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ABSTRACT 
 

In this paper, a chaos-based image encryption scheme with half-pixel-level interchange permutation 

strategy and plain-image dependence is proposed.  The proposed image encryption scheme consists of a 

confusion process and a diffusion process. In the confusion process, a pixel-swapping operation between 

higher bit planes and lower bit planes is employed to replace the traditional confusion operation. The half-

pixel-level interchange permutation strategy between the higher 4-bit plane part and the lower 4-bit plane 

part not only improves the conventional permutation efficiency within the plain-image, but also changes all 

the pixel gray values. The system parameters of generalized Arnold map applied for the permutation 

operation relies on the plain-image content and consequently can resist chosen-plaintext and known-

plaintext attacks effectively. To enhance the security of the proposed image encryption, one multimodal 

skew tent map is utilized to generate pseudo-random gray value sequence for diffusion operation. 

Simulations have been carried out thoroughly with comparisons with some other existing image encryption 

schemes. The experimental results demonstrate that the proposed image encryption scheme is highly secure 

thanks to its large key space and efficient permutation-diffusion operations.  
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1. INTRODUCTION 
 

The rapid development of network technologies, cloud technologies and smart phone systems 

make remarkable progress for network-based services. Multimedia processing technologies also 

make numerous digital images and videos with private and confidential information ubiquitous 

over the network. Therefore, protection of digital images and videos against illegal copying and 

distribution becomes urgent challenge than ever before. Many researchers have devoted to 

studying the security issue of images and videos and the research in image encryption gained new 

momentum at the last decades. While general data encryption algorithms have been widely 

applied in various fields, specialized image encryption schemes still undergo studying. A great 

number of chaos-based image encryption schemes are then investigated intensively to meet the 

real time need of protection of images transmitted on the Internet and wireless network. On the 

one hand, traditional symmetrical encryption algorithms, such as International Data Encryption 

Algorithm (IDEA),  Data Encryption Standard (DES) and RSA, are especially designed for text 

data information, and have been proved not well applied for image encryption due to the 

weakness of low-level efficiency while encrypting images with some intrinsic features, such as 

bulky data capacity, strong correlation between adjacent pixels and high redundancy[1]. On the 

other hand, chaotic system has attracted tremendous interest from researchers thanks to its good 

features, such as ergodicity, pseudo-randomness and sensitivity to initial conditions and control 

parameters, which are in line with the basic requirements, like confusion and diffusion, in 

cryptography [2, 3]. These good chaotic properties make chaotic systems potential for 

constructing cryptosystems in multimedia field [3-8].  
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Most of the existing chaos-based image encryption algorithms employ a permutation-diffusion 

architecture, in which one encryption round includes several confusion operations and one round 

diffusion operation. This architecture was initially presented by Fridrich in 1998 [3]. In the 

permutation stage, two-dimensional chaos systems are usually used to modify each pixel’s 

location, while in the diffusion stage the value of all the pixels is systematically changed 

controlled by one pseudo-random gray value sequence generated by one chaotic map. As we 

know, a good encryption scheme should possess some fundamental requirements. For example, it 

should be sensitive enough to cipher keys; the key space should be large enough to resist brute-

force attack; the permutation and diffusion processes should possess good statistical properties to 

frustrate statistical attack, differential attack, known-plaintext attack and chosen-plaintext attack, 

etc. However, the traditional permutation-diffusion architecture with fixed key streams is blamed 

for one big flaw. The permutation and diffusion stages will become independent if the plain-

image is a homogeneous one with identical pixel gray value. Therefore, such a kind of image 

encryption schemes can be broken by the following steps: (1) a homogeneous image with 

identical pixel gray value is applied eliminate the confusion effect; (2) the key streams of the 

diffusion process is obtained using known-plaintext, chosen-plaintext or chosen-ciphertext 

attacks; (3) the remaining cipher-image can be regarded as the output of a kind of permutation-

only cipher, which has been shown insecure and can be broken by known-plaintext or chosen 

plaintext attacks[9, 10]. As a matter of fact, image encryption schemes with conventional 

permutation-diffusion architecture have been analyzed or shown to suffer from security 

drawbacks [11-15].  
 

To overcome the drawbacks such as small key space and weakly secure permutation-diffusion 

architecture in the existing chaos-based image encryption schemes, many researchers turn to find 

improved chaos-based cryptosystems with large key spaces and efficient permutation-diffusion or 

permutation-substitution mechanisms. Ye proposed an image encryption scheme with an efficient 

permutation-diffusion mechanism, which shows good performance, including huge key space, 

efficient resistance against statistical attack, differential attack, known-plaintext as well as 

chosen-plaintext attack [16]. In both the permutation and diffusion stages, generalized Arnold 

maps with real number control parameters are applied to generate pseudo-random sequences and 

therefore enlarge the key space greatly. Meanwhile, a two-way diffusion operation is executed to 

improve the security of the diffusion function. Patidar et al. [17] proposed a secure and robust 

chaos-based pseudorandom permutation substitution scheme to encrypt color image. The 

proposed scheme consists of three processes: preliminary permutation, substitution and main 

permutation. The proposed image encryption scheme shows strong robustness and great security. 

The three processes are performed row-by-row and column-by-column instead of pixel-by-pixel 

to improve the speed of encryption. To obtain excellent key sensitivity and plaintext sensitivity, 

both preliminary permutation and main permutation are set to be dependent on the plain-image 

and controlled by the pseudo-random number sequences generated from the chaotic standard 

map. The substitution process is initialized with the initial vectors generated via the cipher keys 

and chaotic standard map, and then the pixel gray values of row and column pixels of input 2D 

matrix are bitwise exclusive OR with the pseudo-random number sequences. Zhou et al. 

introduced new chaotic systems by integrating the tent, Logistic and sine maps into one single 

system to produce the pseudo-random sequence [18, 19]. The intertwining Logistic map and 

reversible cellular automata were applied in an image encryption scheme presented by Wang et 

al. in [20]. This encryption scheme performs operations at bit level considering higher four bits of 

each pixel value. Some novel image encryption schemes using bit-level permutation strategy are 

proposed recently to improve the security issue of chaos-based image encryption schemes. For 

bit-level permutation, each pixel gray value is divided into 8 bits for 256 gray-scale images. Since 

each bit of a pixel contains different percentage of the pixel information, the situation of 

performing confusion at bit-level is quite different from pixel-level case. The bit-level 

permutation not only relocates the pixel positions, but also alters the pixel gray values [21, 22]. 

Therefore certain diffusion effect has been introduced in the confusion stage with a bit-level 
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permutation. Thanks to the superior characteristics of bit-level operations and the intrinsic bit 

features of images, Zhang et al. proposed a novel image encryption scheme using lightweight bit-

level confusion and cascade cross circular diffusion in [23] .They also applied an expand-and-

shrink strategy at bit-level to shuffle the image with reconstructed permuting plane [24]. All the 

proposed image encryption schemes show good performances compared with the traditional 

permutation-diffusion structure operating at pixel-level. However, there exists one flaw in all bit-

level based image encryption schemes. Although the bit-level confusion operations can change 

the pixel gray values, they consume much execution time to get the eight bit planes.  
 

In this paper, a plain-image dependent image encryption scheme with half-pixel-level interchange 

permutation strategy is proposed. In the proposed permutation operation, a pixel-swapping 

operation between higher 4-bit plane part and lower 4-bit plane part is employed to replace the 

traditional confusion operation. The plain-image with size H W×  and 256 gray levels is divided 

into two images with the same size, each of which is of 16 gray levels. They consist of the 1-4 

and 5-8 bit planes respectively. The half-pixel-level swapping strategy between the higher 4-bit 

plane part and the lower 4-bit plane part has two effects compare with the traditional permutation 

operation. It not only improves the conventional permutation efficiency within the plain-image, 

but also changes all the pixel gray values of the entire image. In the proposed image encryption 

scheme, the parameters of generalized Arnold map applied for the permutation operation are 

designed to be dependent on the plain-image content and consequently can resist chosen-plaintext 

and known-plaintext attacks effectively. The plain-image content dependent permutation makes 

the proposed image encryption scheme more sensitive with respect to plain-image, so the 

cryptosystem is truly one-time pad. To achieve more security of the proposed image encryption, 

one multimodal skew tent map is applied to generate pseudo-random gray value sequence for 

diffusion operation. Multimodal skew tent map has shown good chaotic features; it is generalized 

from unimodal skew tent map. Unimodal skew tent map is widely applied to generate pseudo-

random sequences in chaos-based image encryption schemes [16, 25]. We apply multimodal 

skew tent map to enlarge the cipher key space as it has more choices of control parameters. In the 

diffusion phase, a multimodal skew tent map is utilized to generate a pseudo-random gray value 

sequence, which is used to modify the pixel gray values sequentially. The yielded pseudo-random 

gray value sequence shows good sensitivity to the control parameters and initial conditions of 

multimodal skew tent map, and therefore the proposed image encryption scheme can resist 

statistical attack, differential attack, known-plaintext attack as well as chosen-plaintext attack. 

The security and performance analysis of the proposed image encryption scheme are carried out 

thoroughly. All the experimental results show that the proposed image encryption scheme is 

highly secure and demonstrates excellent performance. Especially, we compare the performance 

with some other existing image encryption schemes. The comparison also demonstrates that the 

proposed image encryption scheme is superior. For example, the correlation between adjacent 

pixels is significantly reduced compared with Wang’s scheme [26], Chen’s schemes [27, 28]. 

Moreover, we introduce co-occurrence histogram to reflect the encryption effect of the cipher-

image. The information entropy correlated with co-occurrence is also introduced to measure 

uniformity level of the two-dimensional histogram. The experimental results on co-occurrence 

histogram and its related entropy are compared with Zhang’s scheme proposed in [29]. As for 

differential attack analysis, the NPCR and UACI performance reach a satisfactory level; NPCR 

and UACI are very close to their expectation values by one round of encryption.  
 

The rest of the paper is organized as follows. In Section 2, multimodal skew tent map with M  

tents is constructed and its chaotic properties are simply analyzed. Section 3 proposes a novel 

image encryption scheme composed of one half-pixel-level interchange permutation process and 

one diffusion process based on multimodal skew tent map. The decryption process is also stated 

in this section. The security and performance of the proposed image encryption scheme are 

evaluated via detailed analysis and experiments in Section 4. Section 5 draws some conclusions. 
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2. THE MULTIMODAL SKEW TENT MAP 
 

The unimodal skew tent map 
0 [0 1] [0 1]T : , → ,  is given by  

                       0

if [0 ]
( )

(1 ) (1 ) if ( 1]

x a x a
T x

x a x a

/ , ∈ , ,
= 

− / − , ∈ , ,
                                                      (1) 

 

where (0 1)a ∈ ,  is the control parameter and [0 1]x ∈ ,  is the state of the map. It is a noninvertible 

map of the unit interval onto itself. For any (0 1)a ∈ , , the unimodal skew tent map (1) has 

Lyapunov exponent ln (1 ) ln(1 )a a a a− − − − , which is larger than 0, implying that the map is 

chaotic. There exist some good dynamical features in the skew tent map. It has been verified that 

the probability density function 
0 ( )xρ  of the skew tent map is the same as the regular tent map 

[30],  

                                              0

1 if (0 1)
( )

0 otherwise

x
xρ

, ∈ , ,
= 

, .
                                                  (2) 

 

We generalize the unimodal skew tent map (1) to multimodal skew tent map [0 1] [0 1]T : , → ,  

defined by  

         2 2 1 2 2 2 1

2 2 2 2 2 1 2 1 2 2

( ) ( ) if [ ]
( )

( ) ( ) if ( ] 0 1

i i i i i

i i i i i

x a a a x a a
T x

a x a a x a a i M

+ +

+ + + + +

− / − , ∈ , ,
= 

− / − , ∈ , , = , , − , L
                       (3) 

 

where 
0 1 2 1 20 1M Ma a a a−= < < < < =L , and M  is referred to the number of the map. See Fig. 1 for 

the case of 3M = , a =[ 0 , 0 16. , 0 3. , 0 51. , 0 68. , 0 78. ,1 0. ] .  

 
Fig. 1.  The diagram of a multimodal skew tent map.  

 

A typical orbit of 
0 0 367x = .  generated by the dynamical system (3) is 

0{ ( ) 0 1 }k

kx T x k= , = , ,L , 

shown in Fig. 2(a) for [0 0 16 0 3 0 51 0 68 0 781 0]a = . . . . . . , 3M = . Its waveform is quite irregular, 

implying the system’s chaotic nature. To illustrate the distribution of the orbit points 

{ 0 1 20000}kx k: = , , ,L , we depict the histogram of Fig. 2(b). It can be seen that the points of the 

orbit spread more or less evenly over the unit interval. As a matter of fact, multimodal skew tent 

map possesses desirable auto-correlation and cross-correlation features as well. The trajectory is 

applied to calculate the correlation coefficients, which are shown in Figs. 2(c)-(d) respectively. 

The cross-correlation coefficients are calculated by the orbits of 
0 0 367x = .  and 

0 0 368y = . . The 

control parameter 
1 2 1Ma a −, ,L  and the initial condition 

0x  can be regarded as cipher keys if the 

multimodal skew tent map is applied to design image encryption schemes.  
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          (a) The chaotic orbit of 

0 0 367x = . .       (b) Histogram of a typical orbit of length 20000.  

 
(c) The auto-correlation.                            (d)The cross-correlation  

 

Fig. 2. Orbits derived from the considered multimodal skew tent map with 

[0 0 16 0 3 0 51 0 68 0 781 0]a = . . . . . . . 
 

The probability density ( )xρ  for multimodal skew tent map on [0, 1] is the same as that of 

unimodal one [31]. This fact has been illustrated by Fig. 2(b). The existence and unique value of 

the Lyapunov exponent also follows from the following theorem. It has been shown that for the 

multimodal skew tent map (3) with the constant probability density ( ) 1xρ ≡ , the Lyapunov 

exponent of (3) is (see [31] for more details)  
 

1 1 2 2 2 1 2 1 2 2ln ln ln lnM M M Mp p p p p p p pλ − −= − − − − − .L                      (4) 
 

λ  is always larger than zero, implying the dynamical system is always chaotic. For 

3 [0 0 16 0 3 0 51 0 68 0 781 0]M a= , = . . . . . . , we obtain 
 

 1 2 3 4 5 60 16 0 14 0 21 0 17 0 1 0 22p p p p p p= . , = . , = . , = . , = . , = . ,  
 

so 1 7608λ = . . It is usually larger than the Lyapunov exponent for the unimodal skew tent map 

(1). As a matter of fact, for the unimodal skew tent map (1), the largest Lyapunov exponent 

ln 2 0 6931= .  occurs at the extreme case 0 5a = . . It implies that the multimodal skew tent map (3) 

is in a stronger sense chaotic, and therefore can perform better data mixing, which makes it a 

better choice for designing encryption schemes than the unimodal skew tent map. We will show 

more details in the following sections on the proposed image encryption scheme based on the 

chaotic multimodal skew tent map. 
 

3. THE PROCESS OF IMAGE ENCRYPTION SCHEME 
 

In this section, the proposed image encryption scheme is proposed. We read a 8-bit (256 gray-

level) plain-image P  with size H W× . In this paper, we restrict the plain-images with equal 

height H  and width W , that is, H W= . Regarding the plain-images with unequal height H  and 
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width W , we can just enlarge the image to be one with equal height and width and then encrypt it 

by the proposed image encryption scheme. The plain image is expressed by a two-dimensional 

matrix sized H W×  whose elements belong to the integers between 0 and 255. The flowchart of 

the encryption process is depicted in Fig. 3. The image encryption scheme consists of two 

processes: permutation and diffusion.  

  
Fig. 3. Flowchart of the encryption process. 

 

3.1. Permutation Process 
 

In the permutation process, the plain-image P  is decomposed into two parts: the higher 4-bit 

plane part 
2I  and the lower 4-bit plane part 

1I . 
1 2I I,  can be regarded as 16 gray-level images 

consisting of the 1-4 and 5-8 bit planes of the plain-image respectively. The pixels between 
1I  

and 
2I are  exchanged by generalized Arnold map defined as Eq. (5).  

 

                                         
'

'

1
mod

1

p xx
H

q pq yy

 
 
 
 
 
 

  
= ,  

+  
                                               (5) 

 

where 0 1 2 1p q H, ∈ , , , ..., − , p  and q  are control system parameters for the generalized Arnold 

map; function “  mod  z H ” represents the remainder after division; ( )x y,  refers to the original 

position of the higher 4-bit part while ( )x y′ ′,  represents the pseudo-random position of the lower 

4-bit part governed by the generalized Arnold map. The detail permutation process is depicted as 

follows:  
 

Step 1. The control system parameters p q,  in generalized Arnold map are set to be related to 

the plain-image so as to enhance the security of the encryption algorithm. They are calculated by  
 

1

1 1

( ( )) mod
H W

i j

p I i j H
= =

= , ,∑∑    
2

1 1

( ( )) mod
H W

i j

q I i j H
= =

= , .∑∑                                 (6) 

 

A minor change in the plain-image will cause the change of p q, . It is known that generalized 

Arnold map is strongly sensitive to system parameters p q, . As a result, the corresponding cipher-

images of two plain-images with minor difference will be dramatically different.  
 

 

Step 2. The generalized Arnold map is applied to confuse the pixel positions. For each 

position of the higher 4-bit plane part, a corresponding random position ( )x y′ ′,  in the lower 4-bit 

plane part is calculated by the generalized Arnold map Eq. (5) with coefficients p q, . Exchange 

the pixel value locating at ( )x y,  of the higher 4-bit part with the pixel value locating at ( )x y′ ′,  of 

the lower 4-bit part. The exchanging positions and gray value exchange operation are defined by  
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2 1

1
mod ( ) ( ) 0 1 1

1

x p x
H I x y I x y x y H

y q pq y

′    
′ ′= , , ↔ , , , = , , , − .    ′ +    

L  

 

Step 3. Integrate the two exchanged images together to be one permutated image B :  

  

            
1 2( ) ( ) ( ) 16 0 1 1B i j I i j I i j i j H, = , + , × , , = , , , − .L  

 

3.2. Diffusion Process 
 

Though the permutation process has changed the pixel positions of the plain-image as well as the 

pixel gray values, it has been pointed out that the permutation-only encryption is not secure [10]. 

In order to enhance the security, some diffusion function should be designed to assist the 

permutation process. In the diffusion phase, the values of all the pixels are systematically 

modified. An ideal secure encryption scheme should have a good diffusion mechanism. The 

diffusion process can significantly change the statistical properties of the plain-image by 

spreading the influence of each bit of the plain-image all over the cipher-image. The diffusion 

process will enhance the resistance to statistical attack and differential attack effectively, in which 

the histogram of the cipher-image is fairly uniform and is significantly different from that of the 

plain-image. The opponent cannot find any useful clues between the plain-image and the cipher-

image and so cannot break the cryptosystem even when they spend a lot of time and effort. We 

applied the multimodal skew tent map to produce pseudo-random gray value sequence in the 

diffusion process. The diffusion process is outlined as follows.  
 

Step 1. Set the values of M , the control system parameters ( 1 2 1)ia i M= ,..., − , and the initial 

condition 
0x .  

 

Step 2. Iterate the multimodal skew tent map Eq. (3) to get the truncated orbit of 
0x , say 

0 1 99nx n W H, = , , ..., × +  and reject the first 100 points to overcome the transient process of the 

chaotic map and save the remainder H W×  points. For the sake of simplicity, we still write them 

as ( ) 1x i i W H, = ,..., × .  
 

Step 3. The key stream element ( )k n  is calculated by Eq. (7), in which function “ ( )floor x ” 

means the value nearest integers less than or equal to x , ( )x n  represents the current state of a 

chaotic map and is calculated in Step 2, and L  is the gray level of the plain-image, respectively.  
 

14( ) ( ( ) 10 ) modk n floor x n L= × .                                                     (7) 
 

Step 4. Pixel values are modified sequentially according to Eq. (8), where ( )B n , ( )k n , ( )c n , 

( 1)c n −  are the gray values of the current operated pixel in the permuted image B , key stream 

element, output cipher-pixel, previous cipher-pixel, respectively.  
 

( ) ( ) (( ( ) ( 1)) mod )c n B n k n c n L= ⊕ + − .                                                  (8) 
 

Step 5. Repeat the above steps for all the pixels. An initial value seed ( 1)c −  is required for the 

first pixel.   
 

The complete diffusion process is composed of Step 1 to Step 5. The permutation process and the 

diffusion process form the image encryption scheme. 
 

3.3. The Decryption Process 
 

The decryption procedure is the reverse process of the encryption and the flowchart of the 

decryption process is shown in Fig. 4. The entire decryption procedure is depicted as follows.  
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Fig. 4. Flowchart of the decryption process. 
 

Step 1. Set the values of M , the control parameters ( 1 2 1)ia i M= ,..., − , and the initial 

condition 
0x .  

Step 2. Iterate the multimodal skew tent map Eq. (3) to get the truncated orbit of 
0x , say 

( ) 1x n n W H, = ,..., ×  as the same as those in the encryption process.  
 

Step 3. The key stream element ( )k n  is calculated by Eq. (7) as the same as that in the 

encryption process.  
 

Step 4. The decrypted image B  is obtained according to Eq. (9), where ( ) ( ) ( )B n k n c n, , , 

( 1)c n −  are the output decipher-pixel, key stream element, the current cipher-pixel, previous 

cipher-pixel, respectively.  

( ) ( ) ( ( ) ( 1) )B n c n k n c n modL= ⊕ + − .                                         (9) 
 

Step 5. Repeat the above steps for all the pixels. An initial value ( 1)c −  is required for the 

first pixel as well.  
 

Step 6. Split the yielded image B  into the lower 4-bit plane part 1I  and the higher 4-bit 

plane part 
2I . The control parameters p q,  for the generalized Arnold cat map are obtained by Eq. 

(10).  

2

1 1

( ( ( )) mod )
H W

i j

p I i j H
= =

= , ,∑∑  1

1 1

( ( ( )) mod )
H W

i j

q I i j H
= =

= , .∑∑                                    (10) 

 

Step 7. For each position of the higher 4-bit plane part, a corresponding random position 

( )x y′ ′,  in the lower 4-bit plane part is calculated by the Arnold map Eq. (5) with coefficients p q, . 

Exchange the gray values of pixel pairs between
1I  and 

2I . The exchange positions and gray value 

exchange operation are defined by  
 

1 2

1
mod ( ) ( ) 0 1 1

1

x p x
H I x y I x y x y H

y q pq y

′    
′ ′= , , ↔ , , , = , , , − .    ′ +    

L  

 

Step 8. Integrate the two exchanged images together to get the plain-image P :  

 
1 2( ) ( ) ( ) 16 0 1 1P i j I i j I i j i j H, = , + , × , , = , , , − .L  

 

4. SECURITY AND PERFORMANCE ANALYSIS 
 

According to the basic principle of cryptology [2], a good encryption scheme requires sensitivity 

to cipher keys, i.e., the cipher-text should have close correlation with the keys. An ideal 
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encryption scheme should have a large key space to make brute-force attack infeasible; it should 

also well resist various kinds of attacks like statistical attack, differential attack, etc. In this 

section, some security analyses have been performed on the proposed image encryption scheme, 

including the most important ones like key space analysis, statistical analysis, and differential 

analysis. All the analyses show that the proposed image encryption scheme is highly secure.  We 

use MATLAB 7.0 to run the encryption and decryption process in computer with 1 70. GHz CPU, 

4 GB memory and Microsoft Windows 8  operation system. All the results in this article are 

obtained under this circumstance. The plain-image is Lena.bmp of size 256 256× , the keys are 

( 1) 87c − = , 
0 0 367x = . , a =[ 0 , 0 16. , 0 3. , 0 51. , 0 68. , 0 78. , 1 0. ].  Fig. 5 shows the results of 

encryption and decryption. 
 

         
(a) plain-image Lena.                 (b) cipher-image of Lena.                     (c) decrypted image.  

 

Fig. 5. Encryption and decryption results. 

4.1. Statistical Analysis 
 

It is well known that the statistical property of a cipher-image is enormously vital and an ideal 

image algorithm should be robust against any statistic attacks. Histogram and correlation of 

adjacent pixels are two important indicators of statistical analysis.  
 

Histogram. Histogram analysis visually reveals the distribution information of pixel gray values. 

A good cipher-image should have a uniform and completely different histogram in comparison 

with that of the plain-image. Histograms of plain-image and cipher-image are plotted, through 

which we can intuitively see the number of pixels of each intensity value. A good image 

algorithm should make the histogram of cipher-image as uniform as possible. The histograms of 

plain-image Lena and its cipher-image are shown in Fig.6.  Fig. 6(a) and Fig. 6(b) are Lena image 

and its histogram respectively; Fig. 6(c) and Fig. 6(d) are the cipher-image of Lena and its 

histogram respectively. We can observe that the histogram of the cipher-image obtained by the 

proposed image encryption scheme is fairly uniform and is significantly different from that of the 

plain-image. The proposed image encryption scheme does not provide any useful information for 

the opponents to perform any effective statistical analysis attack on the cipher-image.  

 
Correlation of adjacent pixels. Generally speaking, as for an ordinary nature image with definite 

meaningful visual content, each pixel is highly correlated with its adjacent pixels either in 

horizontal, vertical or diagonal direction. An ideal encryption technique should produce cipher-

images with less correlation between adjacent pixels. To quantify and compare the horizontal, 

vertical and diagonal correlations of adjacent pixels in the plain and cipher images, we calculate 

the correlation coefficients for all the pairs of horizontally, vertically and diagonally adjacent 

pixels respectively. The results are shown in Fig.7. The correlation coefficients xyr  for two groups 

of adjacent pixels’ intensity values are calculated using Eq. (11) [32] :  
 

( ) {( ( ))( ( ))}cov x y E x E x y E y, = − − ,  
( )

( ) ( )
xy

cov x y
r

D x D y

,
= ,                                    (11) 
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where x  and y  are the gray values of the two selected groups of adjacent pixels from the image, 

1

1
( )

N

iN i
E x x

=
= ∑  and 21

1
( ) ( ( ))

N

iN i
D x x E x

=
= −∑ . 

     
(a)The histogram of plain-image.                               (b) The histogram of cipher-image.  

 

Fig. 6. Histograms of plain-image Lena and its cipher-image. 

          
             (a)Vertical correlation of plain-image.         (b)Vertical correlation of cipher-image. 

          
                (c)Diagonal correlation of plain-image.       (d)Diagonal correlation of cipher-image.  

  
                    (e)Horizontal correlation of plain-image.      (f)Horizontal correlation of cipher-image.  

 

Fig. 7.  Correlations of adjacent pixels. 
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The correlation distributions of two adjacent pixels in the plain-image Lena and that in its 

corresponding cipher-image are show in Fig. 7. From Fig.7 and Table 1, We can conclude that the 

correlation between adjacent pixels is greatly reduced in the cipher-image. There are no 

detectable correlations between the plain-images and their corresponding cipher-images. We also 

perform the comparison of dajacent pixel correlation with Wang’s algorithm [26], Chen’s 

algorithm [27] and Chen’s algorithm [28]. In our proposed scheme, the correlation coefficients 

are significantly reduced than other algorithms, we can intuitively see the changes from Table 2.  
 

Table 1. Correlation coefficients of adjacent pixels in the plain and cipher images. 
 

Figure Plain image  Cipher image 

Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Lena  0.9401  0.9695  0.9180   0.0003  -0.0074   -0.0043  

couple  0.9371  0.8926  0.8557   0.0006  -0.0017   -0.0023  

aerial  0.9050  0.8602  0.8213   -0.0116  -0.0007   0.0038  

liftingbody  0.9764  0.9755  0.9566   0.0025  0.0012   0.0007  

pout  0.9784  0.9842  0.9716   -0.0026  -0.0029   0.0012  

cameraman  0.9335  0.9592  0.9087   0.0004  0.0034   -0.0027  
 

Table 2. Correlation coefficients of adjacent pixels in plain-image Lena by different algorithms. 
 

Algorithm Cipher image 

Horizontal Vertical Diagonal 

Proposed algorithm  -0.0003  -0.0043  -0.0074   

Wang’s algorithm [26]  0.0074  0.0020  -0.0070   

Chen’s algorithm [27]  -0.0038  0.0092  0.0033   

Chen’s algorithm [28]  0.0660  -0.0341  -0.0278   

 

Furthermore, we introduce a new statistic index to reflect the effect of the cipher-image, which is 

called the co-occurrence histogram [33]. The co-occurrence histogram in the horizontal direction 

is defined by Eq. (12).  
 

1

1

1 1

( ) ( ( ) ) ( ( 1 ) ) 0 1 255
n n

x y

co i j g x y i g x y j i jδ δ
−

= =

, = , − + , − , , = , , ..., .∑∑                            (12) 

 
 

The co-occurrence histogram in the vertical direction is defined by Eq. (13).  
 

 

1

2

1 1

( ) ( ( ) ) ( ( 1) ) 0 1 255
n n

x y

co i j g x y i g x y j i jδ δ
−

= =

, = , − , + − , , = , , ..., .∑∑                            (13) 

 

where ( )g x y,  is the pixel value at the location ( )x y, . If x = y , then ( ) 1x yδ , = , otherwise, 

( ) 0x yδ , = . The detail co-occurrence histograms of the plain-image and cipher-image are shown 

in Fig.8. Besides, the information entropy Eq. (14) correlated with co-occurrence is introduced to 

measure uniformity level of the two-dimension histogram. The distribution of the pixel space will 

be more uniform when the value of information entropy is bigger. Compared with Wang’s 

algorithm [26], Chen’s algorithm [28] and Zhang’s algorithm [29], our proposed algorithm 

obtains better results in Table 3 and Table 4. We employ four 256 gray scales standard test 

images with the size of 256 256× . From the results we can see that, when ciphering the same 

image, our proposed algorithm obtains better values than other algorithms. Especially, when 

encrypting image pout.tif, the vertical information entropy in Table 3 is 11 1762. , however, the 

corresponding value by Zhang’s algorithm in Table 4 is just 9 2713. .  
 

255 255
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(a)                                                                    (b) 

  
(c)                                                                         (d) 

Fig. 8. Co-occurrence histograms: (a), (c) are vertical and horizontal co-occurrence histograms of plain-

image; (b), (d) are vertical and horizontal co-occurrence histograms of cipher-image. 

 
Table 3. Co-occurrence histogram entropies of our proposed algorithm. 

 

Image Plain image Cipher image 

Horizontal Vertical  Horizontal Vertical 

Lena  8.8162  8.4882   10.5191  10.5121   

aerial  9.0160  9.1406   10.5185  10.5145   

pout  6.5881  6.4524   11.1694  11.1762   

cameraman  7.8065  7.8449   10.5151  10.5145   

 
Table 4. Co-occurrence histogram entropy of other algorithms. 

 

Image Wang’s algorithm [26] Chen’s algorithm[28] Wang’s algorithm [26] 

Horizontal Vertical Horizontal Vertical  Horizontal Vertical 

Lena  10.5149  10.5193  10.5025  10.5021   10.5146  10.4821   

aerial  10.5152  10.5136  10.5158  10.5199   10.5143  10.4966   

pout  10.5137  10.5153  10.3349  10.2815   11.1182  9.2713   

cameraman  10.5163  10.5149  10.4833  10.4524   10.5157  10.4247   
 

4.2. Information entropy analysis  
 

In [2], entropy was proposed by Shannon so as to quantitatively measure the randomness and the 

unpredictability of an information source. The mathematical formula for the entropy of a message 

source is defined in Eq. ( 15), where s is the source, N is the number of bits to represent the 

symbols, and ( )iP s  is the probability of the symbol is .  
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For a purely random source emitting of 2N  symbols, the entropy is N . Therefore, the upper-

bound entropy of an effective cipher-image with 256 gray levels is 8. Such expected value will be 

achieved when the cipher-image is uniformly distributed, i.e., the image has complete flat 

histogram.  
 

The results of the information entropy analysis for four 256 gray scales standard test images with 

size 256 256×  are listed in Table 5. The results illustrate that the entropies of the cipher-images 

are very close to the upper-bound value 8. As indicated by the calculated values, the information 

entropy of our proposed algorithm is bigger than that of Chen’s algorithm [28]. Nevertheless, all 

of them are very close to the ideal value 8. We can therefore come to the conclusion that there is 

little possibility to eavesdrop and our encryption scheme has high robustness against entropy 

attack.  
 

Table 5.  Entropies of plain image and its cipher image.  
 

Image  Plain image  Cipher image  Chen’s algorithm [28] 

Lena  7.5682788  7.9972907  7.9923   

aerial  7.3118072  7.9970804  7.9963   

pout  5.7598895  7.9968558  7.9573   

cameraman 7.0097163  7.9970644  7.9903   
 

4.3. Differential Attack Analysis 
 

Number of pixel change rate (NPCR) and unified average changing intensity(UACI) are usually 

used to measure the sensitivity of the cryptosystem to a slight modification of the plain-image. In 

an ideal situation, a slight modification of the plain-image will lead to a completely different 

cipher-image which would indicate its resistance to differential attack. Otherwise, it would have 

been possible to obtain the correlation between the plain-image and the cipher-image by a series 

of attacks of this nature. In order to calculate NPCR and UACI, suppose two plain images 
1I  and 

2I  with difference in only one pixel, and their cipher images are denoted as 1C and 2C . Then we 

create a matrix D, when 
1 2( ) ( )C i j C i j, = , , ( ) 0D i j, = ; otherwise, ( ) 1D i j, = . NPCR and UACI are 

calculated by Eq. (16). 
 

              
( )

100
i j

D i j
NPCR %

W H

,
,

= × ,
×

∑
 1 2( ) ( )1

( ) 100
255i j

C i j C i j
UACI %

W H ,

| , − , |
= ×

×
∑ ,                  (16) 

 

where W, H are the width and height of the images.  
 

To test the influence of one pixel change on the whole cipher-image, we randomly select 100 

pixels from the processing image and then alter each pixel's gray value by one bit each time. 

Then, we calculate the corresponding 100 NPCR and UACI values and take the average of them.  

The average NPCR and UACI values are shown in Table 6.  It shows clearly that the algorithm 

reaches very good NPCR performance when encrypted just one round of encryption. The UACI 

performance is similar. From the results we know that the proposed image encryption scheme is 

extremely sensitive to plaintext, which is very important to resist differential attack. Table 7 gives 

the comparison of performance of UACI and NPCR when encrypting the image of Lena applying 

one round of encryption. The expectation value of NPCR and UACI are 99.6094% and 

33.4636%. Table 7 indicates that the performance of the proposed algorithm is better than Wang's 

algorithm [26], Chen's algorithm [27] and Chen's algorithm [28] when encrypting images one 

round. Therefore, one round of encryption by our proposed scheme is secure enough to resist 

differential attack. 
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Table 6. NPCR-UACI performance of the Lena and cameraman images. 
 
 

Image Average NPCR Average UACI 

Lena  99.638366699 33.500366211 

Cameraman 99.606323242 33.573919558 

 
 

Table 7.  NPCR-UACI performance of different algorithms. 
 

 

Algorithm NPCR UACI 

Proposed algorithm  99.6058 33.4488 

Wang's algorithm[26] 99.6017 33.4343 

Chen's algorithm[27] 99.5723 33.7661 

Chen's algorithm[28] 98.0536 32.6984 

 
4.4. Key Space Analysis 
 

The key space is the total number of different keys that can be used in a cryptosystem. In [34], it 

is suggested that the key space of a chaos-based image cryptosystem should be larger than 1002 . 

As to the proposed scheme, no other chaotic system is introduced in the permutation phase, and 

the key space wholly depends on the diffusion key, denoted as Key P− . The initial value 0x , 

( 1)c −  and control parameter  ( 1,..., 2 1)ia i M= −  of multimodal skew tent map serve as the primary 

key of the proposed cryptosystem. According to the IEEE floating-point standard [35], the 

computational precision of the 64-bit double-precision number is about 1610− . Due to the fact that 

0x  can be any one among those 1610  possible values within (0,1), and so as ia , ( 1,..., 2 1)i M= − . 

Regarding L  gray-level image, the valid values of ( 1)c −  is L . For the case 3M = , we can take 

an  example, 
0x =0.367, a =[0, 0.16, 0.3, 0.51, 0.68, 0.78, 1.0], ( 1)c − =87, then the key space of 

the proposed cryptosystem is  
 

16 16 16 16 16 16 32710 10 10 10 10 10 256 2Key P− = × × × × × × ≈ . 
 

which satisfies the security requirement suggested in [34], and is large enough to resist brute-

force attack. 
 

4. 5. Key Sensitivity Analysis 
 

Key sensitivity of an image cryptosystem can be observed in two aspects: (i) completely different 

cipher images should be produced when slightly different keys are applied to encrypt the same 

plain-image; (ii) the cipher-image cannot be correctly decrypted even tiny mismatch existing in 

decryption keys. With regard to the symmetrical characteristic of the secret key, we typically test 

the sensitivity of ( 1c − ）, 0x , u  so as to avoid redundancy. 
 

To evaluate the key sensitivity in the first case, the encryption is first performed with master 

cipher keys ( 1c − ）=87, 0x =0.367, u =[0, 0.16, 0.3, 0.51, 0.68, 0.78, 1.0]. A valid and slight 

modification is introduced to one of the cipher keys with others remaining unchanged and the 

encryption process is executed once again. The corresponding cipher-images and the difference 

images are shown in Fig. 9. The differences between the corresponding cipher-images are 

numerically computed, as listed in Table 8. The results obviously demonstrate that the cipher-

images exhibit no similarity one another and there is no significant correlation that could be 

observed from the differential images. 
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Table 8. Key sensitivity 
 

Figure Cipher keys Difference 

( 1)c −  0x  (2)u  (3)u  (5)u  

Fig. 9(b) 87 0.367 0.16 0.3 0.68 -- 

Fig. 9(c) 88 0.367 0.16 0.3 0.68 1.0 

Fig. 9(e) 87 0.367+ 1610−   0.16 0.3 0.68 0.9957 

Fig. 9(g) 87 0.367 0.16 1610−+  0.3 0.68 0.9960 

Fig. 9(i) 87 0.367 0.16 0.3 1610−+  0.68 0.9966 

Fig. 9(k) 87 0.367 0.16 0.3 0.68 1610−+  0.9960 

 

The key sensitivity of the second case is tested by implementing decryption with slightly different 

keys. The decrypted images are shown in Fig. 10. The differences of the incorrect decipher-

images to the plain image are 1.00, 0.995712, 0.996002, 0.996613, and 0.996017, respectively. 

As pointed out by the previous achievements in [27], our proposed scheme achieving the 

satisfactory security level, the difference even reaches to 1.00 between two decipher when only a 

slight modification is introduced.  
 

In this paper, to verify the sensitivity of key parameter K , the original plain-image ( ( , ))H WI I i j ×=  

is encrypted with K p= , K p= − ∆  and K p= + ∆  respectively while keeping the other key 

parameters unchanged. The corresponding encrypted images are denoted by 
1J , 

2J , 
3J  

respectively. The sensitivity coefficient to the parameter K  is denoted by the following formula: 
 

( )sP K 1 2 1 3

1 1

1
[ ( ( , ), ( , )) ( ( , ), ( , ))] 100%

2

H W

s s

i j

N J i j J i j N J i j J i j
W H = =

= + ×
× ×

∑∑ , 

 

 
1, ,

( , )
0, .

s

x y
N x y

x y

≠
= 

=
  

 

where ∆  is the perturbing value. ( )sP K  implies  the sensitivity to the perturbation of parameter 

K . The greater ( )sP K , the more sensitive for the parameter K . Table 9 shows the results of the 

sensitivity test where the initial key values are set to be the following: ( 1)c − =87, 
0x =0.367, 

u =[0, 0.16, 0.3, 0.51, 0.68, 0.78, 1.0].   
 

 

              
 

(a) plain-image Lena.                        (b) master key.                                          (c) ( 1)c − =88.  
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 (d)Difference between (b) and (c).            (e)
0x =0.367+ 1610− .              (f) Difference between (b) and (e). 

 

               
 

              (g) (2)u =0.16+ 1610− .              (h) Difference between (b) and (g).        (i) (3)u =0.3+ 1610− . 

 

               
 

    (j)Difference between (b) and (i).            (k) (5)u  =0.68 + 1610− .           (l) Difference between (b) and (k). 

 

Fig. 9. Key sensitivity test I: master key is set to be ( 1)c − =87, 0x =0.367, u =[0, 0.16, 0.3, 0.51, 0.68, 0.78, 

1.0]. (b),(c),(e),(g),(i),(k) are the cipher-images using different cipher keys with minor perturbing. 
 

4.6. Speed Performance 
 

Wong et al. have pointed out that the consumption time of an image cryptosystem is mainly 

resulted from the real number arithmetic operation in the encryption process [36,37]. To evaluate 

the execution time of the proposed scheme and those of the comparable algorithms, the standard 

test image Lena.bmp is subjected to one round of encryption. The execution times can be found in 

Table 10. Table 10 illustrates that the total execution time of the proposed scheme is much shorter 

than those of the comparable algorithms. Especially, in Chen's algorithm [27], the authors divided 

the whole image into four parts based on dynamic random, the time-consuming is inevitable in 

both the confusion phase and the diffusion phase. 
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Table 9. Results regarding the sensitivity to cipher keys. 

 

 

 

 

 

                 
 

   (a)cipher-image with master key.                (b) master key.                                     (c) ( 1)c − =88. 

 

                 
 

      (d)
0x =0.367+ 1610− .                         (e) (2)u  =0.16+ 1610− .                          (f) (4)u =0.51+ 1610− . 

 

Fig. 10. Key sensitivity test II: (b)-(f) are the corresponding decrypted images using different cipher keys 

with minor perturbing. 

 
Table 10. Speed performance. 

 

Algorithm Confusion time (s) Diffusion time (s) Total time (s) 

Proposed algorithm 0.053 0.323 0.376 

Wang's algorithm[26] 0.156 0.469 0.625 

Chen's algorithm[27] 0.658 1.652 2.310 

Chen's algorithm[28] 0.559 1.536 2.095 

 

5. CONCLUSION 
 

An efficient image encryption scheme based on a half-pixel-level interchange between the higher 

4-bit plane part and the lower 4-bit plane part is proposed in the paper. The proposed encryption 

scheme can shuffle the plain-image efficiently in the permutation process. An effective diffusion 

process is also designed to alter the gray values of the whole image pixels. Security and 

performance analyses including co-occurrence histogram, key space analysis, key sensitivity 

analysis, statistical analysis, information entropy analysis, differential attack analysis and speed 

rate are performed numerically and visually. All the experimental results show that the proposed 

K  u(2) u(3) u(4) u(5) u(6) 
0x  

( )sP K (%) 99.6048 99.6246 99.5918 99.6429 99.6048 99.5880 
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encryption scheme is highly secure thanks to its large key space, its high sensitivity to the cipher 

keys and plain-images. The proposed encryption scheme is easy to manipulate and can be applied 

to color images as well.  All these satisfactory properties make the proposed scheme a potential 

candidate for encryption of multimedia data such as images, audios and even videos. 
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