
International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 18, March 2015

39

Identification and Illustration of Insecure Direct Object

References and their Countermeasures

Ajay Kumar Shrestha
Department of Computer and

Electronics Engineering
Kantipur Engineering College
Tribhuvan University, Nepal

Pradip Singh Maharjan
Department of Computer and

Electronics Engineering
Kantipur Engineering College
Tribhuvan University, Nepal

Santosh Paudel
Department of Computer and

Electronics Engineering
Kantipur Engineering College
Tribhuvan University, Nepal

ABSTRACT

The insecure direct object reference simply represents the

flaws in the system design without the full protection

mechanism for the sensitive system resources or data. It

basically occurs when the web application developer provides

direct access to objects in accordance with the user input. So

any attacker can exploit this web vulnerability and gain access

to privileged information by bypassing the authorization. The

main aim of this paper is to demonstrate the real effect and the

identification of the insecure direct object references and then

to provide the feasible preventive solutions such that the web

applications do not allow direct object references to be

manipulated by attackers. The experiment of the insecure

direct object referencing is carried out using the insecure

J2EE web application called WebGoat and its security testing

is being performed using another JAVA based tool called

BURP SUITE. The experimental result shows that the access

control check for gaining access to privileged information is a

very simple problem but at the same time its correct

implementation is a tricky task. The paper finally presents

some ways to overcome this web vulnerability.

General Terms

Web Vulnerability; Authorization

Keywords

IDOR; Web Application; Authorization; Access control; Web

exploit

1. INTRODUCTION
OWASP is the Open source Web Application Project which is

the result of the survey work from a web application security

team which comes up with most critical top ten web

application security issues [1]. OWASP group maintains

different kinds of security projects including documentation

of the top ten web vulnerabilities, teaching tools such as

WebGoat, proxies such as web scarab, secure development

library such as OWASP Enterprise Security API (ESAPI) etc.

In fact, the top ten web application vulnerabilities in the list

are the very simple, well-known but dangerous and commonly

exploited ones. It is usually considered that the attackers are

very well equipped with security knowledge than the web

developers. Therefore it is very important that the web

developers should develop strong security knowledge on both

education and using the tools. OWASP is the best site where

the educational materials regarding the web application

security can be obtained. And the OWASP ESAPI is the best

tool which provides abundance APIs to prevent the new class

of web exploits and vulnerabilities to some extent.

This paper presents one of the top ten web application

vulnerabilities in terms of the challenges and the procedures

to deal with it. The “Insecure Direct Object Reference

(IDOR)”, was listed as the fourth web vulnerability in the list

for year 2013 [1].

The paper demonstrates the vulnerability of the IDOR via

tools namely WebGoat and BURP SUITE. After the

verification of the vulnerabilities, the real effect and the

identification of the insecure direct object references are

presented. Finally, it provides the feasible preventive

solutions so as to make that the web applications free from

direct object references which will be harder for attackers to

manipulate.

2. BACKGROUND

2.1 Overview
Basically a direct object reference occurs when a developer

exposes a reference to an internal implementation object, such

as a file, directory, or database key, as a URL or form

parameter. Without an access control check or other

protection, attackers can manipulate these references to access

unauthorized data [2]. So the insecure direct object reference

simply represents the lacking of the authentication level

checks resulting in the incorrect level of administrative access

to the system data. This happens when the developers expose

data objects via a web application with assumption that the

users will always follow the application rules. The insecure

direct object reference can be overviewed via the Table 1.

Let‟s take a case to understand the basic ideas about the

insecure direct object reference. Suppose an organization

provides financial data report via website to its users who are

only authorized to see their own personal financial data report.

The web page is designed with the assumption that no user

will see other users‟ or organization‟s data. For this, it simply

uses a report ID which is available in webpage URL (e.g.

/accounts/viewDetail?id=0010) or in some hidden field. In

this scenario, since report ID is obviously predictable, anyone

can change the value of ID and resubmit the request in order

to get the data of other users as well (like altering the content

as /accounts/viewDetail?id=0012).

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 18, March 2015

40

The report ID in this case is the direct reference to the object

which is the record in the database table. This is the insecurity

due to very basic of the direct object referencing when no

protection mechanism is incorporated in the system. This is

also termed Directory Traversal.

Basically the Directory Traversal and Open Redirects are the

two classic examples of IDOR web vulnerabilities. For the

Directory Traversal, usually a web application that allows a

file to be rendered to a user is stored on the local machine. If

no verification is done by the application about accessing a

whichever file, an attacker can request other files on the file

system and those will also be displayed. For instance, if the

attacker notices the URL:

http://misc-security.com/file.jsp?file=report.txt

The attacker could modify the file parameter using a directory

traversal attack by modifying the URL to:

http://misc-security.com/file.jsp?file=**../../../etc/shadow**

This causes the file.jsp to return and render /etc/shadow file

thereby demonstrates the page is susceptible to a directory

traversal attack. However, in the Open Redirects flaws, the

web application with a parameter can allow the website to

redirect the user somewhere else. If there is no proper

implementation of parameter through a white list, attackers

can use this in a phishing attack to lure potential victims to a

chosen site.

2.2 Literature Review
With the insecure direct object references, all of the exposed

web application frameworks are vulnerable to some sort of

attacks [3]. Many of the poorly designed applications reveal

the internal object references to the users. The references

basically point to the file systems and databases. An attacker

can use the tampering process to change the references and

exploit the access control mechanism. Just take an example, if

the code allows user input to specify paths or filename, any

attacker may then jump out of the directory of that application

and can access the other resources. The code as shown below

can be attacked using a null byte injection via a string like

“../../../etc/passwd%00”. The primary objective of this attack

is to access any resources on the file system of the web server

[3].

<select name="language"><option value="fr">Français

</option></select>

…

require_once ($_REQUEST['language‟]."lang.php");

N. Antunes et al. mentioned in their paper about the SQL

injection and cross-site scripting (XSS) vulnerabilities as the

two most common risks in the Web application [4]. SQL

injection basically enables the attackers to alter SQL queries

sent to a database. XSS vulnerability on the other hand exists

when an application sends user-supplied data to a Web

browser without first validating or encoding that content.

These web vulnerabilities allow attacker to access the critical

data and resources.

Similarly, R. Eran et. al presented a method for detecting

security vulnerabilities in a web application [5]. Their paper

included an analysis of the client requests and server

responses so as to discover pre-defined elements of the

application's interface with external clients and the attributes

of those elements. The client requests were then mutated as

per the pre-defined set of mutation rules and then the unique

exploits were generated. Overall, they used the exploits to

attack the web application and the results of the attack were

evaluated for anomalous application activity.

L. Shar et al. in their paper had proposed the use of a set of

hybrid of the static and dynamic code attributes which

characterize input validation and input sanitization code

patterns [6]. They are in fact expected to be the most

important indicators of web application vulnerabilities. And

most importantly, both techniques can be used to extract the

proposed attributes in an accurate and scalable way since the

static and dynamic program analyses complement each other.

A paper [7] by N. ElBachir El Moussaid et al. provided a

survey of web application attacks and vulnerabilities. To

improve the web application security, they proposed a method

using intrusion detection system (IDS) and scanners based on

machine learning and artificial intelligence. They emphasized

Table 1. Table captions should be placed above the table

Threat

Agents

Attack

Vectors

Security

Weakness

Technical

Impacts

Business

Impacts

___________ Exploitability

EASY

Prevalence

COMMON

Detectability

EASY

Detectability

EASY

Consider the

types of users of

your system. Do

any users have

only partial

access to certain

types of system

data?

Attacker, who is an

authorized system user,

simply changes a

parameter value that

directly refers to a

system object to another

object the user isn‟t

authorized for. Is access

granted?

Applications frequently use the actual

name or key of an object when

generating web pages. Applications

don‟t always verify user is authorized

for the target object. This result in an

insecure direct object reference flaw.

Testers can easily manipulate

parameter values to detect such flaws

and code analysis quickly shows

whether authorization is properly

verified.

Such flaws can

compromise all the

data that can be

referenced by the

parameter. Unless

the name space is

sparse, it‟s easy for

an attacker to access

all available data of

that type.

Consider the

business value of

the exposed data.

Also consider the

business impact

of public

exposure of the

vulnerability.

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 18, March 2015

41

an idea “when it comes to vulnerability; it is also an attack

which exploits this vulnerability”, so they presented web IDS

which was based on detection of web vulnerabilities. They

used HTTP simulations in a network and the corresponding

responses of HTTP requests after sending them to a bunch of

websites and applications in order to get experimental results

which they used to test the efficiency of their IDS.

C. Yang et al. in their paper [8] had presented a work to

provide the ability of web attack detection for IDS namely

Snort, by implementing the web attack detection engine using

the Core Rule Sets of an open source Web Application

Firewall “ModSecurity”. They modify the Snort IDS to load

Core Rule to detect web attack behaviors viz. Insecure Direct

Object References.

Furthermore, M. Jensen et al. performed exemplary attacks on

widespread Web Service implementations as a proof of the

practical relevance of the threats via a survey of

vulnerabilities in the context of Web Services [9]. In addition

to that, they also discussed a general countermeasure for the

possible prevention and mitigation of such attacks.

However, our paper apparently demonstrates the identification

and illustration of the typical web vulnerability which is an

insecure direct object references and then it provides the

feasible countermeasures such that the web applications will

not allow direct object references to be manipulated by

attackers. The experiment of the insecure direct object

referencing and its corresponding security testing was

performed using the JAVA based tools.

3. PROCEDURES AND RESULTS
The practical work was carried out using WebGoat and BURP

SUITE together to verify the vulnerability with the insecure

direct object reference. WebGoat is the deliberately insecure

J2EE web application designed to teach web application

security concepts. It has built-in tools that can be used to test

the experiment for the Insecure DOR. BURP SUITE is also a

Java based application used for performing security testing of

web applications.

3.1 Verifying the Vulnerability
BURP SUITE was first configured by going into the

connection setting and then the HTTP Proxy was manually set

as the local IP address of the machine, which was 127.0.0.1

and also Port value was set to 8080. Then Intercept tab was

pressed to see its status. It was at ON state (by default). It is

better to change the state to OFF mode at first. Then the task

of breaking the access control mechanism was performed in

order to access the resource, which was not in the listed

directory of the WebGoat.

As a guide, WebGoat said that one xml file

“Tomcat/conf/tomcat-users.xml” could be the possible

options. But it is just the guess that could work here if there

was not any access control check in the web application. In

fact, the user of the WebGoat has the access to all the listed

files in the lesson_palns/English directory as shown in Figure

1. In our case, the file named “NewLesson.html” was chosen

to see the result. The “NewLesson.html” file was selected and

then the “View File” tab was pressed. The result obtained was

shown in Figure 2. It was a comment in the red showing the

hint about the location of the chosen file, which was:

/owaspbwa/owaspbwa-

svn/var/lib/tomcat6/webapps/WebGoat/lesson_plans/English/

NewLesson.html

This apparently shows that the file has the ninth directory

beforehand.

Current Directory is:

/var/lib/tomcat6/webapps/WebGoat/lesson_plans/English

Choose the file to view:

OffByone.html

MultiLevelLogin2.html

NewLesson.html

MultiLvelLogin1.html

WSDLScanning.html

ForgotPassword.html

WeakAuthenticationCookie.html

JSONInjection.html

WelcomeScreen.html

JSONInjection.html

DBSQLInjection.html

…

Figure 1: WebGoat Access field

*File is already in allowed directoy – try again!

*==> /owaspbwa/owaspbwa-svn/var/lib/tomcat6/webapps

 /WebGoat/lesson_plans/English/NewLesson.html

Current Directory is: /var/lib/tomcat6/webapps/WebGoat/lesson_plans/Englsih

Figure 2: Result on WebGoat page

Then some intercepting attempt was carried out. The intercept

tab of BURP SUITE was turned on and again the same

process of viewing the NewLesson.html file was carried out.

The BURP SUITE was opened to see the result as shown in

Figure 3. The File field had the value “NewLession.html”.

Now one can just guess and try to add some other directory

level at the File field to see the possible error options (not

sure) that may be helpful to achieve the target. As shown in

Figure 4, the “../” was added randomly to see the page for one

directory beforehand and forward the intercept to get the

result.

Figure 3: Result page in BURP SUITE

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 18, March 2015

42

 Figure 4: Result page in BURP SUITE

Solution Videos Restart this Lesson

The „webgoat‟ user has access to all the files in the

lesson_plans/English directory. Try to break the access control

mechanism and access a resource that is not in the listed directory.
After selecting a file to view, WebGoat will report if access to the file

was granted. An interesting file to try and obtain might be a file like

tomcat/conf/tomcat-users.xml. Remember that file paths will be
different if using the WebGoat source.

*Access to file/directory “/owaspbwa/owaspbwa-svn/var/lib

/tomcat6/webapps/WebGoat/lesson_plans” denied

Figure 5: Result of the WebGoat page

It was a good guess as it displayed the access denied error

message for the previous directory “lesson_plans” as shown

in the Figure 5, which means that it was the eight directories

at that point and with the one directory afterward, we got that

we were in the ninth directory level. And since the page was

accessed, it showed that there was nothing like access control

check in that web app.

So, again another guess was made to get the file “tomcat-

users.xml”. For this, BURP SUITE was opened again and

nine directories were added before etc/tomcat6/ which is the

default address for the tomcat-users.xml [10] and it was

forwarded as shown in the Figure 6.

Figure 6: Result page in BURP SUITE

Figure 7: tomcat-users.xml file

The attempt was successful. The tomcat-users.xml file was

then chosen to see its contents which are shown in Figure 7. It

proved that in the absence of the access control check, the

content which is supposed to be not available to any user, can

actually be achieved without authorization by manipulating

the direct object references.

3.2 Identifying and Preventing

Vulnerability
Current vulnerability prediction techniques rely on the

availability of data labelled with vulnerability information for

training. For many real world applications, past vulnerability

data is often not available or at least not complete. The usual

approaches to verify the security are the automated and the

manual approaches. The automated approach with the use of

vulnerability scanning tools have difficulty in identifying

which parameters should be given an access control check

before being implemented and to exploit this vulnerability, it

is not enough to only identify the flawed interface but it is

also necessary to predict the pattern in order to identify a

secure object like Filename etc. Thus identifying this

vulnerability is slightly more difficult than other

vulnerabilities by using the automation tools. But the manual

approach involves the code review process that can identify

the critical parameters and then verify that the object is not

directly accessible based on predictable factors like User Id,

Customer Id, Email Id , Predictable File names or obvious

object names like Financial Reports named with organization

or client name. But these are all time consuming approaches.

So in order to prevent Insecure Direct Object References, it is

very essential to minimize user ability to predict object

IDs/Names by using the hard-to-guess numbers. It is always

better not to expose the actual ID/name of objects assuming

that attackers will find all sensitive pages and folders. And

most importantly make the user authenticate each time when

sensitive objects/files/contents are accessed. For example, an

attacker can retrieve some contents from Database for a

particular customer using the query as shown below [3]:

SELECT * FROM FinancialReports WHERE CustomerID=

”123″

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 18, March 2015

43

If the user can manipulate the CustomerID from end user

interface then she may pass a different ID to access reports of

other customers. Developer may easily add validation in SQL

by checking the user authorization as shown below:

SELECT * FROM FinancialReports INNER JOIN

ReportAccessControlbyOrg On

ReportAccessControlbyOrg.OrgId = FinancialReports.OrgId

WHERE CustomerID=”123″ AND

ReportAccessControlbyOrg.OrgId=“loggedInUser_OrgId”

However if contents are stored outside the Database e.g. File

System, then developer may also require to ensure that other

methods of file retrieval are also protected since the user may

get access to the objects by FTP, Path Traversal

vulnerabilities, direct HTTP requests.

Another option is to use an Indirect Reference Map so that

developer can create an alternative ID for server side object

such as GUID (Globally Unique Identifier) what can be

exposed to the outsiders in a safe way because of its

complexity. For implementing the indirect reference, the

original easy to guess IDs are mapped to GUID, lookup is

stored in a dictionary and the dictionary is stored in a session

variable. This basically ensures that the mapping is available

in the current session and only for the current user. This will

not expose the exact ID of the object to the end user.

There is also an open source mapping interface called

“AccessReferenceMap” class in OWASP ESAPI. The object

of this class is used to create and store the dictionary in the

session, and enables us to add or delete the items from the

dictionary, and to translate the IDs into the GUID and vice-

versa. Since the object ID may be anything like file name or

an internal user ID, Indirect Reference Map always maintains

a non-sequential & random identifier for a server side

resource. Therefore the end user may only see the alternate ID

(GUIDs) but not the actual object‟s ID. This sort of mapping

can either be stored temporarily in server cache or

permanently in a mapping table. What basically happens in

this approach is that when the user tries to retrieve the

information from the IDs, the HTTP Post, for example in the

AJAX call, contains the alternate ID (indirect reference

GUID), which is mapped to the ID value before retrieving any

data and return it to the caller. If the call was an attack then

the service might not be able to access the mapped value from

the AccessReferenceMap. Thus the genuine calls and the

attacks can be distinguished.

4. CONCLUSION
It is clear that the attackers can exploit the web vulnerability

on insecure direct object reference by simply requesting the

content after manipulating the object reference. The insecure

direct object reference occurs in web pages when the

application uses the actual name or the key of an object and

the application doesn‟t authenticate the user for the target

object. So the attackers may try a portion of the parameters

such as URI and manipulate it to detect the flaws and then

observe the results. They can also play with the http request

itself that includes the cookies, forms fields including hidden

fields.

It is also seen that the common implementation areas where

the objects may be exposed are URL & Links, Hidden

Variables, Drop down List box, Unprotected View State

(ASP.NET), JavaScript Array and client side objects like Java

Applets.

By using an alternate or a random object ID, the developer

can just minimize the ability of user to predict resource

identifiers. This will certainly reduce capability of any end

user to attack but it will not completely avoid the attack. If the

attackers may get knowledge of the alternative object ID

(such as IDs from browser history on a shared computer) then

they can send resource request in legitimate manner to attempt

an exploit. So it is very important to check and confirm the

authenticity of user while requesting the resources. It is

usually easier to implement such scenarios with database

based validations than with an application code.

And for the system implementing the AccessReferenceMap,

even if the attackers requested for another value by

substituting the user ID, their attempt to retrieve data would

be unsuccessful. This is because the indirect references are

being passed in this mapping but not direct references. Even if

they knew the ID for another user, they still had to pass a

valid GUID, which must not only exist in the session level

dictionary, and must also specifically relate to the legitimate

user. However, as far as using the AccessReferenceMap

(indirect reference map) is concerned, it requires more coding

and needs to pass some extra information to the application so

as to maintain the access to the reference maps. Further

research can be performed in future on the “per-page

authorization” that may not require extra bit of coding and

may not need to pass the information around the application

for maintaining the access to the reference map. Basically per-

page authorization is similar to the AccessReferenceMap but

here the appropriate authorization should already be made on

the master page [11]. The benefit with this approach is that

when the end users or attackers tamper the data and send to

the detail page, they will still be unable to see the other‟s data.

As the direct object access is a significant issue in many of

web applications today, it can simply be corrected. Insecure

direct references occur when the end users find out the

internal conventions and request the page with the

manipulated parameters. To overcome this, the conventions

are to be made very tough to guess and manipulate and most

importantly all the sensitive requests should be placed behind

access control check.

5. ACKNOWLEDGMENTS
The authors gratefully acknowledge helpful discussion with

C. McLean.

6. REFERENCES
[1] Owasp.org, 'Category:OWASP Project - OWASP', 2015.

[Online]. Available:

https://www.owasp.org/index.php/Category:OWASP_

Project. [Accessed: 20- Sep- 2014].

[2] Owasp.org, 'Top 10 2010-A4-Insecure Direct Object

References - OWASP', 2015. [Online]. Available:

https://www.owasp.org/index.php/Top_10_2010-A4.

[Accessed: 20- Sep- 2014].

[3] Owasp.org, 'Top 10 2007-Insecure Direct Object

Reference - OWASP', 2015. [Online]. Available:

https://www.owasp.org/index.php/Top_10_2007-

Insecure_Direct_Object_Reference. [Accessed: 20- Sep-

2014].

[4] N. Antunes and M. Vieira, „Defending against Web

Application Vulnerabilities‟, Computer, vol. 45, no. 2, pp.

66-72, 2012.

International Journal of Computer Applications (0975 – 8887)

Volume 114 – No. 18, March 2015

44

[5] R. Eran, El. Yuval, R.Gil and T. Tom, „System for

determining web application vulnerabilities‟, US 6584569

B2, US 09/800,090, 2003.

[6] L. SHAR, L. Briand and H. Tan, „Web Application

Vulnerability Prediction using Hybrid Program Analysis

and Machine Learning‟, IEEE Trans. Dependable and

Secure Comput., pp. 1-1, 2014.

[7] N. ElBachir El Moussaid and A. Toumanari, 'Web

Application Attacks Detection: A Survey and

Classification', International Journal of Computer

Applications, vol. 103, no. 12, pp. 1-6, 2014.

[8] C. Yang and C. Shen, 'Implement Web Attack

Detection Engine with Snort by Using Modsecurity Core

Rules', The E-Learming and Information Technology

Symposium Tainan, Taiwan, 1 April, 2009.

[9] M. Jensen, N. Gruschka and R. Herkenhoner, 'A Survey

of Attacks on Web Services', Computer Science –

Research and Development, vol. 24, no. 4, pp. 185-197,

2009.

[10] Wiki.archlinux.org, 'Tomcat - ArchWiki', 2015. [Online].

Available: https://wiki.archlinux.org/index.php/Tomcat.

[Accessed: 20- Sep- 2014].

[11] J. Melton, 'The OWASP Top Ten and ESAPI – Part 4 –

Insecure Direct Object Reference : John Melton's

Weblog', Jtmelton.com, 2015. [Online]. Available:

http://www.jtmelton.com/2010/05/10/the-owasp-top-ten-

and-esapi-part-5-insecure-direct-object-reference/.

IJCATM : www.ijcaonline.org

