Placental tissues as sources of stem cells—Review

Abstract

Recently the fetal membranes are regarded to be abundant, ethically acceptable and easily accessible sources of mesenchymal stem cells, which cause only minor immunogenic troubles. In addition, these membranes have been studied as an alternative to adult and embryonic stem cells. The chorion develops firstly as a layer of simple avascular epithelium (trophoblast). The amnion, as the chorion is also an avascular membrane. It is derived from the ectoderm, and forms a very thin membrane which surrounded the embryo in development. The hypoblast and exocoelomic membrane together originates the yolk sac which late will give rise to the allantois. The study of the origin and development of these tissues is of vital importance for obtaining stem cells. Different cell lineages can be obtained from the fetal placental tissues: the hematopoietic lineage is found in the chorion, allantois and, yolk sac, and the mesenchymal lineage is found in the chorion and amnion. The properties and potential for differentiation of fetal stem cells isolated from placental tissues must be characterized in order for them to be used in the treatment of several diseases. The chorion, yolk sac, allantois, and amnion contain heterogeneous cell populations. However, few studies have focused on characterizing these alternative stem cells sources. The amnion has a significant advantage over the other fetal membranes, mainly due to its easily accessibility for collection in humans and rodents and also because it contains populations of pluripotent and multipotent cells. In some other species (dogs, ruminants, horses, cats, and swine) the allantoic fluid is more easily accessible, but there is little information regarding the characterization of the cell population. This review will address advances in the isolation of stem cells from fetal placental tissues and describe their characterization and possible use in cell therapy, as well as their origin and development.

Share and Cite:

Fernandes, R. , Costola-Souza, C. , Sarmento, C. , Gonçalves, L. , Favaron, P. and Miglino, M. (2012) Placental tissues as sources of stem cells—Review. Open Journal of Animal Sciences, 2, 166-173. doi: 10.4236/ojas.2012.23023.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Mossman, H.W. (1987) Vertebrate fetal membranes: Comparative ontogeny and morphology; evolution; phylogenetic significance: Basic functions; research opportunities. The Mammalian Press, London.
[2] Enders, A.C. and Welsh, A.O. (1993) Structural interactions of trophoblast and uterus during hemochorial placenta formation. Journal Experimental Zoology, 266, 578-587.
[3] Leiser, R. and Kaufmann, P. (1994) Placental structure: In a comparative aspect. Experimental Clinical Endocrinology, 102, 122-134. doi: 0.1055/s-0029-1211275
[4] Bj?rkman, N. (1982) Placenta??o. In: Dellman, H. and Broxn, E.M., Eds., Histologia Veterinária, Guanabara Koogan, Rio de Janeiro.
[5] Sadler, T.W. (2005) Langman embriologia médica. Guanabara Koogan, Rio de Janeiro.
[6] Garcia, S.M.L. and Fernández, C.G. (2001) Embriologia. Editora Artmed, Porto Alegre.
[7] Downs, K.M, Hellman, E.R., McHugh, J., Barrickman, K. and Inman, K.E. (2004) Investigation into a role for the primitive streak in development of the murine allantois. Development, 131, 37-55. doi:10.1242/dev.00906
[8] Benirschke K. and Kaufman P. (2000) Pathology of the human placenta. Springer-Verlag, New York.
[9] Mess, A.M. and Ferner, K.J. (2010) Evolution and development of gas exchange structures in Mammalia: The placenta and lung. Respiratory Physiology and Neurobiology, 173, 74-82. doi:10.1016/j.resp.2010.01.005
[10] Almeida, J.M. (1999) Embriologia veterinária veterinária. Guanabara Koogan, Rio de Janeiro.
[11] Evangelista, M., Soncini M. and Parolini, O. (2008) Placenta-derived stem cells: new hope for cell therapy? Citotechnology, 58, 33-42. doi: 10.1007/s10616-008-9162-z
[12] Chen, Y., Shao, J.Z., Xiang, L.X., Dong, X.J. and Zhang, G.R. (2008) Mesenchymal stem cells: A promising candidate in regenerative medicine. The International Journal of Biochemistry & Cell Biology, 40, 815-820. doi:10.1016/j.biocel.2008.01.007
[13] Minguell, J.J., Erices, A. (2006) Mesenchymal stem cells and the treatment of cardiac disease. Experimental Biology and Medicine, 231, 39-49. doi:1535-3702/06/2311-0039
[14] Villaron, E.M., Almeida, J., López-Holgado, N., Alcoceba, M., Sánchez-Abarca, L.I., Sanchez-Guijo, F.M., Alberca, M., Pérez-Simon, J.A., San Miguel, J.F. and Del Ca?izo, M.C. (2004) Mesenchymal stem cells are present in peripheral blood and can engraft after allogenic haematopoietic stem cell transplantation. Haematologia, 89, 1421-1427.
[15] Miao, Z., Jin, J., Chen, L., Zhu, J., Huang, W., Zhao, J., Qian, H. and Zhang, X. (2006) Isolation of mesenchymal stem cell from human placenta: Comparison with human bone marrow mesenchymal stem cells. Cell Biology International, 30, 681-687. doi:10.1016/j.cellbi.2006.03.009
[16] Pasquinelli, G., Tazzari, P., Ricci, F., Vaselli, C., Buzzi, M., Conte, R., Orrico, R., Foroni, L., Stella, L., Alviano, F., Bagnara, G.P. and Lucarelli, E. (2007) Ultrastructural characteristics of human mesenchymal stromal (stem) cells derived from bone marrow and term placenta. Ultrastructural Pathology, 31, 23-31. doi:10.1080/01913120601169477
[17] Zhang, X., Mitsuru, A., Igura, K., Takahashi, K., Ichinose, S., Yamaguchi, S. and Takahashi, T.A. (2006a) Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochemical and Biophysical Research Communications, 340, 944-952. doi:10.1016/j.bbrc.2005.12.091
[18] Soncini, M., Vertua, E., Gibelli, L., Zorzi, F., Denegri, M., Albertini, A., Wengler, G.S. and Parolini, O. (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. Journal of Tissue Engineering and Regenerative Medicine, 1, 296-305. doi:10.1002/term.40
[19] Zhang, X., Soda, Y., Takahashi, K., Bay, Y., Mitsuru, A., Igura, K., Satoh, H., Yamaguchi, S., Tani, K., Toko, A. and Takahashi, T.A. (2006) Successful immortalization of mesenchymal progenitor cells derived from human placenta and the differentiation abilities of immortalized cells. Biochemical and Biophysical Research Communication, 351, 853-859. doi:10.1016/j.bbrc.2006.10.125
[20] Portmann-Lanz, C.B., Schoeberlein, A., Huber, A., Sager, R., Malek, A., Holzgreve, W. and Surbek, D.V. (2006) Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. American Journal of Obstetrics and Gyne-cology, 194, 664-673. doi:10.1016/j.ajog.2006.01.101
[21] In’tAnker, P.S., Scherjon, S.A., Kleijburg-van der Keur, C., de Groot-Swings, G.M., Claas, F.H., Fibbe, W.E. and Kanhai, H.H. (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 22, 1338-1345. doi:10.1634/stemcells.2004-0058
[22] Bailo, M., Soncini, M., Vertua, E., Signoroni, P.B., Sanzone, S., Lombardi, G., Arienti, D., Calamani, F., Zatti, D., Paul, P., Albertini, A., Zorzi, F., Cavagnini, A., Candotti, F., Wengler, G.S. and Parolini, O. (2004) Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation, 78, 1439-1448.
[23] Corbel, C., Salaun, J., Belo-Diabangouaya, P. and Dieterlen-Lièvre, F. (2007) Hematopoietic potential of the prefusion allantois. Developmental Biology, 301, 478-488. doi:10.1016/j.ydbio.2006.08.069
[24] Zeigler, B.M., Sugiyama, D., Chen, M., Guo, Y., Downs, K.M. and Speck, N.A. (2006) The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development, 133, 4183- 4192. doi:10.1242/dev.02596
[25] Ellington, S.K.L. (1985) A mor-phological study of the development of the allantois of rat embryos in vivo. Journal of Anatomy, 142, 1-11.
[26] Downs, K.M., Gifford, S., Blahnik, M. and Gardner, R.L. (1998) The murine allantois undergoes vasculogenesis that is not accompanied by erythropoiesis. Development, 125, 4507-4521.
[27] Gekas, C., Dieterlen-Lievre, F., Orkin, S.H. and Mikkola, H.K.A. (2005) The placenta is a niche for hema-topoietic stem cells. Developmental Cell, 8, 365-375. doi: 10.1016/j.devcel.2004.12.016
[28] Suzuki, A. and Nakano, T. (2001) Development of hematopoietic cells from embryonic stem cells. International Journal of Hematology, 73, 1-5. doi: 10.1007/BF02981896
[29] Enders, A.C. and King, B.F. (1988) Formation and differentiation of extraembryonic meso-derm in the rhesus monkey. American Journal of Anatomy, 181, 327-340. doi:10.1002/aja.1001810402
[30] Miki, T., Lehmann, T., Cai, H., Stolz, D.B. and Strom, S.C. (2005) Stem cells characteristics of amniotic ephitelial cells. Stem Cells, 23, 1549-1559. doi:10.1634/stemcells.2004-0357
[31] Kim, J., Lee, Y., Hwang, K.J., Kwon, H.C., Kim, S.K., Cho, D.J., Kang, S.G. and You J. (2007) Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Proliferation, 40, 75-90. doi:10.1111/j.1365-2184.2007.00414.x
[32] Han, K., Lee, J.E., Kwon, S.J., Park, S.Y., Shim, S.H., Kim, H., Moon, J.H., Suh, C.S. and Lim, H.J. (2008) Human amnion-derived mesenchymal stem cells are a potential source for uterine stem cell therapy. Cell Proliferation, 4, 1709-1725. doi:10.1111/j.1365-2184.2008.00553.x
[33] Siegel, N., Rosner, M., Hanneder, M., Valli, A. and Hengstschl?ger M. (2007) Stem cells in amniotic fluid as new tools to study human genetic diseases. Stem Cell Reviews, 3, 256-264. doi: 10.1007/s12015-007-9003-z
[34] Kaviani, A., Perry, T.E., Dzakovic, A., Jennings, R.W., Ziegler, M.M., and Fauza, D.O. (2001) The amniotic fluid as a source of cells for fetal tissue engineering. Journal of Pediatric Surgery, 36, 1662-1665. doi:10.1053/jpsu.2001.27945
[35] Auerbach, R., Huang, H. and Lu, L. (1996) Hematopoietic stem cells in the mouse embryonic yolk sac. Stem Cells, 14, 269-280. doi:10.1002/stem.140269
[36] Medvinsky, A.L., Samoylina, N.L., Müller, A.M. and Dzierzak, E.A. (1993) An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature, 364, 64-67. doi:10.1038/364064a0
[37] Jafredo, T., Bollerot, K., Sugiyama, D.G. and Drevon, C. (2005) Tracing the hemangioblast during embryogenesis: developmental relationships between endothelial and hematopoietic cells. International Journal of Developmental Biology, 49, 269-277. doi: 10.1387/ijdb.041948tj
[38] Hyttel, P., Sinowatz, F. and Vejlsted, M. (2010) Essentials of domestic animal embryology. Saunders Elsevier, Toronto.
[39] Favaron, P.O., Carter, A.M., Mess, A.M., de Oliveira, M.F. and Miglino, M.A. (2012) An unusual feature of yolk sac placentation in Necromys lasiurus (Rodentia, Cricetidae, Sigmodontinae) Placenta, 33, 578-580. doi:10.1016/j.placenta.2012.02.011
[40] Jollie, W.P. (1990) Development, morphology, and function of the yolk-sac placenta of laboratory rodents. Teratology, 41, 361-381. doi:10.1002/tera.1420410403
[41] Palis, J. and Yoder, M.C. (2001) Yolk-sac hematopoiesis: The first blood cells of mouse and man. Experimental Hematology, 29, 927-936. doi:10.1016/S0301-472X(01)00669-5
[42] Mikkola, H.K.A., Gekas, C., Orkin, S.H. and Dieterlen- Lievre, F. (2005) Placenta as a site for hematopoietic stem cell development. Experimental Hematology, 33, 1048-1054. doi:10.1016/j.exphem.2005.06.011
[43] Kelemen, E. and Calvo W. (1979) Atlas of human hematopoietic development. Springer-Verlag, New York.
[44] Charbord, P., Tavian, M., Humeau, L. and Péault, B. (1996) Early ontogeny of the human marrow from long bones: An immunohistochemical study of hematopoiesis and its microenvironment. Blood, 87, 4109-4119.
[45] Wenceslau, C.V., Miglino, M.A., Martins, D.S., Ambrósio, C.E., Lizier, N.F., Pignatari, G.C. and Kerkis, I. (2011) Mesenchymal progenitor cells from canine fetal tissues: yolk sac, liver, and bone marrow. Tissue Engineering: Part A, 17, 2165-2176. doi:10.1089/ten.tea.2010.0678
[46] Wang, X.Y., Lan, Y., He, W.Y., Zhang, L., Yao, H.Y., Hou, C.M., Jong, Y., Liu, Y.L., Yang, G., Liu, X.D., Yang, X., Liu, B. and Mao, N. (2008) Identification of mesenchymal stem cells in aor-ta-gonad-mesonephros and yolk sac of human embryos. Blood, 111, 2436-2443. doi:10.1182/blood-2007-07-099333
[47] Kunisaki, S.M., Armant, M., Kao, G.S., Stevenson, K., Kim, H. and Fauza, D.O. (2007) Tissue engineering from human mesenchymal amniocytes: A prelude to clinical trials. Journal of Pediatric Surgery, 42, 974-980. doi: 10.1016/j.jpedsurg.2007.01.031
[48] Cipriani, S., Bonini, D., Marchina, E., Balgkouranidou, I., Caimi, L., Zucconi G.G. and Barlati, S. (2007) Mesenchymal cells from human amniotic fluid survive and migrate after transplantation into adult rat brain. Cell Biology International, 31, 845-850. doi:10.1016/j.cellbi.2007.01.037
[49] Fuchs, J.R., Kaviani, A., Oh, J.T., Lavan, D., Udagawa, T., Jennings, R.W., Wilson, J.M. and Fauza, D.O. (2004) Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. Journal of Pediatric Surgery, 39, 834-838. doi:10.1016/j.jpedsurg.2004.02.014
[50] Kunisaki, S.M., Chang, R.W., Andreoli, S., Lewicke, S., Pe?a-Peterson, S., Jennings, R.W. and Fauza, D.O. (2006) Hyperoncotic enhancement of fetal pulmonary growth after tracheal occlusion: An alveolar and capillary morphometric analysis. Journal of Pediatric Surgery, 41, 34-39. doi:10.1016/j.jpedsurg.2006.03.001
[51] Zeigler, B.M., Sugiyama, D., Chen, M., Guo, Y., Downs, K.M. and Speck, N.A. (2006) The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development, 133, 4183- 4192. doi:10.1242/dev.02596
[52] Diwan, S.B. and Stevens L.C. (1976) Development of teratomas from the ectoderm of mouse egg cylinders. Journal of National Cancer Institute, 57, 937-942. doi: 10.1093/jnci/57.4.937
[53] Enders, A.C. and King, B.F. (1988) Formation and differentiation of extraembryonic meso-derm in the rhesus monkey. American Journal of Anatomy, 181, 327-340. doi:10.1002/aja.1001810402

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.