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ABSTRACT. Glioma is the most aggressive type of brain tumor. Great 
progress has been achieved in glioma treatment, but the protein-protein 
interaction networks underlining glioma are poorly understood. We identified 
the protein-protein interaction network for glioma based on gene expression 
and predicted biological pathways underlying the molecular complexes in the 
network. Genes involved in glioma were selected from the Online Mendelian 
Inheritance in Man (OMIM) database. A literature search was performed using 
the Agilent Literature Search plugin, and Cytoscape was used to establish a 
protein-protein interaction network. The molecular complexes in the network 
were detected using the Clusterviz plugin, and pathway enrichment of 
molecular complexes was performed using DAVID online. There were 378 
glioma genes in the OMIM database. The protein-protein interaction network in 
glioma contained 1814 nodes, 6471 edges, and 8 molecular complexes. There 
were 17 pathways (false discovery rate <1), which were related to cytokine-
cytokine receptor interaction, Toll-like receptor signaling pathway, chemokine 
signaling pathway, oocyte meiosis, progesterone-mediated oocyte maturation, 
transmembrane transport of small molecules, metabolism of amino acids, and 
notch signaling pathway, among others. Our results provide a bioinformatic 
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foundation for further studies of the mechanisms of glioma.

Key words: Molecular complexes; Protein-protein interaction networks; 
Glioma; Pathways

INTRODUCTION

Gliomas, which are the most aggressive type of brain tumor, show high morbidity, a high 
recurrence rate, and high mortality. Glioma accounts for approximately 30% of brain and central nervous 
system tumors and 80% of malignant brain tumors (Goodenberger and Jenkins, 2012; Shao et al., 
2014). Survival of gliomas depends on the tumor type and malignancy grade (Constantin et al., 2012). 
According to World Health Organization standards, gliomas are classified into 4 malignant grades. Grade 
I-II gliomas can be treated with surgery and chemoradiotherapy, and are generally associated with a 
survival time of 5-10 years. The most lethal is grade IV glioblastoma, with a median survival of only 15 
months (Wen and Kesari, 2008) because of the inefficacy of surgery and chemoradiotherapy. In addition, 
over 50% of low-grade gliomas undergo malignant transformation into high-grade gliomas within 5-10 
years during recurrence (Dell’Albani, 2008). The prognosis of glioma, particularly high-grade (III-IV) 
glioma, is typically poor. Glioblastoma multiforme is the most predominant and most malignant form of 
glioma. Despite the high incidence of glioma, the etiology of this disease remains largely unknown.

Recently, the development of high-throughput experimental strategies has facilitated the study 
of characteristics underlying cancer progression. Several studies have investigated the gene expression 
signature in glioma patients (Ideker and Sharan, 2008; Zhao et al., 2008). Previous studies have mainly 
used regression or variance analysis to identify deregulated genes that may contribute to the glioma 
pathomechanism. However, these methods cannot address other array-specific factors, such as 
various background biological and environmental factors. Identifying the molecular characteristics of 
glioma patients may increase the understanding of the mechanism underlying glioma.

Because of the large number of targets involved in gliomas, the gene-protein network 
cannot be constructed using standard experiments. Numerous previous studies have examined 
gliomas, indicating that the gene-protein network can be constructed using a literature-mining 
method (Yang et al., 2009; Giacomelli and Covani, 2010). Construction through literature mining 
involves bioinformatics and computer science, among other fields, to sort and analyze existing 
data based on gene-protein interaction relationships to construct a regulation network of biological 
molecules in a cell. This method is important for identifying regulators and network-stable, therefore 
it has great application space (Strogatz, 2001; Pospisil et al., 2006).

To further examine glioma on the gene-protein network level, we used the human Mendel 
database to identify confirmed genes associated with gliomas, and then used Cytoscape application 
software to establish gliomas based on biological function gene-protein interaction networks. 
Subsequently, we determined topological properties and conducted modularity analysis of the 
network, and enriched the functional analysis and functional modules using DAVID software. We 
identified and analyzed key genes and signaling pathways in the network to predict the pathogenic 
site of the disease and the molecular mechanisms of gliomas.

MATERIAL AND METHODS

Data acquisition

On April 5, 2014 after searched ”glioma“ on the OMIM home page (http://www.ncbi.nlm.
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nih.gov/omim), gene information associated with gliomas was screened to remove duplicate genes 
(Amberger et al., 2009).

Construction of gene-protein interaction networks

Glioma-associated genes were searched in the Cytoscape 2.8.2 plug-in Agilent Literature 
Search 2.7.7 (USA Agilent Technologies, Santa Clara, CA, USA) and in Pubmed (Vailaya et al., 
2005). False-positive interaction information was removed from the results. Next, gene/protein 
interaction relationships were read in Cytoscape 2.8.2 and visualized (Shannon et al., 2003).

Network analysis

The MCOMD algorithm in Cytoscape 2.8.2 web analytics plug-in Clusterviz of 1.2 was 
used for correlation analysis to construct biological networks (Saito et al., 2012). By analyzing 
the network structure, proteins were grouped to form molecular compounds in the entire network 
and were viewed in Cytoscape based on the correlation integral value. The areas with integral 
values higher than 3 were regarded as molecular compounds. The gene/protein names contained 
in the molecular compounds were submitted to The Database for Annotation, Visualization, and 
Integrated Discovery (Huang et al., 2009). Using the Kyoko Encyclopedia of Genes and Genomes 
(KEGG) Database, biological pathways involved in glioma heredity were identified.

Main outcome measures

Protein networks were constructed based on glioma-related genes, nodes (proteins) and 
edges (interaction between), molecular complexes in the network and its associated interaction 
points, and nodes (protein) and the edges (interaction between) to analyze the biological pathways 
involved in the molecular complexes.

RESULTS

Glioma-related genes in OMIM

Through OMIM database retrieval, we identified 378 genes related to glioma, as shown 
in Table 1.

Protein interaction networks

The 378 glioma-related genes identified were constructed into a network diagram with 
1814 nodes (proteins) and 6471 edges. As shown in Figure 1, the triangles represent OMIM 
genetic disease-related proteins, while the diamonds represent proteins obtained from text mining.

Network topology attribute analysis

Network topology attribute analysis revealed that the connectivity of nodes in the network 
(the number of nodes in the network) had a descending distribution; as the edges connected to 
the node increased, the number of nodes decreased. Thus, the gene-protein interaction networks 
are scale-free networks (Burkard et al., 2010). We found that the degree of nodes in the network 
greater than or equal to 50 corresponded to a sharp reduction in the number of nodes (Figure 2). 
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Table 1. Glioma related genes in OMIM.

ID GENES ID GENES ID GENES ID GENES ID GENES

  1 ABCB1 77 CTLA4 153 HOXD9 229 MRC2 305 REV3L
  2 ABCC3 78 CTNNB1 154 IDH1 230 MSI1 306 RFX1
  3 ABCG2 79 CTNNBIP1 155 IDH2 231 MST1R 307 RICTOR
  4 ACSL5 80 CX3CR1 156 IDH3B 232 MTHFR 308 RTN4
  5 ADAM17 81 CXCR4 157 IGF1 233 MYB 309 S100A13
  6 ADAM22 82 CYP1B1 158 IGF1R 234 MYBL1 310 SCG5
  7 ADAM3A 83 CYR61 159 IKBKB 235 MYC 311 SEMA3G
  8 ADAM8 84 DKK1 160 IL10 236 NANOG 312 SERPINE1
  9 AHR 85 DLK1 161 IL16 237 NCOR1 313 SETD2
10 AJAP1 86 DLL4 162 IL24 238 NCOR2 314 SH3GL1
11 AKT1 87 DMBT1 163 INA 239 NDRG2 315 SH3GL3
12 AKT2 88 DNAJA3 164 ING1 240 NDRG4 316 SIRT2
13 ALCAM 89 DPP4 165 ING4 241 NDUFA13 317 SLC16A4
14 ALK 90 DVL2 166 ITGAV 242 NEDD4L 318 SLC22A17
15 ALOX12 91 EBAG9 167 JAK2 243 NEO1 319 SLC38A3
16 ALOX15 92 EFEMP1 168 KCNN4 244 NES 320 SLC3A2
17 ALOX5 93 EFNA1 169 KDM1A 245 NEWENTRY 321 SLC5A8
18 ANGPT2 94 EGF 170 KEAP1 246 NF1 322 SLC7A11
19 ANGPTL4 95 EGFR 171 KIAA1549 247 NFKB1 323 SLC7A5
20 APEX1 96 EMC10 172 KIF14 248 NGF 324 SLC9A3R1
21 APLN 97 EMP3 173 KIT 249 NGFR 325 SLIT2
22 APLNR 98 ENTPD1 174 KLF6 250 NKIRAS1 326 SMAD1
23 AQP1 99 EPHA2 175 KLF8 251 NME1 327 SNAI2
24 AQP4 100 ERCC1 176 KPNA2 252 NOTCH1 328 SOCS3
25 ASPM 101 ERCC2 177 L1CAM 253 NOTCH2 329 SOX10
26 ATG5 102 ERCC5 178 LAMC2 254 NR2E1 330 SOX2
27 ATM 103 ERCC6 179 LCN2 255 NRG1 331 SOX6
28 ATRX 104 ESM1 180 LETMD1 256 NRP2 332 SOX9
29 AURKA 105 F2 181 LGALS1 257 NT5E 333 SP1
30 AURKB 106 FAS 182 LGALS3 258 NUMBL 334 SP3
31 BCAN 107 FAT1 183 LGI1 259 OLIG2 335 SPDYA
32 BCL2 108 FBXW7 184 LIG4 260 OSM 336 SPP1
33 BDNF 109 FGF2 185 LMX1A 261 PAX6 337 SPRY2
34 BECN1 110 FOCAD 186 LNX1 262 PCDHGA11 338 STAT3
35 BIRC5 111 FOSL1 187 LOC652614 263 PCSK6 339 Symbol
36 BMI1 112 FRAT1 188 LRRC4 264 PDCD4 340 TAX1BP3
37 BMP2 113 FUBP1 189 LRRN2 265 PDCD5 341 TERF1
38 BMP4 114 GDF15 190 MAGED1 266 PDGFA 342 TERT
39 BMPR1B 115 GEMIN2 191 MAPK14 267 PDGFB 343 TET1
40 BNIP3 116 GFAP 192 MAPK3 268 PDGFRA 344 TET2
41 BNIP3L 117 GFI1 193 MARK4 269 PEBP1 345 TGFB1
42 BRAF 118 GOLPH3 194 MBD4 270 PER1 346 TGFB2
43 BSG 119 GPC1 195 MCTS1 271 PER2 347 THBS1
44 CADM1 120 GPNMB 196 MDK 272 PIN1 348 THY1
45 CASP3 121 GPR26 197 MDM2 273 PIWIL1 349 TIMD4
46 CCK 122 GPRASP1 198 MDM4 274 PKM 350 TIMP3
47 CCL20 123 GRIA1 199 MET 275 PLAUR 351 TK1
48 CCL3 124 GRIA2 200 MGMT 276 POLK 352 TKTL1
49 CCL7 125 GSK3B 201 MIF 277 POU5F1 353 TNC
50 CCND1 126 GSTM1 202 MIIP 278 PPM1D 354 TNFRSF10B
51 CCR6 127 GSTP1 203 MIR106B 279 PPME1 355 TNFRSF11A
52 CD24 128 GSTT1 204 MIR137 280 PRAF2 356 TNFSF10
53 CD274 129 GUCY1A3 205 MIR182 281 PRKAA2 357 TOP2A
54 CD40 130 H3F3A 206 MIR183 282 PROM1 358 TP53
55 CD44 131 HDAC1 207 MIR196A1 283 PROX1 359 TRAF1
56 CD74 132 HDAC2 208 MIR196B 284 PTBP2 360 TRAF2
57 CDC25A 133 HDAC3 209 MIR203A 285 PTEN 361 TRIM11
58 CDH1 134 HDGF 210 MIR20A 286 PTGER2 362 TRIM3
59 CDH11 135 HEXA 211 MIR21 287 PTGES 363 TWIST1
60 CDH2 136 HEXB 212 MIR218-1 288 PTGES2 364 VCAN
61 CDK1 137 HGF 213 MIR221 289 PTGES3 365 VEGFA
62 CDKN1B 138 HIF1A 214 MIR222 290 PTGS1 366 WDR11

Continued on next page
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Therefore, we regarded the nodes which connectivity is greater than or equal to 50 as key nodes 
(hub). Key nodes included akt1, tnfsf13, tp53, ephb2, pik3ca, mapk3, mapk14, il6, cdkn1a, vegfa, 
mapk8, stat3, egfr, myc, bcl2, cdkn2a, apc, ptgs2, pten, hcc, ccl2, and ervk2.

ID GENES ID GENES ID GENES ID GENES ID GENES

63 CDKN2A 139 HJURP 215 MIR27B 291 PTGS2 367 WNT1
64 CHEK2 140 HK2 216 MIR30A 292 PTK2 368 WNT2
65 CHI3L1 141 HLA-B 217 MIR335 293 PTP4A3 369 WNT5A
66 CHN2 142 HLA-C 218 MIR372 294 PVR 370 WRN
67 CIC 143 HLA-DQB1 219 MIR375 295 RAC2 371 WT1
68 CLCN3 144 HLA-DRB1 220 MIR383 296 RASL10A 372 WWTR1
69 CLIC1 145 HLA-DRB3 221 MIR410 297 RASSF10 373 XBP1
70 CNR1 146 HMG20B 222 MIR452 298 RB1 374 XRCC1
71 CNR2 147 HMGA1 223 MIR483 299 RBL2 375 XRCC3
72 CNTFR 148 HMGN5 224 MKI67 300 RBP1 376 XRCC4
73 COL18A1 149 HNRNPA1 225 MMP14 301 RBPJ 377 YY1
74 CRABP2 150 HNRNPA2B1 226 MMP2 302 RECQL 378 ZAR1
75 CSF2 151 HNRNPH1 227 MMP3 303 REG4  
76 CTGF 152 HOXA9 228 MMP9 304 RELA

Table 1. Glioma related genes in OMIM.

Figure 1. Network map of glioma protein interaction (overall + partial).

Detection of molecular complexes

Through MCOMD algorithm analysis, we identified 8 molecular complexes whose 
correlation integral values were higher than 3 (Figure 3).

Molecular complex pathway enrichment

The 8 names of protein molecule complexes were searched online to identify the relevant 
pathways (Table 2). Using hypergeometric distribution test software (DAVID) (Bader and Hogue, 
2003) (parameters: count = 2, EASE = 0.1, “species and background” choosing “Homo sapiens”), 
we conducted function analysis of modules contained in the 2 networks. According to the pathway 
annotations, we identified biological signaling pathways (Ashburner et al., 2000) corresponding to the 
modules and sorted false-discovery rate values of biological processes, considering a false-discovery 
rate ≤ 1 as a statistically significant difference in the biological process (Burkard et al., 2010).
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Figure 2. Connectivity degree of each node and betweenness (betweenness) comparison (horizontal axis represents 
betweenness, and the ordinate represents the connectivity degree. The graphic in the table represents each node in 
the network). The connectivity (number of nodes in the network) of nodes in the network obeys descending distribution, 
while the connectivity is greater than or equal to 50, and the number of nodes corresponds to a sharp decrease.

Figure 3. Molecular complexes obtained by MCOMD algorithm analysis. 
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DISCUSSION

Based on the 378 genes identified by OMIM, we constructed a glioma protein interaction 
network containing 1814 nodes (proteins) with 1830 edges (interaction). We next examined 
whether the network could describe the molecular regulation of glioma development. According to 
the existing literature, the anti-apoptotic protein B-cell lymphoma 2 (BCL2) has been implicated in 
the pathogenesis of glioma. BCL2A1 is a potential biomarker that influences preoperative seizure 
occurrence and postoperative seizure control in patients with low-grade gliomas (You et al., 2013; 
Li et al., 2014). TP53 is a pivotal gene frequently mutated in diffuse gliomas and particularly 
in astrocytic tumors (Takami et al., 2014); CCL2 was among the first identified in gliomas, and 
it is overexpressed in colon carcinomas. Its silencing inhibits colon cancer cell proliferation or 
increases the sensitivity to apoptotic stimuli of glioma cells, suggesting an oncogenic role (Carrillo-
de Sauvage et al., 2012). Increasing evidence suggests that interplay between the Wnt/β-catenin 
and phosphoinositide 3-kinase /AKT signaling cascades are involved in tumor development and 
progression. Chen found that the expression levels of AKT1 in glioma cells were significantly 
correlated with the transcriptional activity of β-catenin (Pan et al., 2012). Mori found that the 
adenomatous polypopsis coli mutations in brain tumors were associated with the pathogenesis 
of one feature of Turcot syndrome (Siesjö et al., 1996); Zadeh et al., (2007) found that CDKN2A-
deleted patients were younger than CDKN2A non-deleted patients in malignant gliomas in Iranian 
patients. Faulkner et al. found that neither epidermal growth factor receptor vIII (EGFRvIII) or 
EGFR were predictive of overall survival in their cohort; 49% of glioblastoma cases showed 
EGFR alterations, including 31% with EGFRvIII, and thus EGFR and EGFRvIII can be used 
as therapeutic biomarkers of glioblastoma (Cherry and Stella, 2014). The microenvironment of 
glioblastoma contains high levels of inflammatory cytokine interleukin 6, which contributes to tumor 
progression and invasion (Gurgis et al., 2014). Among the factors and pathways implicated in 
glioma development and growth, the kinases phosphoinositide 3-kinase and mitogen-activated 
protein kinase are among the most studied (Daniel et al., 2014). Annibali et al., (2014) found that 
Myc inhibition reduces proliferation, increases apoptosis, and, remarkably, elicits the formation of 
multinucleated cells that then arrest or die by mitotic catastrophe, revealing a new role for Myc in 
the proficient division of glioma cells. Some results confirmed that PIK3CA mutations occurred in a 
significant number of human glioblastomas, making it a promising target for therapy, particularly for 
primary glioblastomas (Weber et al., 2011; Derakhshandeh-Peykar et al., 2012). A meta-analysis 
by Xiao et al. (2012) provided direct and strong evidences that mutations in the PTEN gene were 
correlated with the poor prognosis of glioma patients (Han et al., 2014). The PTGS2, EGFR, and 
various types of EGFR ligands are highly expressed in human gliomas and other cancers and are 
involved in tumor progression (Dancey, 2004). In gliomas, STAT3 can play tumor-suppressive or 
oncogenic roles depending on the tumor genetic background of the patient, but the target genes 
are largely unknown (Kruczyk et al., 2014).

These are relational pathogenesis of glioma. We constructed a network that comprises 
these genes or proteins The network appeared to be reliable and can be used to describe the 
interactions between molecules related to glioma.

Because the network is very large, we used the MCOMD algorithm to evaluate the network’s 
regional integration using the correlation integral. The correlation integral describes proteins 
associated with the degree within the region. Proteins in the same molecular complexes generally 
have the same biological function, and thus unknown gene functions or new molecular functional 
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groups can be identified. Eight molecular complexes showed correlation integrals of greater than 
3. DAVID is not only extensive in gene annotation in different species, but also enriched with 
biological information for single genes. The protein molecule biological pathways of complexes 2, 
5, and 7 are not existent, which may have two explanations. First, although the relevance of these 
molecular complex correlation integrals was higher, a protein with similar biological functions could 
not be confirmed. Second, existing studies have not revealed the biological pathways involved. 
Molecular complexes 1, 3, 4, 6, and8 were found to be involved many biological pathways. Table 
2 shows its complexity, for which there was 1 biological pathway whose false-discovery rate < 1 in 
molecular complex 1, 9 pathways in molecular complex 3, 3 pathways in molecular complex 4, 2 
pathways in molecular complex 6, and 2 in molecular complex 8.

Molecular complex 3 was predicted to be related to the cytokine-cytokine receptor 
interaction, Toll-like receptor signaling pathway, chemokine signaling pathway, p53 pathway 
feedback loops 2, and endometrial cancer. A previous study indicated that chemokine and 
chemokine receptor expression by tumor cells contributed to tumor growth and angiogenesis and 
thus these factors may be tumor markers and have crucial impacts on therapeutic interventions 
(Razmkhah et al., 2014).

There is increasing evidence that cytokines play roles in these processes. Cytokines directly 
influence the progression of malignant glioma, promoting or suppressing tumor progression (Zhou 
et al., 2014). Thus, the cytokine-cytokine receptor interaction pathway (CCL1, CXCL1, CCL3, CCL2, 
CCL5, CCL4, and CXCL10) and chemokine signaling pathway (CCL1, CXCL1, CSF3, IL17A, CCL3, 
IL6, IL23A, CCL2, TNFRSF10D, CCL5, CCL4, and CXCL10) require further analysis.

In addition to the other molecular complexes, progesterone-mediated oocyte maturation 
is related to the pathogenesis of glioma (Hassanzadeh and Arbabi, 2012); high notch pathway 
activation predicts a response to γ secretase inhibitors in the proneural subtype of glioma tumor-
initiating cells (Saito et al., 2012). The genes involved in this signaling pathway may provide a basis 
for the molecular therapy to treat glioma. Glioma is not simply controlled by a particular gene or 
signaling pathway, but by a complex network system coordinately regulated and consisting of a 
variety of signaling pathways and multiple genes. In the signaling network, it is likely that there are 
some “key regulatory points”.

Our study extended the original method used for glioma analysis from a single factor 
to a systematic, overall point perspective by constructing a network. Our results may provide 
new drug development guidance for treating glioma on the gene-protein network level. We used 
Cytoscape 2.82 for data mining and module analysis based on the OMIM database, and a small 
number of genes were identified because a single source of data was used, and because of the 
software features. Our constructed gene-protein interaction network did not reflect the regulatory 
relationship between the genes and proteins, and thus, further analysis is required.
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