Gene expression profiling in soybean under aluminum stress: genes differentially expressed between Al-tolerant and Al-sensitive genotypes
Dechassa Duressa, Khairy M. Soliman, Robert W. Taylor, Dongquan Chen
.
DOI: 10.4236/ajmb.2011.13016   PDF    HTML   XML   6,915 Downloads   16,520 Views   Citations

Abstract

It is well documented that aluminum (Al) toxicity is the most important constraint to crop production on acid soils and soybean is one of the most Al sensitive plant species. To advance our understanding of the molecular and genetic mechanisms of Al-tolerance in soybean we compared root tip (1 cm long) transcriptome profiles of an Al-tolerant (PI 416937) and Al-sensitive (Young) soybean genotypes using a combination of DNA microarrays and quantitative real-time PCR gene expression profiling technologies, in a time-course experiment (2, 12, 48, 72 h post Al treatment). We observed many genes differentially expressed between the two genotypes in constitutive and non-constitutive manner. The most likely candidate Al-tolerance genes expressed at high level include the previously reported transcription factors, auxin down regulated-like protein (ADR6-like) and, basic leucine zipper (bZIP 94), sulfur transmembrane transport protein and lipid transfer protein; and several novel genes that include rare cold inducible protein (RCI2B ), GPI-transamidase, malonyl-COA: Isoflavone 7-O-glucoside-6"-O-malontransferase, a cell proliferation protein (WPP2), oleosin protein, pectinestrease inhibitor, and impaired sucrose induction1; whereas genes negatively correlated with Al-tolerance, namely cellulose synthase and calcium transporters were down regulated in Al-tolerant PI 416937 compared to the Al-sensitive Young. The possible mechanisms of how these genes contribute to Al-tolerance trait are discussed. In conclusion, transcriptome profile comparisons of Al-tolerant and Al-sensitive soybean genotypes revealed novel putative Al-tolerance genes. These genes deserve further functional characterization for eventual utilization in developing soybean germplasm adapted to high aluminum soils.

Share and Cite:

Duressa, D. , Soliman, K. , Taylor, R. and Chen, D. (2011) Gene expression profiling in soybean under aluminum stress: genes differentially expressed between Al-tolerant and Al-sensitive genotypes. American Journal of Molecular Biology, 1, 156-173. doi: 10.4236/ajmb.2011.13016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kochian, L.V, Hoekenga, O.A. and Pi?eros, M.A. (2004) How do crop plants tolerate acid soils? Mechanism of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology, 55, 459-493. doi:10.1146/annurev.arplant.55.031903.141655
[2] Ma, J.F., Ryan, P.R. and Delhaize, E. (2001) Aluminum tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 6, 273-278. doi:10.1016/S1360-1385(01)01961-6
[3] Eticha, D., Sta?, A. and Horst, W.J. (2005) Localization of aluminum in the maize root apex: Canmorin detect cell wall-bound aluminum. Journal of Experimental Botany, 56, 1351-1357. doi:10.1093/jxb/eri136
[4] Hossain, Z.A.K., Koyama, H. and Hara, T. (2006) Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminum stress. Journal of Plant Physiology, 163, 39-47. doi:10.1016/j.jplph.2005.02.008
[5] Mortia, A.,Yanagisawa, O., Takatsu, S., Maeda, S. and Hiradate, S. (2008) Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinsensis (L) Kuntze). Phytochemistry, 69, 147-153. doi:10.1016/j.phytochem.2007.06.007
[6] Watanabe, T., Osaki, M., Yano, H. and Rao, I.M. (2006) Internal mechanisms of plant adaptation to aluminum toxicity and phosphorus starvation in three tropical forages. Journal of Plant Nutrition, 29, 1243-1255. doi:10.1080/01904160600767484
[7] Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S.J., Ryan, P.R., Delhaize, E. and Matsumoto, H.A. (2004) Wheat gene encoding aluminum activated malate transporter. The Plant Journal, 37, 645-653. doi:10.1111/j.1365-313X.2003.01991.x
[8] Magalhaes, J.V., Liu, J., Guimará, C.T., Lana, U.G.P, Alves, V.M.C., Wang, Y.H., Schaffert, R.E., Hoekenga, O.A., Pi?ehaff, M.A., klein, P.E., Carneiro, N.P., Coelho, C.M., Trick, H.N. and Kochian, L.V.(2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics, 39, 1156-1161. doi:10.1038/ng2074
[9] Silva, I.R., Smyth, T.J., Israel, D.W., Raper, C.D., Ruffy, T.W. (2001) Magnesium is more efficient than calcium in alleviating aluminum rhizotoxicity in soybean and its ameliorative effect is not explained by the gouy-chapman-stern model. Plant Cell Physiology, 42, 538-545. doi:10.1093/pcp/pce066
[10] Bianchi-Hall, C.M., Carter, T.E., Bailey, M.A., Mian, M.A.R., Ashley, D.A., Boerma, H,E., Arellano C, Hussey, R.S. and Parrott, W.A. (2000) Aluminum tolerance associated with quantitative trait loci derived from soybean PI 416937 in hydroponics. Crop Science, 40, 538-545. doi:10.2135/cropsci2000.402538x
[11] Nian, H., Yang, Z., Huang, H. and Yan, X. (2004) Citrate secretion induced by aluminum stress may not be a key mechanism responsible for differential aluminum tolerance of some soybean genotypes. Journal of Plant Nutrition, 27, 2047-2066. doi:10.1081/PLN-200030112
[12] Ermolayev, V., Weschke, W. and Manteuffel, R. (2003) Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. Journal of Experimental Botany, 54, 2745-2756. doi:10.1093/jxb/erg302
[13] Ragland, M. and Soliman, K.M. (1997) Two genes induced by Al in soybean roots. Plant Physiology, 114, 395.
[14] Guo, P., Bai, G., Carver, B., and Li, R. (2007) Transcrip-tional analysis between two wheat near-isogeniclines contrasting in aluminum tolerance under aluminum stress. Mol Genet Genomics, 277, 1-12. doi:10.1007/s00438-006-0169-x
[15] Hounde, M. and Diallo, A.O. (2008) Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines. BMC Genomics, 9, 400. doi:10.1186/1471-2164-9-400
[16] Maron, L.G., Kirst, M., Mao, C., Milner, M.J., Menossi, M. and Kochian L.V. (2008) Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytologist, 179, 116-128. doi:10.1111/j.1469-8137.2008.02440.x
[17] Chandran, D., Sharopova, N., Ivashuta, S., Gantt, J.S., VandenBosch, K.A. and Samac, D.A. (2008a) Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta, 228, 151-166. doi:10.1007/s00425-008-0726-0
[18] Chandran, D., Sharopov, N., VandenBosch, K.A., Garvin, D.V. and Samac, D.A. (2008b) Physiological and molecular characterization of aluminum resistance in Medicago truncatula. BMC Plant Biology, 8, 89. doi:10.1186/1471-2229-8-89
[19] Kumari, M., Taylor, G.J. and Deyholos, M.K. (2008) Transcriptome responses to aluminum stress in roots of Arabidopsis. Mol Genet Genomics, 279, 339-357. doi:10.1007/s00438-007-0316-z
[20] Furukawa, J., Yamaji, N., Wang, H., Mitan, N., Murata, Y., Sato, K., Katsuhara, M., Takeda, K. and Ma, J.F. (2007) An aluminum activated citrate transporter in barley. Plant cell Physiology, 48, 1081-1091. doi:10.1093/pcp/pcm091
[21] Wu, Z., Soliman, K.M., Bolton, J.J., Saha, S. and Jenkins, J.N. (2008) Identification of differentially expressed genes associated with cotton fiber development in a chromosomal substitution line (CS-B22sh). Funct Integr Genomics, 8, 165-174. doi:10.1007/s10142-007-0064-5
[22] Morey, J.S., Ryan, J.C. and Van Dolah, F.M. (2006) Microarray validation factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biology Proceeding online, 8, 175-193.
[23] Zhu, J., Shi, H., Lee, B.H., Damsz, B., Cheng, S., Stirm, V. and Zhu, J.K. (2004) An arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proceedings of the National Academy of Sciences of the United States of America, 101, 9873-9878. doi:10.1073/pnas.0403166101
[24] Udvardi, M.K., Kakar, K., Wandrey, M,, Montanari, O., Murray, J., Andriankaja, A., Zhang, J.Y., Benedito, V., Hofer, J.M.I., Chueng, F. and Town, C.D. (2007) Legume transcription factors: Global regulators of plant development and response to the environment. Plant Physiology, 144, 538-549. doi:10.1104/pp.107.098061
[25] Zhang, Y., Wang, Z., Zhang, L., Cao, Y., Huang, D. and Tang, K. (2006) Molecular cloningand stress-dependent regulation of potassium channel gene in Chinese cabbage (Brassica rapa asp. Pekinensis).Plant Physiology, 163, 968-978. doi:10.1016/j.jplph.2005.09.002
[26] Kader, J.C. (1997) Lipid transfer proteins: a puzzling family of plant proteins. Trends in Plant Science, 2, 66-70. doi:10.1016/S1360-1385(97)82565-4
[27] Nieuwald, J., Feron,.R., Huisman, B.A.H., Fasolino, A., Hilbers, C.W., Derksen, J. and Marian, C. (2009) Lipid transfer proteins enhance cell wall extension in tobacco. The Plant Cell 2005, 17, 2009-2019.
[28] Rengel, Z. and Zhang, W.H. (2003) Role of dynamics of intracellular calcium in aluminum toxicity syndrome. New Physiologist, 159, 295. doi:10.1046/j.1469-8137.2003.00821.x
[29] Williams, L.E., Lemoine, R. and Sauer, N. (2000) Sugar transporters in higher plants-a diversity of roles and complex regulation. Trends in Plant Science, 5, 283-290. doi:10.1016/S1360-1385(00)01681-2
[30] Yamamoto, Y., Kobayashi, Y., Devi, S.R., Rikiishi, S. and Matsumoto, H. (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiology, 128, 63-72. doi:10.1104/pp.010417
[31] Llorenta, F., Cobollo, R.M.L., Catalá, R., Zapater, J.M. and Salinas, J. (2002) A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. The Plant Journal, 32, 13-24. doi:10.1046/j.1365-313X.2002.01398.x
[32] Ezaki, B., Gardner, R.C., Ezaki, Y. and Matsumoto, H. (2000) Expression of aluminum-induced genes in transgenic arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiology, 127, 918-927. doi:10.1104/pp.010399
[33] Liu, Q., Yang, J.L., He, L.S., Li, Y.Y. and Zheng, S.J (2008) Effect of aluminum on cell wall, plasma 555 membrane, antioxidants and root elongation in triticale. Biologica Planttarum, 2, 87-92. doi:10.1007/s10535-008-0014-7
[34] Sarowar, S., Kim, Y.J., Kim, E.N., Kim, K.D., Hwang, B.K.H., Islam, R. and Shin, J.S. (2005) Over expression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to 559 heavy metal and pathogen stresses. Plant Cell Report, 24, 216-224. doi:10.1007/s00299-005-0928-x
[35] Zhen, Y., Qi, J.L., Wang, S.S., Su, J., Xu, G.H., Zhang, M.S. and Miao, L.V. (2007) Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiologia Plantrarum, 131, 542-554. HHHHHUUdoi:10.1111/j.1399-3054.2007.00979.xUU
[36] Rout, G.R. and Samantaray, S. (2001) Aluminum toxicity in plants: A review. Agronomie, 21, 3-21. doi:10.1051/agro:2001105
[37] Jemo, M., Abaidoo, R.C., Nolte, C. and Johannes, W. (2006) Aluminum resistance of cowpea as affected by phosphorus-deficiency stress. Journal of Plant Physiology, 164, 442-451. doi:10.1016/j.jplph.2005.12.010
[38] Yang, J.L., Zhang, L.Y., Zhang, Y.J., Wu, S.S., Wu, Y.R. and Zheng, P. (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiology, 146, 602-611. doi:10.1104/pp.107.111989
[39] Ohishi, K., Nagamune, K., Maeda, Y. and Kinoshita, T. (2003) Two subunits of GPI transamidase GPI8 and P- IG-T form a functionally important intermolecular disulfide bridge. Journal of Biochemistry, 16, 13959-13967.
[40] Rook, F., Corke, F., Baier, M., Holman, R., May, A.G. and Bevan, M.W. (2006) Impaired sucrose induction1 encodes a conserved plant-specific protein that couples carbohydrate availability to gene expression and plant growth. Plant Journal, 46, 1045-1058. doi:10.1111/j.1365-313X.2006.02765.x
[41] Chen, W., Xu, C., Zhao, E.B., Wang, E.X. and Wang, E.Y. (2008) Improved Al tolerance of saffron (Crocus sativus L.) by exogenous polyamines. Acta Physiology Plant, 30, 121-127. doi:10.1007/s11738-007-0100-z
[42] Wang, J.W. and Kao, C.H. (2006) Aluminum inhibited root growth of rice seedlings is mediated through putres-ciene accumulation. Plant Soil, 288, 373-381. doi:10.1007/s11104-006-9127-y
[43] Sepu, G., Jime,.I., Ben?, P.R., Porta, H. and Sosa, M.R. (2005) A red beet (Beta vulgaris) UDP-glucosyltran-ferase gene induced by wounding, bacterial infiltration and oxidative stress. Journal of Experimental Botany, 56, 605-611. doi:10.1093/jxb/eri036
[44] Sivaguru, M., Ezaki, B., He, Z.H.,Tong, H., Osawa, H., Baluska, F.,Volkmann, F. and Matsumoto, H. (2003) Aluminum induced gene expression and protein localization of a cell wall-associated receptor kinase in arabidopsis. Plant Physiology, 32, 2256-2266. doi:10.1104/pp.103.022129
[45] Patel, S., Rose, A., Meulia, T., Dixit, R., Richard, J.C. and Meiera, I. (2004) Arabidopsis WPP-domain proteins are developmentally associated with the nuclear envelope and promote cell division. The Plant Cell, 16, 3260-3273. doi:10.1105/tpc.104.026740
[46] Shimada, T. (2000) Oilseeds in arabidopsis thalina. The Plant Journal, 55, 798-809. doi:10.1111/j.1365-313X.2008.03553.x
[47] Silva, I.R., Smyth, T.J., Moxley, D.F., Carter, T.E., Allen, N.S. and Ruffy, T.W. (2000) Aluminum accumulation at the nuclei of cells in the root tip. fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiology, 23, 543-552. doi:10.1104/pp.123.2.543
[48] Wu, Z., Irizarry, A.R., Gentleman, R., Murillo, F.M. and Spencer, F. (2004) A model-based background adjustment for oligonucleotide expression arrays. Journal of the American Statistical Association, 99, 909. doi:10.1198/016214504000000683
[49] Pfaffi, M.W. (2001) A new mathematical model for rela-tive quantification in real time RT- PCR. Nucleic Acids Research, 29, 2002-2007.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.