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ABSTRACT 

Real-world applications have begun to adopt the multi-label 

paradigm. The multi-label classification implies an extra 

dimension because each example might be associated with 

multiple labels (different possible classes), as opposed to a 

single class or label (binary, multi-class) classification. And 

with increasing number of possible multi-label applications in 

most ecosystems, there is little effort in comparing the 

different multi-label methods in different domains. Hence, 

there is need for a comprehensive overview of methods and 

metrics. In this study, we experimentally evaluate 11 methods 

for multi-label learning using 6 evaluation measures over 

seven benchmark datasets. The results of the experimental 

comparison revealed that the best performing method for both 

the example- based evaluation measures and the label-based 

evaluation measures are ECC on all measures when using 

C4.5 tree classifier as a single-label base learner. 
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1. INTRODUCTION 
In Machine Learning, and particularly in supervised learning, 

one of the most important applications is classification, where 

each example (item) in the problem domain (dataset) is 

associated with an attribute vector, which represents data 

possible range of values from its domain. Labels represent 

concepts dependent on the problem domain that can belong to. 

When each example is associated with a single class (label) 

this is known as single label classification, while each 

example might be associated with multiple labels, this is 

known as multi-label classification. Although single-label 

classification is considered the standard task in multi-class 

problems, multi-label classification is viable in most 

ecosystems. At the same time, multi-label classification is by 

no means easy or intuitive. 

Multi-label classification problems appear in a wide range of 

real world situations and applications. A good example is how 

Gmail has replaced the old ―folder‖ metaphor with labels. 

Many online news sites, for example the BBC, often link to 

the same news article from different category headings, i.e. a 

multi-label association. A multitude of other sources have 

also, knowingly or not, embraced the multi-label context. 

Domains such as microbiology or medicine often inherently 

require a multi-label scheme: a single gene may influence the 

production of more than one protein, and a patient’s 

symptoms may be linked to multiple ailments. This explains 

the explosion of interest in multi-label classification in the 

academic literature over recent years. 

According to Tsoumakas and Katakis [1], multi-label 

classification groups methods into two main categories: 

problem transformation and algorithm adaptation. The task of 

multi-label classification with problem transformation, mean 

to have a multi-label problem transformed into one or more 

single-label problems. This scheme allows us to addressing 

the problem of multi-label classification using algorithms that 

are not designed for the specificities of the task. This is 

opposed to algorithm adaptation, where a specific classifier is 

modified to carry out multi-label classification; often highly 

suited to specific domains or contexts but not as flexible and 

has a high computational complexity. In this study, extend 

this categorization of multi-label methods with a third group 

of methods, namely, ensemble methods. This group of 

methods consists of methods that use ensembles to make 

multi-label predictions and their base classifiers belong to 

either problem transformation or algorithm adaptation 

methods. Each approach brings benefits but also has 

disadvantages that it is necessary to know in order to choose 

the best option. 

Although there are a reasonable number of multi-label 

classification methods proposed in the literature, and with 

increasing number of possible multi-label applications in 

different domains there is little effort in comparing the 

different multi-label methods in different applications. Hence, 

there is need for a comprehensive overview of methods and 

metrics. There is a strong need for a wider, extensive, and 

unbiased experimental comparison of multi-label learning 

methods. This paper addresses this need and analyses multi-

label learning methodologies.  

In this paper, we will experimentally evaluate 11 methods for 

multi-label learning using 6 evaluation measures over 7 

bench-mark datasets. The multi-label methods comprise two 

algorithm adaptation methods, six problem transformation 

methods and three ensemble methods. The large number of 

methods, datasets and evaluation measures enables to draw 

some general conclusions and performs an unbiased 

assessment of the predictive performance of the multi-label 

methods. 

This paper is organized as follows. Section 2 defines the tasks 

of multi-label classification. The state-of-the-art methods for 

multi-label classification used in the experimental evaluation 

and multi-label evaluation measures are presented in Section 

3and Section 4. Section 5 describes the experimental setup, 

while Section 6 presents and discusses the experimental 

results. Finally, the conclusions are given in Section 7. 

2. MULTI-LABEL CLASSIFICATION 
Multi-label learning is concerned with learning from 

examples, where each example is associated with multiple 

labels. These multiple labels belong to a predefined set of 

labels. Depending on the goal, we can distinguish two types of 

tasks: multi-label classification and multi-label ranking. In the 

case of multi-label classification, the goal is to construct a 

predictive model that will provide a list of relevant labels for a 

given, previously unseen example. On the other hand, the goal 

in the task of multi-label ranking is to construct a predictive 

model that will provide, for each unseen example, a list of 
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preferences (i.e., a ranking) of the labels from the set of 

possible labels. Our learning model is the following standard 

extension of the binary case. 

Assume that an instance x ∈X can be associated with a subset 

of labels y, which is referred to as the relevant set of labels for 

x., for which we use subset notation y ⊆ [L] or vector notation 

y ∈ {0, 1}L, as dictated by convenience. Assume Y is a given 

set of predefined binary labels Y = {λ1, . . . , λL}. For a given 

set of labeled examples D = {x1,x2, . . . , xn} the goal of the 

learning process is to find a classifier h : X →Y, which maps 

an object x ∈ X to a set of its classification labels y ∈ Y, such 

that h(x) ⊆ {λ1, . . . , λL} for all x in X. 

Multi-label classification exhibits several challenges not 

present in the binary case. The labels may be interdependent, 

so that the presence of a certain label affects the probability of 

other labels’ presence. Thus, exploiting dependencies among 

the labels could be beneficial for the classifier’s predictive 

performance 

3. METHODS FOR MULTI-LABEL 

CLASSIFICATION  
In this section, present the three categories of methods for 

multi-label learning: algorithm adaptation, problem 

transformation and ensemble methods, and discuss the 

advantages and disadvantages of each method. 

3.1 Problem Transformation Method 
The problem transformation methods are multi-label learning 

methods that transform the multi-label learning problem into 

one or more single-label classification or regression problems. 

For smaller single-label problems, there exists a plethora of 

machine learning algorithms. Problem transformation 

methods can be grouped into three main categories: binary 

relevance [1], label power-set [1,2,3] and pair-wise [4,5] 

methods. 

 The Binary Relevance method (BR), BR also 

known as one-against-all (OAA) transforms any multi-label 

problem into L binary problems. Each binary classifier is 

then responsible for predicting the association of a single 

label (one binary problem for each label). Although 

conceptually simple and relatively fast, it is widely 

recognized that BR does not explicitly model label 

correlations. The main contribution of BR the classifier 

chains method (CC) proposed by Read et al. [6], which 

overcomes the label independence assumption of BR. The 

(CC) fixes a particular order of the BR base classifiers and 

subsequently adds the outputs of the preceding classifiers as 

new features. Predictive performance depends on the order 

of the label indices in label-set vector 

 The label power-set method (LP), is a simple and 

less common problem transformation method. LP treats all 

label sets as atomic (single) labels to form a single-label 

problem in which the set of single labels represents all 

distinct label sets in the multi-label training data. The meta 

problem is then solved with a normal multiclass algorithm. 

Although LC can take into account label correlations 

directly, but the space of possible label subsets can be very 

large. To resolve this issue, in [7] introduced the pruned sets 

method, for multi-label classification is centered on the 

concept of treating sets of labels as single labels. This allows 

the classification process to inherently take into account 

correlations between labels. By pruning these sets, PS 

focuses only on the most important correlations, which 

reduces complexity and improves accuracy. Another label 

power-set method is HOMER [8] is an algorithm for 

effective and computationally efficient multi-label learning 

in domains with a large number of labels. The (HOMER) 

organizes all labels into a tree-shaped hierarchy with a much 

smaller set of labels at each node. A multi-label classifier is 

then constructed at each non-leaf node, following the BR 

approach. 

 Pair-wise methods: A third problem transformation 

approach to solving the multi-label learning problem is pair-

wise or round robin classification with binary classifiers. The 

basic idea here is to use 
𝑛(𝑛−1)

2
 classifiers covering all pairs 

of labels. Each classifier is trained using the samples of the 

first label as positive examples and the samples of the second 

label as negative examples. To combine these classifiers, the 

pair-wise classification method naturally adopts the majority 

voting algorithm. Given a test example, each classifier 

predicts (i.e.,votes for) one of the two labels. After the 

evaluation of all 
𝑛(𝑛−1)

2
classifiers, the labels are ordered 

according to their sum of votes. A label ranking algorithm is 

then used to predict the relevant labels for each example. 

Besides majority voting in CLR, Park et al. [9] propose a 

more effective voting algorithm. It computes the class with 

the highest accumulated voting mass, while avoiding the 

evaluation of all possible pair-wise classifiers. Mencia et al. 

[10] adapted the QWeighted approach to multi-label learning 

(QWML).    

  3.2 Algorithm adaptation methods 
The focus of the algorithm adaptation approach aims to 

modify existing algorithms so that they can deal with multi-

label samples, without requiring any preprocessing. In recent 

years the number of proposals published in this regard has 

increased strikingly. So here we just list the more remarkable 

ones. 

 Decision trees: Multi-Label C4.5 (ML-C4.5) [11] is 

an adaptation of the well known C4.5 algorithm. The 

learning process is accomplished by allowing multiple labels 

in the leaves of the tree, the formula for calculating entropy 

is modified for solving multi- label problems. The modified 

entropy sums the entropies for each individual class label. 

The key property of ML-C4.5 is its computational 

efficiency: 

       Entropy (E) = -  (
𝑁

𝑖=1
p(ci)log p(ci)+q(ci)log q(ci)) 

where E is the set of examples, p(ci) is the relative frequency 

of class label ci and q(ci) = 1_p(ci). 

 Neural Network based: In principle, traditional 

back-propagation (BP) neural networks can deal with multi-

label classification directly through assigning many ones at 

output layer.  In BP-MLL [12], a new empirical loss function 

is induced from the ranking loss to characterize correlations 

between labels of an instance. But it is needed to find an 

additional threshold function using linear regression. It has 

been shown that this BP  method runs very slowly. 

 Tree Based Boosting: ADABOOST.MH and 

ADABOOST.MR [13] are two extensions of ADABOOST 

for multi-label data. While AdaBoost.MH is designed to 

minimize Hamming loss, ADABOOST.MR is designed to 

find a hypothesis which ranks the correct labels at the top. 

Furthermore, ADABOOST.MH can also be combined with 

an algorithm for producing alternating decision trees [14]. 

The resulting multi-label models of this combination  
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can be interpreted by humans. 

 Lazy Learning: There are several methods exists 

based on lazy learning (i.e. k-Nearest Neighbour (kNN)) 

algorithm. All these methods are retrieving k-nearest 

examples as a first step. ML-kNN [15] is the extension of 

popular kNN to deal with multi-label data. It uses the 

maximum a posteriori principle in order to determine the 

label set of the test instance, based on prior and posterior 

probabilities for the frequency of each label within the k 

nearest neighbors. 

 Support vector machines: Elisseeff and Weston 

[16] have proposed a ranking approach for multi-label 

learning that is based on SVMs. The cost function they use is 

the average fraction of incorrectly ordered pairs of labels. 

3.3 Ensemble methods  
The ensemble methods for multi-label classification are 

developed on top of the common problem transformation or 

algorithm adaptation methods. 

 Ensembles of classifier chains (ECC) [6], are an 

ensemble multi- label classification technique that uses 

classifier chains as a base classifier. ECC trains m CC 

classifiers C1,C2, . . . ,Cm. using a standard bagging scheme, 

where the binary models of each chain are ordered according 

to a random seed. Each model is then likely to be unique and 

can predict different label sets from other models. These 

predictions are summed per label so that each label receives 

a number of votes. A threshold is used to select the most 

popular labels that form the final predicted multi-label set. 

 The random k-label sets (RAkEL) [2], constructs 

an ensemble of LP classifiers. It works as follows: It 

randomly breaks a large set of labels into a number (n) of 

subsets of small size (k), called k-label sets. For each of 

them train a multi-label classifier using the LP method. Thus 

it takes label correlation into account and also avoids LP's 

problems. Given a new instance, it query models and 

average their decisions per label. And also uses thresholding 

to obtain the final model. 

    Ensembles of Pruned Sets (EPS) [7] combine 

pruned sets in an ensemble scheme. PS is particularly suited 

to an ensemble due to its fast build times and, additionally, 

the ensemble counters any over-fitting effects of the pruning 

process and allows the creation of new label sets at 

classification time. 

4. MULTI-LABEL EVALUATION 

MEASURES 
There is no generally accepted procedure for evaluating multi-

label classifications. Therefore, several measures from 

multiclass classification and from information retrieval were 

adopted and adapted in order to measure multi-label 

effectively. In experiments, we used various evaluation 

measures that have been suggested by Tsoumakasetal. [17]. 

the evaluation measures of predictive performance are divided 

into two groups: bipartitions-based and rankings-based. The 

bipartitions-based evaluation measures are calculated based 

on the comparison of the predicted relevant labels with the 

ground truth relevant labels. This group of evaluation 

measures is further divided into example-based and label-

based. The ranking-based evaluation measures compare the 

predicted ranking of the labels with the ground truth ranking. 

In the definitions below, 𝑦i denotes the set of true labels of 

example xi and h(xi) denotes the set of predicted labels for the 

same examples. All definitions refer to the multi- label 

setting. 

4.1 Example based measures 
Hamming loss: 

evaluates how many times an example-label pair is 

misclassified, i.e., label not belonging to the example is 

predicted or a label belonging to the example is not predicted. 

The smaller the value of hamming loss (h), the better the 

performance. The performance is perfect when hamming 

_loss (h) = 0. This metric is defined as 

Hamming _loss(h) =
1

𝑁 
  

1

𝑄

𝑁
𝑖=1  (𝑥𝑖)∆𝑦𝑖  

where Δ stands for the symmetric difference between two 

sets,  N is the number of examples and Q is the total number 

of possible class labels. 

Accuracy: 

computes the percentage of correctly predicted labels among 

all predicted and true labels. Accuracy averaged over all 

dataset examples is defined as follows: 

Accuracy(h)=
1

𝑁 
   

(𝑥𝑖)⋂𝑦𝑖

(𝑥𝑖)⋃𝑦𝑖
 𝑁

𝑖=1  

Accuracy seems to be a more balanced measure and better 

indicator of an actual algorithm’s predictive performance for 

most standard classification problems than Hamming loss.  

Precision:  

Precision(h) = 
1

𝑁 
  

|(𝑥𝑖)⋂𝑦𝑖 |

|𝑦𝑖  |

𝑁
𝑖=1  

Recall:  

Recall(h) = 
1

𝑁 
  

|(𝑥𝑖)⋂𝑦𝑖 |

| 𝑥𝑖  |

𝑁
𝑖=1  

F1 score: 

 is the harmonic mean between precision and recall and is 

defined as 

F1=
1

𝑁 
  

2×|(𝑥𝑖)⋂𝑦𝑖 |

  𝑥𝑖   +|𝑦𝑖  |

𝑁
𝑖=1  

F1 is an example based metric and its value is an average over 

all examples in the dataset. F1 reaches its best value at 1and 

worst score at 0. 

Subset accuracy: 

Subset _accuracy(h)=
1

𝑁 
  𝐼( 𝑥𝑖 = 𝑦𝑖)𝑁

𝑖=1  

where I(true)=1 and I(false)=0. It should be noted that subset 

accuracy is a very strict measure since it requires the predicted 

set of labels to be an exact match of the true set of labels, and 

equally penalizes predictions that may be almost correct or 

totally wrong. 

4.2 Label based measures 
 Macro-precision:  

Macro _ precision= = 
1

𝑄 
  

𝑡𝑝𝑗

𝑡𝑝𝑗 +𝑓𝑝𝑗

𝑄
𝑗 =1  

where tpj and fpj are the number of true positives and false 

positives for the label λj considered as a binary class. 

 Macro-recall: 

Macro _recall= 
1

𝑄 
  

𝑡𝑝𝑗

𝑡𝑝𝑗 +𝑓𝑛𝑗

𝑄
𝑗 =1  

where tpj and fpj are defined as for the macro-precision and 

fnj is the number of false negatives for the label λj considered 

as a binary class. 
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Macro-F1: 

 is the harmonic mean between precision and recall, where the 

average is calculated per label and then averaged across all 

labels. If pj and rj are the precision and recall for all λj ∈ h(xi) 

from λj ∈ 𝑦i , the macro-F1 is 

Macro-F1= 
1

𝑄 
  

2×𝑝𝑗 ×𝑟𝑗

𝑝𝑗 +𝑟𝑗

𝑄
𝑗 =1  

Micro-precision  
(precision averaged over all the example/label pairs) is 

defined as: 

Micro_precision= 
 𝑡𝑝𝑗

𝑄
𝑗 =1

 𝑡𝑝𝑗
𝑄
𝑗 =1 + 𝑓𝑝𝑗

𝑄
𝑗 =1

 

where tpj, fpj are defined as for macro-precision. 

 Micro-recall  
(recall averaged over all the example/label pairs) is defined as 

Micro_recall=
 𝑡𝑝𝑗

𝑄
𝑗 =1

 𝑡𝑝𝑗
𝑄
𝑗 =1 + 𝑓𝑛𝑗

𝑄
𝑗 =1

 

where tpj and fnj are defined as for macro-recall. 

Micro-F1: 

is the harmonic mean between micro-precision and micor-

recall.  Micro-f1 is defined as: 

Micro_f1=
2∗𝑚𝑖𝑐𝑟 𝑜_𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑚𝑖𝑐𝑟𝑜 _𝑟𝑒𝑐𝑎𝑙𝑙

𝑚𝑖𝑐𝑟 𝑜_𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑚𝑖𝑐𝑟𝑜 _𝑟𝑒𝑐𝑎𝑙𝑙
 

5. EXPERIMENTAL WORK 

5.1 Datasets  

Multi-label classification problems appear in a wide range of 

real world situations and applications. The datasets that are 

included in the experimental setups throughout this work 

cover the main three application areas in which multi-labeled 

data is frequently observed: text categorization, multimedia 

classification and bioinformatics. All datasets were mainly 

retrieved from the repository‖ 

http://mulan.sourceforge.net/datasets.html‖ of the Mulan Java 

Library for Multi-Label learning. Table1 summarizes the main 

properties, which are as following: 

Table 1 Datasets used in the experiment: information and 

statistics 

Datasets Domain Instanc

es 

Attrib

utes  

labe

ls 

LCAR

D                 

LDC     

Scene 

Emotions        

image 

  Music 

2407 

593 

294 

72 

6 

6 

1.074 

1.869 

15 

27 

Yeast 𝑏𝑖𝑜𝑙𝑜𝑔𝑦 4417 72 14 4.237 198 

Birds 𝑎𝑢𝑑𝑖𝑜 645 260 19 1.014 133 

Genbase 𝑏𝑖𝑜𝑙𝑜𝑔𝑦 662 1186 27 1.252 32 

Medical 𝑡𝑒𝑥𝑡 978 1449 45 1.245 94 

Enron 𝑡𝑒𝑥𝑡 1702 1001 53 3.378 753 

Besides the regular classification properties, such as label set 

and the number of examples, present specific statistical 

information for multi-label classification. This information 

includes: (1) Label Cardinality (LCARD)—a measure of 

―multi-labeled-ness‖ of a dataset introduced by Tsoumakas et 

al. [17] that quantifies the average number of labels per 

example in a dataset; and (2) Label Distinct Combinations 

(LDC)—a measure representing the number of distinct 

combinations of labels found in the dataset. 

5.2 Procedure 
As already mentioned, 11 different multi-label classification 

methods will be used in this investigation, where six are 

problem transformation methods (Binary Relevance (BR), 

Label Powerset (LP), Classifier Chains (CC), Pruned Sets 

(PS), CalibratedLabelRanking (CLR), and HOMER(HO)), 

and three are ensemble methods(Random k-labelsets( 

RAkEL), Ensemble of Classifier Chains (ECC) and Ensemble 

of Pruned Sets (EPS)) and the remaining two are algorithms 

adaptation methods (Multi-Label k Nearest Neighbours (ML-

kNN) and Back-Propagation Multi-Label Learning 

(BPMLL)). The experimental results were evaluated using 

Accuracy, Hamming Loss, Micro- F-Measure, Macro- F-

Measure, F-Measure and Subset Accuracy to evaluate 

different MLC methods. The experiments were conducted 

using the 10-fold cross-validation methodology. Thus, all 

results presented in paper refer to the mean over 10 different 

test sets. All multi-label classification methods and supervised 

learning algorithms used in this work are implementations of 

the Weka-based [18] package of Java classes for multi-label 

classification, called Mulan [19]. This package includes 

implementations of some of the multi-label classification 

methods most widely applied in the literature. All the 

algorithms were supplied with Weka’s J48 implementation of 

a C4.5 tree classifier as a single-label base learner. The 

statistical significance of differences in algorithm results was 

determined by Friedman test [20]. 

5.3 Parameter configuration  

As for multi-label classification algorithms used in this study, 

all configurable parameters of the participating algorithms 

were set to their optimal values as reported in the relevant 

papers. For BR, LP and CC no parameters were required. For 

HOMER, its balanced k means version with k = 3 was set. The 

PS methods required two parameters p and strategy parameter 

for each dataset. We used p=1 and strategy parameters, Ab, for 

all datasets with value of b=2 as proposed by [7]. Whereas the 

Ensemble methods configuration, the number of models in the 

ECC methods was set to 10 as proposed by [6], For RAKAL 

the number of models was set to 10 for all datasets and the 

size of the label-sets K for each datasets was set to half the 

number of labels. For EPS, at each dataset p and strategy, 

parameters were set to the same values as those used for the 

PS method. EPS requires additional parameter the number of 

models was set to 10. For all ensemble methods the majority 

voting threshold was set to 0.5. 

6. RESULTS AND DISCUSSION 
In this section, present the results from the experimental 

evaluation for each type of evaluation measure 

6.1 Results on the example-based measures 
The example-based evaluation measures include Hamming 

loss, accuracy, F1 score and subset accuracy. The results are 

given in tables 2-5 .We analyze the performance of the 

methods across all six evaluation measures using decision 

trees as a base classifier for all methods. In respect to the 

hamming loss, ECC and the RAKEL are the best performing 

methods according to hamming loss followed by EPS, where 

they have less mean rank. However hamming loss measures 
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the percentage of incorrectly predicted labels both positive 

and negative, thus the low values of the Hamming loss 

measure do not give an indication of high predictive 

performance. In respect to accuracy, the ECC is the best 

performance followed by RAKEL and EPS, where they have 

largest mean rank and best performance in most cases, while 

BPMLL performed best in two cases but in other cases given 

bad result such genbase and medical datasets. Accuracy seems 

to be a more balanced measure and better indicator of an 

actual algorithm’s predictive performance for most standard 

classification problems than Hamming loss. In respect to F1 

score measure, also ECC is the best performing in most cases 

then RAKEL and EPS. Finally in respect to subset accuracy, 

the ECC is the best performing followed by RAKEL and EPS 

see (fig 1). 

6.2 Results on the label-based measures 

The label-based evaluation measures include micro-F1 and 

macro-F1. The results are given in table 6 and table 7. As for 

The label-based evaluation measures, we observed that, in 

micro-F1 and macro-F1 measures, the ECC or BR are best 

performance followed by CC and RAKEL. And the BPMLL 

and ML_MLL are better in some cases but very poor 

predictive performance in other cases see (fig.2). 

7. CONCLUSIONS 
In this study, present an extensive experimental evaluation of 

multi-label classification methods. The topic of multi-label 

classification has lately received significant research effort. 

This has resulted in a variety of methods for addressing the 

task of multi-label learning. However, a wider experimental 

comparison of these methods is still lacking in the literature. 

We evaluated the most popular methods for multi-label 

classification using a wide range of evaluation measures on a 

variety of datasets. 

The results of the experimental comparison revealed that the 

best performing method for evaluation measures when using 

decision trees as a base classifier for all methods. As for the 

example- based evaluation measures, the ECC is the best 

performance in all measures followed by RAKEL and EPS. 

As for the label-based evaluation measures, the best 

performing methods ECC and BR followed by CC and 

RAKEL.  

From the experimental results, we observed that, all ensemble 

methods had provided the best results for almost all 

evaluation metrics. While Algorithm adaptation methods 

performed best on datasets with small labels and not had 

provided best results on datasets with high labels. This result 

may be an indication that the use of ensemble methods can be 

best choice. 
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Figure.1. Mean rank of each algorithm over all datasets for the example-based evaluation measures using a Friedman test at p 

= 0.05. 
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Figure.2. Mean rank of each algorithm over all datasets for the label-based evaluation measures using a Friedman test at p = 

0.05. 

Table. 2. The performance of the multi-label learning approaches in terms of the Hamming loss measure 

Datasets LP BR CC ECC CLR RAKEL HOMER PS EPS BPMLL MLKNN 

Scene 0.1437 0.1368 0.1444 0.0920 0.1383 0.1012 0.1418 0.1425 0.0974 0.2633 0.0862 

Emotions 0.2772 0.2474 0.2550 0.1954 0.2423 0.2181 0.2671 0.2727 0.2097 0.2043 0.1951 

Yeast 0.2769 0.2454 0.2682 0.2041 0.2202 0.2030 0.2753 0.2799 0.2106 0.2239 0.1933 

Birds 0.0735 0.0561 0.0562 0.0492 0.0506 0.0489 0.0788 0.0716 0.0508 0.0945 0.0543 

Genbase 0.0019 0.0011 0.0011 0.0012 0.0013 0.0013 0.0021 0.0019 0.0020 0.4879 0.0048 

Medical 0.0135 0.0103 0.0102 0.0098 0.0131 0.0097 0.0128 0.0127 0.0114 0.6406 0.0151 

Enron 0.0708 0.0508 0.0524 0.0485 0.0471 0.045 0.0625 0.0635 0.0498 0.2788 0.0523 

Table 3. The performance of the multi-label learning approaches in terms of the Accuracy measure 

Datasets LP BR CC ECC CLR RAKEL HOMER PS EPS BPMLL MLKNN 

Scene 0.5893 0.5353 0.5866 0.6702 0.5265 0.6247 0.5936 0.5924 0.6447 0.3598 0.6670 

Emotions 0.4376 0.4623 0.4703 0.5585 0.4771 0.5091 0.4522 0.4444 0.5264 0.5665 0.5326 

Yeast 0.4144 0.4395 0.4280 0.5221 0.4685 0.5046 0.4032 0.4029 0.4958 0.5232 0.5162 

Birds 0.4666 0.5295 0.5222 0.5572 0.5280 0.5452 0.4600 0.4516 0.5139 0.4321 0.4814 

Genbase 0.9826 0.9862 0.9862 0.9847 0.9857 0.9845 0.9794 0.9826 0.9804 0.0362 0.9416 

Medical 0.7358 0.7465 0.7581 0.7773 0.6202 0.7774 0.7453 0.7476 0.7516 0.0328 0.5813 

Enron 0.3460 0.4129 0.4233 0.4621 0.4209 0.428 0.3817 0.3667 0.4226 0.1884 0.3316 
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Table 4. The performance of the multi-label learning approaches in terms of the F1 score measure 

Datasets LP BR CC ECC CLR RAKEL HOMER PS EPS BPMLL MLKNN 

Scene 0.6037 0.5732 0.6032 0.6847 0.5732 0.6464 0.6100 0.6061 0.6588 0.4817 0.6811 

Emotions 0.5178 0.5566 0.5482 0.6352 0.5712 0.5943 0.5407 0.5263 0.6087 0.6586 0.6138 

Yeast 0.5171 0.5635 0.5279 0.6275 0.5841 0.6117 0.5167 0.5046 0.6034 0.6350 0.6204 

Birds 0.4963 0.5611 0.5510 0.5857 0.5523 0.5706 0.4892 0.4782 0.5327 0.4368 0.4961 

Genbase 0.9858 0.9904 0.9904 0.9894 0.9899 0.9888 0.9830 0.9858 0.9844 0.0675 0.9511 

Medical 0.7600 0.7771 0.7850 0.8063 0.6496 0.8037 0.7703 0.7710 0.7762 0.0629 0.6065 

Enron 0.4444 0.5257 0.5299 0.5713 0.5324 0.564 0.4932 0.4624 0.5293 0.2967 0.4288 

   Table 5. The performance of the multi-label learning approaches in terms of the Subset accuracy measure 

Datasets LP BR CC ECC CLR RAKEL HOMER PS EPS BPMLL MLKNN 

Scene 0.5472 0.4266 0.5376 0.6273 0.3988 0.5604 0.5455 0.5521 0.6028 0.0565 0.6248 

Emotions 0.2073 0.1838 0.2478 0.3235 0.1838 0.2478 0.1955 0.2055 0.2866 0.2882 0.2831 

Yeast 0.1357 0.0683 0.1531 0.1800 0.0972 0.1671 0.0778 0.1282 0.1605 0.1390 0.1874 

Birds 0.3820 0.4469 0.4501 0.4841 0.4626 0.4749 0.3914 0.3850 0.4687 0.4254 0.4441 

Genbase 0.9728 0.9713 0.9713 0.9683 0.9698 0.9698 0.9683 0.9728 0.9668 0.0000 0.9110 

Medical 0.6635 0.6553 0.6778 0.6891 0.5315 0.6993 0.6716 0.6788 0.6788 0.0000 0.5060 

Enron 0.1116 0.1028 0.1269 0.1445 0.1005 0.136 0.1010 0.1316 0.1386 0.0012 0.0740 

   Table 6. The performance of the multi-label learning approaches in terms of the micro-F1 measure 

Datasets LP BR CC ECC CLR RAKEL HOMER PS EPS BPMLL MLKNN 

Scene 0.5982 0.6194 0.6001 0.7250 0.6276 0.6979 0.6060 0.6012 0.7042 0.5197 0.7343 

Emotions 0.5499 0.6020 0.5878 0.6805 0.6276 0.6404 0.5668 0.5608 0.6540 0.6896 0.6598 

Yeast 0.5411 0.5857 0.5499 0.6503 0.6158 0.6369 0.5448 0.5317 0.6299 0.6499 0.6471 

Birds 0.3258 0.3747 0.3514 0.3608 0.3127 0.3344 0.2584 0.2634 0.2495 0.0730 0.1934 

Genbase 0.9801 0.9880 0.9880 0.9869 0.9862 0.9864 0.9782 0.9801 0.9789 0.0932 0.9462 

Medical 0.7529 0.8091 0.8115 0.8226 0.7136 0.8187 0.7626 0.7643 0.7846 0.0636 0.6800 

Enron 0.4364 0.5481 0.5363 0.5731 0.5672 0.548 0.4920 0.4528 0.5313 0.2798 0.4778 
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Table 7. The performance of the multi-label learning approaches in terms of the macro-F1 measure 

Datasets LP BR CC ECC CLR RAKEL HOMER PS EPS BPMLL MLKNN 

Scene 0.6092 0.6285 0.6126 0.7318 0.6442 0.7073 0.6164 0.6140 0.7097 0.5410 0.7355 

Emotions 0.5377 0.5868 0.5760 0.6659 0.6167 0.6225 0.5523 0.5461 0.6289 0.6783 0.6243 

Yeast 0.3866 0.3920 0.3966 0.4039 0.3834 0.3852 0.3894 0.3782 0.3763 0.4358 0.3853 

Birds 0.3709 0.3856 0.3585 0.3572 0.3494 0.3744 0.2796 0.2992 0.3489 0.1338 0.3183 

Genbase 0.9464 0.9572 0.9572 0.9533 0.9561 0.9536 0.9459 0.9464 0.9349 0.2420 0.8403 

Medical 0.6886 0.7566 0.7578 0.7590 0.6838 0.7549 0.7078 0.7083 0.7386 0.2858 0.6574 

Enron 0.2194 0.3171 0.3086 0.3128 0.3052 0.115 0.2759 0.2760 0.2902 0.2625 0.2569 
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