLVA 
discriminated similar to AFLP and MLST allowing to define (confirm) 
the clade of hospital-associated strain types called C1 or CC17 [32]. 
MLVA for E. faecium is less discriminatory than PFGE typing and 
different major hospital MLST types could be represented by a single 
MLVA type (and vice versa; [33]). However, in combination with the 
determination of additional epidemic marker genes (esp, hylEfm) or 
strain-specific information (antibiotic resistance profiles) combined 
MLVA typing allows strain characterization and outbreak analysis 
[32,34]. A user-friendly platform at the University Centre Utrecht, 
the Netherlands, allows submission of MLVA profiles and comparison 
of data (http://www.umcutrecht.nl/subsite/MLVA/; managed by: Dr. 
Janetta Top; last access: 18.01.2013). 

A MLVA scheme for E. faecalis has been introduced several years 
ago [35]. It combines VNTR repeat loci of known virulence genes 
encoding surface-exposed determinants and unknown loci identified 
by a repeat finder programme. In the initial study this scheme was 
comparably discriminatory as PFGE typing for the set of investigated E. 
faecalis strains (VRE and VSE). The E. faecalis MLVA scheme has only 
scarcely been used since its introduction and thus its general usefulness 
for typing E. faecalis strains cannot be properly assessed [36,37]. 

Multi-Locus Sequence Typing (MLST)
MLST is a logical successor of a technique called Multilocus 

Enzyme Electrophoresis (MLEE). MLEE was introduced more than 25 
years ago for bacterial typing. It determines differences in the amino 
acid sequences of housekeeping genes assayed phenotypically [38]. 
Mutational changes in housekeeping genes are seldom and are not 
exposed to any selective pressure such as bacterial cell wall and surface 
components or determinants associated with antibiotic resistance. A 
constant correlation between mutation rate and time is expected. MLST 
uses a similar experimental approach and circumvents limitations 
of MLEE. MLST determines the exact nucleotide composition and 
is capable of identifying also synonymous (silent) mutations. A 
combination of seven loci distributed across the genome was calculated 
to be associated with a suitable discriminatory power [39]. An 
MLST scheme for E. faecium was introduced in 2002 [40]. UPGMA 
(Unweighted Pair Group Method of Alignment) clustering of MLST 
data of E. faecium isolates of various origins identified a sub cluster 
called C1 consisting of hospital-associated strains, thus confirming the 
population snapshot suggested on the basis of AFLP data and analysis 
(and later also for MLVA). A software tool called BURST (Based upon 
Related Sequence Types; later “extended” (e) BURST) was especially 
developed for MLST data analysis [41]. The BURST algorithm identifies 
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Isolate Origin MLST MLVA Year                van type           SourceI/nfection

UW2383 Berlin Hosp 1 n.d. n.d. 1999 vanA Venous catheter/bacteraemia

UW2390 Berlin, Hosp 2 n.d. n.d. 1999 vanA urine/UTI

UW2222 Berlin, Hosp 3 ST117 n.d. 1999 vanA bacteraemia

UW2306 Berlin, Hosp 4 n.d. n.d. 1999 vanA BAL

UW2321 Berlin, Hosp 3 n.d. n.d. 1999 vanA (multiple abscesses)

UW2322 Berlin,  Hosp 5 ST117 MT12 1999 vanA urine

UW2384 MV, Hosp 1 ST117 MT12 1999 vanA bacteraemia

UW2413 Berlin, Hosp 6 ST117 n.d. 1999 vanA swab sample

UW2442 Berlin, Hosp 7 n.d. n.d. 1999 vanA peritonitis

UW2320 Berlin, Hosp 8 n.d. n.d. 1999 vanA wound

UW931 L. Saxony; Hosp 1 ST117 MT12 1996 vanA unknown

UW1806 Berlin, Hosp 9 ST117 MT12 1998 vanA BAL

UW1827 L.Saxony , Hosp 2 ST117 MT12 1998 vanA tracheal secretion

UW1983 L.Saxony , Hosp 3 ST117 MT12 1998 vanA bacteraemia

UW1822 MV, Hosp 1 ST117 MT12 1998 vanA anal swab

UW901 Hesse, Hosp 1 ST117 n.d. 1996 vanA unknown

UW1505 NRW, Hosp 1 ST117 MT12 1997 vanA unknown

UW2434 Berlin, Hosp 9 ST117 MT12 1999 vanA bacteraemia

UW2444 Saxony, Hosp 1 ST117 MT12 1999 vanA swab sample 

UW1823 Berlin, Hosp 10 ST117 MT12 1998 -1) wound swab

UW2319 Hesse, Hosp 2 ST117 MT12 1999 vanA peritonitis

UW2453 Hesse, Hosp 2 ST117 MT12 1999 vanA bacteraemia

UW2467 Hamburg, Hosp 1 ST117 MT12 1999 vanA bacteraemia

UW2862 Saarland, Hosp 1 ST117 n.d. 2000 vanA bacteraemia

UW2987 NRW, Hosp 2 ST117 n.d. 2000 vanA bacteraemia

UW3182 Brandenburg, Hosp 1 ST117 MT12 2001 vanA bacteraemia

75
 

80 85 90 95 10
0

Legend: AFLP, Amplified-Fragment Length Polymorphisms; MLST, Multi-locus Sequence Typing; MLVA, Multiple Locus Variable Number of Tandem Repeat Analysis; 
NGS, Next Generation Sequencing (synonymous for various techniques such as 454, illumina, ion torrent); PFGE, Genomic macrorestriction analysis in Pulsed-field Gel 
electrophoresis. 1 first specification for Interlab-, second for Intralab reproducability; 2 in relation to a standardized protocol / Kit / machine; 3 no standardized/harmonized 
typing scheme exists.
Table 1: Comparison of typing methods used for VRE/Enterococcus.

Figure 1: SmaI-macrorestriction analysis in PFGE of 26 VRE isolates representing individual clusters of infections and colonisations in patients from 22 hospitals col-
lected between 1996 and 2000 in Germany. The origin of the hospital isolates is given as a hospital within a federal state. The dotted line represents the 82% similarity 
score suggested by Morrison et al. for determining clonal relatedness [23]. Legend: BAL, Broncho Alveolar Lavage; Hosp, hospital; L. Saxony; Lower Saxony; MV, 
Mecklenburg-West Pomerania; n.d., not determined; NRW, North-Rhine Westphalia; year, year of isolation. Isolate UW1823 may have lost vanA resistance since it was 
negative in repeated PCR reactions.

Method Principle Discrimination Reproducibility Data exchange Applications 
Ribotyping Hybridization of labelled rDNA 

with digested genomic DNA
medium good possible2 Too low discrimination for outbreak analysis 

(short term epidemiology)
RAPID/repPCR PCR with random primers or 

primers binding to repetitive 
target sequences

medium insufficient - good1 possible2 Partly suitable for „in house“ outbreak analyses; 
provided with commercial kits (DiversiLabTM)

AFLP Length polymorphisms in ge-
nomic PCR products

good good–very good1 possible Exchanged by MLST due to better data portabil-
ity and discriminatory power

PFGE Genome-based macrorestriction 
analysis

excellent good–very good1 possible2 Still „Gold-Standard“ for outbreak analyses; not 
suitable for long term epidemiology / population-
based analyses (“over-discrimination“)

MLST DNA sequence comparisons of 
housekeeping genes 

good – very good excellent excellent „Gold Standard“ for population-based analyses; 
comparably expensive and laborious, too less 
discriminatory for outbreak analyses

MLVA Fragment length polymorphisms 
in genomic repeat regions

good – very good very good excellent Suitable for population-based analyses; too less 
discriminatory for outbreak analyses

vanA cluster typing Different schemes exist based 
on amplification, digestion, 
sequencing3

good – very good very good good Only suitable for specialist analyses and in 
combination with basic techniques 
(PFGE, MLST, MLVA)

Plasmid typing Analysis of the plasmid content 
and cmposition3

limited very good possible Dependent on the corresponding question; suit-
able for analysis of “plasmid hospitalism” and for 
enhancing MLST/MLVA analysis’ results

NGS Analysis of the genome content highest possible excellent excellent its potential for various epidemiological ques-
tions has to be analysed in studies in the near 
future
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Two schemes exist for MLST typing of E. faecalis. Both have 
some alleles in common, but differ in selecting (a) explicitly only 
housekeeping genes [49] or (b) mix housekeeping with virulence genes 
for allele pattern analysis [50]. The latter approach was suitable to 
identify a clonal lineage highly prevalent in the US and characterized by 
beta-lactamase production (still rare in E. faecalis) and presence of the 
pathogenicity island. The scheme of Ruiz-Garbajosa et al. [49] follows 
common rules for MLST allele selection (housekeeping genes only) and 
has been implemented into the central MLST database (http://efaecalis.
mlst.net/; managed by: Rob Willems and Janetta Top (UMC Utrecht, 
NL, hosted by the Imperial College London and funded by the Wellcome 
Trust, UK). Consequently, most of the recent papers using MLST for 
E. faecalis rely on the scheme of Ruiz-Garbajosa et al. [37,45,49,51,52]. 
Population structure of E. faecalis appears somehow different from 
that of E. faecium. MLST analysis does not strictly differentiate 
hospital-associated lineages from colonizing variants. Nevertheless, 
certain sequence types and clonal complexes appear enriched in the 
nosocomial setting and which are often found to be multi-resistant. 
This concerns STs assembled in clonal complexes CC2 and CC9, mainly 
ST16 which is a classical hospital-associated and “outbreak strain type” 
[6,49]. However, recent publications also revealed a supposed animal 
reservoir of this clonal type ST16 [51,53]. Other sequence types appear 
to be generally distributed among many ecosystems and do not seem 
to be associated with any form of host specificity. This applies to ST40 
which is a quite common ST variant prevalent as a colonizer in humans, 
animals and the environment but also associated with a various types of 
infections in animals and humans [6,52-54]. 

Vancomycin Resistance Gene Cluster Typing
Vancomycin resistance in animal, human and environmental 

sources is mostly encoded by vanA-type resistance clusters of the 
Tn1546-type and its reservoir is in isolates of E. faecium. Exchange of 
resistant strains among different ecosystems is less probable due to the 
supposed association of distinct E. faecium strain types with specific 
backgrounds, although dissemination of vancomycin- and multi-
resistant E. faecium across host barriers was described anecdotally 
[53,55-60]. Vancomycin resistance among enterococci spreads via 
clonal dispersion and lateral gene transfer, the latter via dissemination 
of mobile genetic elements of variants of the vanA-type element Tn1546 
mostly located on mobilizable or conjugative plasmids [60-66]. 

Molecular studies revealed a tremendous number of deletions, 
insertions, and modifications of the original Tn1546-like structure 
in different not epidemiologically linked VRE leading to a wide 
diversity of various Tn1546 subtypes [67-72]. Despite its high diversity, 
identical cluster types were found among clinical human and animal 
commencal and environmental strains suggesting a common reservoir 
and exchange of its mobile elements via conjugative plasmids or as part 
of larger mobile genomic islands in European, Asian and Australian 
E. faecium strain collections [67,68,70,73,74]. Also nowadays, vanA 
cluster typing is used as a typing method for diverse strain collections 
where clonal spread is less expected [75-79]. 

In contrast, vanB-type elements preferably integrate into the 
chromosome, but are mobile as part of integrative and conjugative 
elements ICE [80,81]. Occasionally vanB resides on (transferable) 
plasmids [82-84]; as noticed recently associated with larger VanB-
type VRE outbreaks [85,86]. In general, the supposed low expression 
of vancomycin resistance among vanB strains may have led to an 
underestimation of its general prevalence, since in many screening 
studies comparably high vancomycin concentrations to select VRE 
were used [87-90]. Rates of clinical vanB-type VRE are increasing, at 
least in some European countries during last years [18,91-93] and a link 
to a supposed reservoir outside the clinical setting, for instance, among 
mammal intestinal bacterial colonizers is discussed also in areas where 
vanB-type vancomycin resistance is more prevalent [91,94]. Although 
several cluster variants exist, a vanB cluster typing scheme has not been 
established yet.

In general, vancomycin resistance gene cluster typing may reveal 
additional resolution to existing strain typing schemes by assessing 
a number of structural modifications that do not seem essential to 
resistance expression and regulation of the element. However, results 
should be interpreted with caution since the evolutionary clock speed of 
these changes is unpredictable and IS element and transposon derived 
modifications could occur quite frequently at hotspots for genomic 
rearrangements [81].

Plasmid Typing
Plasmid typing may be suitable for demonstrating horizontal vanA 

(and vanB) cluster dissemination across different E. faecium strain 
types (“Plasmid hospitalism”). In vitro transfer of vanA plasmids has 
been determined in a number of studies [67,95,96] as well as transfer 
in digestive tracts of animals and human volunteers [97-99] with 
transfer rates being significantly higher under natural conditions [100]. 
However, plasmid typing is less well established for resistance plasmids 
of VRE than it is for multi-resistance plasmids in Enterobacteriaceae 
where for a number of Inc group plasmids, plasmid MLST schemes were 
established and corresponding databases are managed. A few plasmids 

mutually exclusive groups of related genotypes in a population and 
attempts to identify the founding genotype (sequence type or ST) of 
each group. It then predicts the descent from the predicted founding 
genotype to the other genotypes in the group, displaying the output 
as a radial diagramme, centred on the predicted founding genotype 
(http://eburst.mlst.net/). eBURST phylogenetic analyses are excellent 
for rather clonal populations/species such as Streptococcus pneumoniae 
and Staphylococcus aureus; but reliability is low for species with a high 
recombination to mutation ratio as predicted for Enterococcus[42]. 
eBURST analysis of MLST datasets of highly recombinogenic species 
results in a single large straggly eBURST group, which results from the 
incorrect linking of unrelated groups of strains [42]. Global optimal 
eBURST (goeBURST) software implemented additional tools and, for 
instance, allows the introduction of tie break rules reached in deciding 
and visually evaluating the reliability of the hypothetical links and 
patterns of descent [43]. However, since it is mainly also based on the 
BURST algorithm major limitations of the method remain (http://
goeburst.phyloviz.net/). Bayesian modelling methods introduced in 
the BAPS software (Bayesian Analysis of genetic Population Structure; 
http://www.helsinki.fi/bsg/software/) [44] were applied recently for 
analysing the population structure of E. faecium [45]. Subsequent 
(nested) BAPS analyses on the entire MLST dataset for E. faecium 
identified several BAPS groups that could be further subdivided. 
BAPS analyses disproved the concept of a single clonal complex 
CC17 combining all hospital-associated strains in one major group of 
relatedness (descent) since major MLST types of hospital-associated 
strains such as ST17, ST18 and ST78 were placed at different BAPS 
subgroups and branches at BAPS trees, respectively [45]. Independent 
from its differences in the core genome and pattern of descent, all 
hospital strains contain a specific accessory genome content supposedly 
associated with a specialization to the hospital setting [46-48].
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of VRE were fully sequenced [61,62,65,101] and based on these data 
and further information different plasmid typing schemes based on 
replicase genes were suggested [102,103]. Results of Jensen et al. [102] 
were widely used for subsequent plasmid typing studies in Enterococcus 
spp. mainly VRE [60,78,104-107]. Garcia-Migura and co-workers also 
identified a hot spot for integration of Tn1546-like elements and it could 
be speculated if this integration site is more prevalent among certain 
plasmid types and the reason for the preferred prevalence of vanA 
clusters with specific plasmids [104,108,109]. Results of a recent study 
about horizontal transferability of vanA plasmids among enterococci, 
other lactic acid bacteria and bifidobacteria revealed a preferred transfer 
into and a possible host restriction among E. faecium [66]. Only a few 
studies so far described spread of highly similar plasmids as a means 
of disseminating vanA- or vanB-type resistance [65,78,85]. Further 
progress in whole genome sequencing assessing also the plasmid 
content of these bacteria will elucidate the role of distinct plasmid types 
for spreading vancomycin resistance among Enterococcus. 

Whole Genome Sequencing/Next Generation sequencing 
(WGS/NGS) 

Next generation sequencing techniques provide a tremendous 
potential to outbreak investigation, elucidating transmission routes of 
pathogens and tracing emergence and spread of multidrug resistant 
bacteria [110-112]. A few genomes of enterococcal strains have been 
elucidated completely [54,113], partly by classical Sanger sequencing 
[80,114-116], and genomic information to a wide range of additional 
isolates is available as draft genomes [117,118](check recent data: 
http://www.ncbi.nlm.nih.gov/genome?term=Enterococcus%20faecium; 
http://www.ncbi.nlm.nih.gov/genome?term=Enterococcus%20faecalis). 
Only a subset of these isolates represents vancomycin-resistant variants 
[80,113]. It has to be elucidated within the near future if the highest 
possible discriminatory power of NGS techniques will be capable of 
assessing relevant information for outbreak analysis and pathogens’ 
transmission as shown very recently for MRSA and multidrug-resistant 
Enterobacteriaceae outbreak analyses [119-121].

Conclusion/outlook
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