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ABSTRACT. The runt-related transcription factor 2 gene (RUNX2), 
which is also known as CBFA1, is a master regulatory gene in bone 
formation. Mutations in RUNX2 have been identified in cleidocranial 
dysplasia (CCD) patients. CCD is a rare autosomal dominant skeletal 
dysplasia that is characterized by delayed closure of cranial sutures, 
aplastic or hypoplastic clavicle formation, short stature, and dental 
anomalies, including malocclusion, supernumerary teeth, and delayed 
eruption of permanent teeth. In this study, we recruited three de novo 
CCD families and performed mutational analysis of the RUNX2 gene as 
a candidate gene approach. The mutational study revealed three disease-
causing mutations: a missense mutation (c.674G>A, p.Arg225Gln), 
a frameshift mutation (c.1119delC, p.Arg374Glyfs*), and a nonsense 
mutation (c.1171C>T, p.Arg391*). Clinical examination revealed 
a unique dental phenotype (no typical supernumerary teeth, but 
duplication of anterior teeth) in one patient. We believe that this finding 
will broaden the understanding of the mechanism of supernumerary 
teeth formation and CCD-related phenotypes.
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INTRODUCTION

Cleidocranial dysplasia (CCD; OMIM 119600) is a rare autosomal dominant dis-
ease, which is characterized by delayed closure of cranial sutures, aplastic or hypoplastic 
clavicle formation, short stature, and dental anomalies, including malocclusion, supernu-
merary teeth, and delayed eruption of permanent teeth (Mundlos, 1999). The penetrance 
is complete, but the expressivity is variable in terms of the stature and number of supernu-
merary teeth (Otto et al., 2002; Ryoo et al., 2010).

Heterozygous mutations in the runt-related transcription factor 2 gene (RUNX2), 
the master regulator of bone formation, causes CCD (Lee et al., 1997; Mundlos et al., 
1997). RUNX2 is also known as core binding factor A1 (CBFA1) and it is located on chro-
mosome 6p21 (Bae et al., 1993; Ducy et al., 1997). It is generally believed that the haplo-
insufficiency or loss of function of RUNX2 underlies the mechanism of CCD pathogenesis 
(Quack et al., 1999; Kim et al., 2006).

In this study, we recruited three de novo CCD families and screened for RUNX2 as 
a candidate gene approach. Mutational analysis revealed three mutations in RUNX2 and the 
clinical characteristics related to supernumerary teeth were analyzed.

MATERIAL AND METHODS

Identification and enrollment of human subjects

This study was independently reviewed and approved by the Institutional Review 
Board at the University of Istanbul and the Seoul National University Dental Hospital. Experi-
ments were undertaken with the understanding and written consent of each subject according 
to the Declaration of Helsinki.

Polymerase chain reaction (PCR) and sequencing

Genomic DNA was isolated from peripheral whole blood using the QuickGene 
DNA whole blood kit S with QuickGene-Mini80 equipment (Fujifilm, Tokyo, Japan). DNA 
purity and concentration was quantitated by spectrophotometry, as measured by the OD260/
OD280 ratio. Mutational analysis was performed for the exons and exon-intron sequences 
of RUNX2, according to a previous report (Zhang et al., 2000a) using the HiPi DNA poly-
merase premix (ElpisBio, Taejeon, Korea). PCR products were purified using a PCR Pu-
rification Kit (ElpisBio). DNA sequencing was performed at the DNA sequencing center 
(Macrogen, Seoul, Korea). The reference sequence used for mutation numbering was the 
longest transcript (NM_001024630.3) of RUNX2 with the second ATG start codon (starting 
MASNS).

RESULTS

Patient 1

Mutational analysis of RUNX2 revealed a single nucleotide change (c.674G>A) 
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(Quack et al., 1999; Otto et al., 2002). This nucleotide change resulted in a missense muta-
tion (p.Arg225Gln) in the runt domain of the RUNX2 protein (see Figure 1A). The pro-
band was a 17-year-old boy with mixed dentition (see Figure 1B and C). Radiographic 
examination showed bilateral hypoplastic clavicles and maxillary hypoplasia (see Figure 
1D and E). Deciduous teeth were retained and eruption failure of permanent dentition and 
supernumerary teeth were noted.

Figure 1. Mutational analysis, clinical photo, and radiologic examination of Patient 1. A. Mutational analysis 
reveals a single nucleotide change (c.674G>A, p.Arg225Gln). B. Frontal clinical photo. Anterior deciduous 
dentition is retained. C. Panoramic radiograph shows retention of eruption failure of permanent dentition and 
supernumerary teeth. D. Maxilla is hypoplastic. E. Both clavicles are hypoplastic.

Patient 2

Mutational analysis revealed a single nucleotide deletion mutation (c.1119delC) in 
the proband (Lin et al., 2011) (see Figure 2A). This mutation was located in the last exon, 
which indicates that it would escape nonsense-mediated mRNA decay. The predicted protein 
(p.Arg374Glyfs*) lacked the C-terminus domain of the normal RUNX2 protein. The pro-
band was a 12-year-old boy with an anterior crossbite (see Figure 2B). Both clavicles were 
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severely hypoplastic and supernumerary teeth were impacted in the jawbones (see Figure 2C, 
D, and E).

Figure 2. Mutational analysis, clinical photo, and radiologic examination of Patient 2. A. Mutational analysis reveals 
a single nucleotide deletion (c.1119delC, p.Arg374Glyfs*). B. Frontal clinical photo shows anterior crossbite. C. 
Panoramic radiograph shows retention of eruption failure of permanent dentition and supernumerary teeth. D. 
Paranasal sinuses are hypoplastic, but maxilla is not hypoplastic. E. Both clavicles are severely hypoplastic.

Patient 3

Mutational analysis revealed a single nucleotide change (c.1171C>T) in the pro-
band (Zhang et al., 2000b) (see Figure 3A). Because this mutation was also located in the 
last exon, the predicted protein (p.Arg391*) lacked the C-terminus domain of the normal 
RUNX2 protein. The proband was an 8-year-old girl without maxillary hypoplasia (see Fig-
ure 3B). Eruption of permanent teeth was delayed; however, typical supernumerary teeth 
were not evident (see Figure 3C and D). Instead, she had an additional left maxillary de-
ciduous central incisor and a right mandibular deciduous central incisor. Additionally, the 
right mandibular central incisor was duplicated (see Figure 3B and C). The chest radiograph 
revealed complete absence of both clavicles (see Figure 3E).
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DISCUSSION

The RUNX2 gene has two distally located promoters, resulting in two major mRNA 
transcripts (Li and Xiao, 2007). The short transcript (NM_004348.3) was first cloned and 
controlled by the downstream promoter (Bae et al., 1993; Ogawa et al., 2003). This iso-
form (isoform c) encodes a 507-amino acid protein and starts its N-terminus with MRIPV 
(NP_004339.3). Subsequently, the upstream promoter was identified to control the expression 
of the following two transcripts. The first, the longest transcript (NM_001024630.3) encod-
ing a 521-amino acid protein (NP_001019801.3), is the major product, and is a bone-specific 
isoform (isoform a) (Ducy et al., 1997; Stewart et al., 1997; Thirunavukkarasu et al., 1998). 

Figure 3. Mutational analysis, clinical photo, and radiologic examination of Patient 3. A. Mutational analysis reveals 
a single nucleotide deletion (c.1171C>T, p.Arg391*). B. Frontal clinical photo shows duplicated deciduous incisors 
(black arrows). C. Panoramic radiograph shows no typical supernumerary teeth, but duplicated mandibular left 
permanent incisor. D. Paranasal sinuses are hypoplastic, but maxilla is not hypoplastic. E. Both clavicles are aplastic.
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The other transcript (NM_001015051.3) has an in-frame exon deletion in the coding region 
and encodes a 499-amino acid protein (NP_001015051.3, isoform b) (Geoffroy et al., 1998). 
The N-terminus of both isoforms, a and b, begins with MASNS.

All RUNX2 isoforms have common conserved domains. The Q/A domain is located 
in the N-terminus part of the protein and is composed of a polyglutamine stretch (23 amino 
acids) and a polyalanine stretch (17 amino acids). The length of these stretches is known to 
be important for the transcriptional activity of the RUNX2 protein (Mundlos et al., 1997; 
Thirunavukkarasu et al., 1998). The runt domain is a 128-amino acid motif, which interacts 
with CBFβ and binds to DNA sequences. This motif, originally identified in the Drosophila 
runt protein, is highly conserved in orthologous or paralogous proteins in humans or other ver-
tebrates (Ahn et al., 1996; Eggers et al., 2002). The nuclear localization domain is located at 
the C-terminal end of the runt domain, and is important for the nuclear transport of this protein 
(Kanno et al., 1998). The C-terminal half of the RUNX2 protein is a proline-serine-threonine 
(PST)-rich domain, and the nuclear matrix targeting sequence (NMTS) locates in the middle 
of the PST domain (Zhang et al., 2000a; Lo Muzio et al., 2007). The NMTS domain deter-
mines the subnuclear localization of the RUNX2 protein and also has binding affinity with 
other proteins (Smads, p300, and histone deacetylase) (Zaidi et al., 2001; Afzal et al., 2005). 
The last five amino acids of the C-terminal end comprise the VWRPY motif with which TLE2 
(a mammalian homolog of Drosophila groucho) interacts to inhibit RUNX2 transcriptional 
activity (Aronson et al., 1997; Levanon et al., 1998).

In this study, we identified three mutations causing CCD. A missense mutation 
(c.674G>A, p.Arg225Gln) located in the runt domain is one of the mutational hotspots in 
RUNX2 (four arginine residues with CpG methylation) (Yoshida et al., 2002). The mutated 
protein was shown to bind to CBFb, but not to DNA (Yoshida et al., 2002). The other two 
mutations observed were a frameshift mutation (c.1119delC, p.Arg374Glyfs*) and a nonsense 
mutation (c.1171C>T, p.Arg391*). The nonsense-mediated decay system (NMDS) can detect 
the presence of premature stop codons in the mRNA transcript and initiates degradation of the 
mRNA (Maquat, 2002; Moore, 2002). However, stop codons located in the last exon do not 
initiate NMDS and survive to be translated as a short, truncated protein (Wagner and Lykke-
Andersen, 2002). Therefore, these two truncating mutations will lack half of the PST domain, 
including the NMTS and VWRPY domains.

Mutational studies have shown RUNX2 mutations in approximately half of the CCD 
patients examined. Furthermore, heterozygous deletion and duplication of RUNX2 genes were 
recently identified in CCD patients (Ott et al., 2010), and a large duplication downstream of 
RUNX2 was also reported (Hansen et al., 2011), suggesting disruption of a possible regulatory 
site of RUNX2.

It has been suggested that mutations affecting the runt domain are associated with 
severe dental problems, such as multiple eruption failure and supernumerary teeth, while mu-
tations outside of the runt domain show mild dental phenotypes (Bufalino et al., 2012). How-
ever, the genotype-phenotype correlation is weak, especially in terms of dental development 
alterations (Suda et al., 2007; Ryoo et al., 2010). Variable expressivity has been reported be-
tween families, and even among members of the same family (Zhang et al., 2010). Recently, 
RUNX2 haploinsufficiency resulting in excessive unbound Twist1, which enhances fibroblast 
growth factor signaling, has been reported as a molecular mechanism of supernumerary teeth 
formation in CCD patients (Lu et al., 2012). However, wide variation in the dental phenotype 
of CCD patients suggests that genetic modifiers and interacting partners await discovery.
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In summary, we recruited three de novo CCD families and identified disease-causing 
mutations in RUNX2. Clinical examination revealed a unique dental phenotype in one pa-
tient, which has not been reported previously. We believe that this finding will broaden our 
understanding of the mechanism of supernumerary teeth formation and CCD-related pheno-
types. Future studies on the molecular mechanism of supernumerary teeth formation related to 
RUNX2 mutations may provide better insight into dental development.
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