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Abstract

Spatially-explicit maps of aboveground biomass are essential for calculating the losses
and gains in forest carbon at a regional to national level. The production of such maps
across wide areas will become increasingly necessary as international efforts to pro-
tect primary forests, such as the REDD+ (Reducing Emissions from Deforestation and
forest Degradation) mechanism, come into effect, alongside their use for management
and research more generally. However, mapping biomass over high-biomass tropi-
cal forest is challenging as (1) direct regressions with optical and radar data saturate,
(2) much of the tropics is persistently cloud-covered, reducing the availability of optical
data, (3) many regions include steep topography, making the use of radar data com-
plex, (4) while LiDAR data does not suffer from saturation, expensive aircraft-derived
data are necessary for complete coverage.

We present a solution to the problems, using a combination of terrain-corrected L-
band radar data (ALOS PALSAR), spaceborne LiDAR data (ICESat GLAS) and ground-
based data. We map Gabon’s Lopé National Park (5000 km2) because it includes a
range of vegetation types from savanna to closed-canopy tropical forest, is topographi-
cally complex, has no recent cloud-free high-resolution optical data, and the dense for-
est is above the saturation point for radar. Our 100 m resolution biomass map is derived
from fusing spaceborne LiDAR (7142 ICESat GLAS footprints), 96 ground-based plots
(average size 0.8ha) and an unsupervised classification of terrain-corrected ALOS
PALSAR radar data, from which we derive the aboveground biomass stocks of the
parktobe 78 TgC (173MgC ha™’ ). This value is consistent with our field data average
of 181 MgC ha‘1, from the field plots measured in 2009 covering a total of 78 ha, and
which are independent as they were not used for the GLAS-biomass estimation. We
estimate an uncertainty of £25% on our carbon stock value for the park. This error
term includes uncertainties resulting from the use of a generic tropical allometric equa-
tion, the use of GLAS data to estimate Lorey’s height, and the necessity of separating
the landscape into distinct classes.
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As there is currently no spaceborne LiDAR satellite in operation (GLAS data is avail-
able for 2003-2007 only), this methodology is not suitable for change-detection. This
research underlines the need for new satellite LiDAR data to provide the potential for
biomass-change estimates, although this need will not be met before 2015.

1 Introduction

Tropical forest ecosystems have a variety of values, monetary and otherwise, that vary
markedly with the scale considered. However, many of these, especially the more
general benefits at a larger scale, are often not included in decisions relating to whether
a forest area remains forest or is converted to another land-use (Stern, 2008;Engel et
al., 2008). At a local scale the individual plants and animals have value, providing non-
timber forest products, bushmeat, fuel, and timber (Ahrends et al., 2010); at a regional
scale they can provide protection from extreme weather events and preserve water
supplies (Kaiser and Roumasset, 2002; Swetnam et al., 2011); and at a global scale
they influence global energy budgets through regulation of evapotranspiration, rainfall,
and other climatic variables (Meir et al., 2006), also acting as a large store of carbon,
and as a carbon sink (Phillips et al., 2008; Lewis et al., 2009b; Lewis et al., 2009a).
The fate of an area of forest has tended to be controlled by the opportunity to liquidate
its considerable timber value (Geist and Lambin, 2002) by destructively harvesting its
trees, or clearing the land to convert it to a more productive land-use, e.g. agriculture
(though in many cases local people derive no benefit from conversion (Rodrigues et
al., 2009)). Further difficulties arise in the optimum allocation of land to differing uses
due to ownership, sovereignty, governance, and the ability and will to monitor forests,
particularly at larger scales (Chhatre and Agrawal, 2008, 2009).

One approach to preventing this loss of forests has been attempts to place a price
on forests, based on the carbon they store, with the avoided emissions from defor-
estation producing carbon credits tradable on carbon markets. Carbon is only one
element of the benefits provided by living forests, but it is one that is relatively tangible
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and easy to quantify. Past international structures largely excluded pricing existing
forest carbon, for example under the United Nations Clean Development Mechanism
(CDM), which formed part of the Kyoto Treaty, carbon credits for forestry were given
only for planting new forests or for reforestation, rather than for protecting threatened
forests. However, the 2010 Cancun Agreement, agreed at the UNFCCC COP-16 Con-
ference, has created an international framework for valuing forest carbon within the Re-
ducing Emissions from Deforestation and forest Degradation (REDD+) scheme. The
aim is to rapidly and radically reduce the rate of deforestation across the tropics, via
performance-related payments to countries who reduce deforestation and degradation
related carbon emissions (Clements, 2010). Though the details of REDD+ are yet to
be finalised, its adoption was agreed at COP16 at Cancun, and considerable funds
have already been committed (USD 28.3 billion have been committed by the devel-
oped world to developing world as fast-start finance for climate mitigation programs,
including REDD+ (WRI, 2010)). Additionally, REDD+ transfers through government-
government agreements and through the voluntary sector have already started, and
are accelerating (Clements et al., 2010).

Whilst recognising the numerous limitations and problems associated with valuing
forests for their carbon alone, a carbon price may establish a minimum value for forests,
which may alter the decisions of land-owners in the future. Yet such a price associated
with an area of forest can only be assessed if the carbon stocks of an area of forest can
be accurately determined, with known uncertainties giving a minimum carbon stock at
each time point, and then such a carbon map updated regularly in order to calculate
deforestation rates, and therefore payments.

Scientific forest inventory plots are thought to provide the most accurate data on the
aboveground biomass (AGB) of an area: these usually involve measuring the diameter
at breast height (DBH), and ideally the height and species too, of every tree with a
DBH > 10cm (Brown, 1997; Phillips et al., 2009). AGB is then estimated from these
measurements using either locally-derived or standard allometric equations; there
are thought to be significant errors associated with these equations, as destructive
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harvesting data is not available for specific species and areas. Often for tropical forests
a pantropical equation is used, derived from 2410 destructively harvested trees from
27 sites (Chave et al., 2005). It includes equations stratified by forest type, with DBH,
height and wood density as parameters. The approach not only reduces the model
error compared with using DBH alone, but also increases applicability to tree-types not
used to define the original equations.

However, for reasons of resources, time and access, it is not possible to place a
sufficient number of plots across a forested area, let alone a country, in order to be able
to use such plots to estimate AGB for the whole area directly. Instead remote sensing
data is used to extrapolate the plot data across the landscape, with the methods used
split into two major categories:

1. Direct statistical relationship between AGB and a remote sensing variable (or vari-
ables, possibly including modelled variables and environmental data layers), al-
lowing the production of a continuous AGB map for the area. With the notable
exception of LIDAR (see below), such relationships are strong for lower AGB lev-
els but tend to decrease in accuracy and eventually saturate as AGB increases,
making higher biomass areas hard to map. This saturation point varies greatly
depending both on the source data and vegetation type — ranging from 15—
70 Mg ha™' for visible/near-infrared vegetation indices (Lu, 2006), or from 40 to
150 Mg ha™' for L-band radar data (Lu, 2006; Mitchard et al., 2009).

2. Classification into landcover type, usually using optical remote sensing data, with
each forest type then given an AGB value and these classes then summed to
estimate AGB over the whole site. Ideally the average AGB of each class is
derived from field data, but often national or continental average values are used
(GOFC-GOLD, 2009).

An exception to the above is LiDAR data, which by sending a short pulse of laser light

either from an aircraft or from space can be used to elucidate the height and even

vertical structure of a forest. Tree height, and other LiDAR-derived metrics, have been
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shown to relate strongly to forest biomass, with no saturation at higher biomass values
(Lefsky et al., 2005). Unfortunately aircraft LIDAR data acquisition is costly, and the
capacity to collect annual data over whole countries does not exist currently. However,
space-borne LiDAR data was collected by the ICESat sensor from 2003 to 2007 (Lef-
sky, 2010), and more such data will be collected by ICESat 2 (Abdalati et al., 2010),
due for launch in 2015. Aircraft LiDAR tends to be imaging LiDAR, with small footprints
collected at a very high density, leading to a detailed 3-dimensional image of the area
of interest; however current spaceborne systems are profiling LiDARs, collecting iso-
lated, widely separated footprints, thus sampling the landscape. As a result in order
to create full-coverage spatial layers from spaceborne LiDAR the data must be fused
with other datasets. It has been shown previously that satellite LIDAR data has great
potential for estimating biomass over large areas when fused with radar data (Shugart
et al., 2010).

Methods for estimating AGB using one or other of the two methods above are rela-
tively well established, and are being employed with success as part of the monitoring
schemes for many pilot REDD+ projects (CCBA, 2011). However, much of the trop-
ics is suboptimal for the above methods in three respects. Firstly, many areas exhibit
frequent cloud-cover, making classification using optical data next to impossible. Sec-
ondly, many areas include high biomass forest, at which most methods saturate. Third,
many forest overlay areas of steep topography, making radar data less useful. Thus
methods to overcome these obstacles are needed.

Here we use the mountainous and persistently cloud-covered Lopé National Park
in Gabon to show how a novel AGB estimation method, involving terrain-corrected L-
band radar data, field data and GLAS LiDAR data, can accurately determine AGB over
a densely forested landscape with specified and relatively high accuracy. The use of
high resolution optical data was not possible over this site, as there are no cloud-free
SPOT, ASTER or Landsat scenes covering over 50 % of the study site from 2000 to the
present day.
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2 Study site

The study area is the Lopé National Park (LNP), which is situated in central Gabon
(Fig. 1), and covers an area of 4948 kmz; it has been a wildlife reserve since 1946, and
a National Park since 2002. Though surrounded by closed-canopy tropical rainforest
typical of the Congo basin, the north of the park is characterised by savanna and a
mosaic of low-biomass forest types (principally monodominant Okoumé (Aucoumea
klaineana) forest, and distinctive open-canopy Marantaceae forest, so-called because
the understory is dominated by a thick layer of herbaceous plants of the Marantaceae
and Zingiberaceae families). The forest-savanna mosaic is a remnant of the landscape
that dominated much of the Congo basin during the Last Glacial Maximum (LGM)
(White, 2001). At the LGM savanna covered the majority of LNP, but the increase in
precipitation has since caused an expansion of forest to cover nearly the whole area,
with forest continuing to expand into the savannas today (White, 2001). Certain forests
in the south of the study area may represent Pleistocene refuges that survived through
successive glacial maxima that resulted in savanna expansion (Leal, 2001), but much
of the northern half of LNP was dominated by savanna until an apparent large reduction
in the human population ca. 1400BP (Oslisly and White, 1995). In about 1920 the
colonial administration moved all villages from the interior of the LNP, initiating large-
scale forest regeneration in previously cultivated zones (Pourtier, 1989). The savanna
that remains is maintained by a combination of now limited human burning and the
rain-shadow of the Massif du Chaillu, which reduces rainfall to 1500 mm yr’1 in the
north of the park (White and Abernethy, 1997); whereas rainfall in the south of the
park is ~2500 mm yr‘1 (Tropical Rainfall Measuring Mission (TRMM) 3B43 V6 data
January 1998 to January 2010). The site features significant topographic variation and
dissection: the altitude ranges from 72 to 980 ma.s.l., and 23.7 % of the study area has
a slope great than 20 % (11.3°).
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3 Methods
3.1 Field data

A wealth of forestry data has been collected in the LNP since 1983. However, in order
to investigate the relationship between radar data and AGB we only used the plots
that were re-measured in 2009, which include 3 transects of length 5km, 20 plots of
20m x 40 m, and one plot of 100m x 100 m.

For the 20 x 40 m plots and the 100 m x 100 m plot all stems with a diameter at breast
height (DBH) >10cm had their DBH measured and were identified to the species level
(or genus if species identification was not possible). The locations of all four corners
of each plot were determined using a Garmin 60 CSx GPS. For the 5 km transects all
stems > 10 cm DBH were only measured for a 5 m wide band, with stems > 70cm DBH
being measured for a 50 m band. We therefore split each transect into 25 sections of
200m x 50 m, giving 25 plots of 1 ha size per transect. To calculate AGB values for
each 1 ha section of the 50 m wide band, the AGB of the stems between 10 and 70cm
DBH (in the 5 m band) were multiplied by ten and added to the AGB for the >70cm
stems.

Tree heights were measured in addition to DBH for 3673 stems along the 5 m band
of the five transects in 1989. The tree heights were estimated to the nearest meter
using a clinometer. These data were used to build a site-specific relationship between
tree height and DBH.

AGB was estimated using the moist tropical forest equation from (Chave et al., 2005),
involving DBH (D), height (H) and wood specific gravity (o):

AGB = 0.0509 [pDZH] )

This equation gives AGB in kg dry biomass; throughout this study AGB has been re-
ported in Mg ha™" dry biomass, but where appropriate this has been converted to car-
bon (Mg C) using the standard conversion factor of 0.5 (IPCC, 2003). Wood specific
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gravity data were derived from the Global Wood Density database (Chave et al., 2009a,
2009b): species-specific data were available for 64 % of stems, for the rest the average
density for members of the genus from tropical Africa were used.

3.2 Lorey’s height to AGB relationships

The method used to process the LIiDAR data gave an estimate of Lorey’s height, a
basal-area weighted measure of height (Sect. 3.4). In order to develop a relationship
between Lorey’s height and AGB, Lorey’s height (L) was calculated for each plot using
height in metres (H) and basal area in m? (Ag, calculated as 7T(DBH/2)2 ) for each stem
using the following equation:

2(H-As)
248

For calculating Lorey’s height from the ground plots we preferred plots for which we
had height measurements for every stem — using DBH-height relationships reduces the
accuracy of height measurements, and also introduces a spurious correlation as both
axes will scale directly with basal area, with only wood density providing the scatter. We
therefore used the 5 m band data of the five LNP transects from 1989 (split into 0.25 ha
sections, a similar size to the LiDAR footprints, giving 50 plots in total), but this did not
give a sufficient number of plots, especially for lower AGB values, to enable us to build
up a suitable relationship. To resolve this issue we added the 20 plots of 20m x 40 m
from LNP; though we had to use the DBH-height relationship for these, every stem that
was broken off, damaged or deformed was noted in the field notes, reducing errors.
We also added plots from nearby areas where DBH and height had been measured for
every stem, adding four more 1 ha plots from Gabon (Lewis et al., 2009b), and 14 plots
from Mbam Djerem National Park, on the forest-savanna transition zone in Cameroon,
which has a similar vegetation type and rainfall to LNP (Mitchard et al., 2011). In total
this gave 88 plots where field-measured Lorey’s height and AGB could be compared.

L= )

8790

BGD
8, 8781-8815, 2011

Mapping tropical
forest biomass with
radar and
spaceborne LIiDAR

E. T. A. Mitchard et al.

Title Page
Abstract Introduction
Conclusions References
Tables Figures
(R [ 4]
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/8781/2011/bgd-8-8781-2011-print.pdf
http://www.biogeosciences-discuss.net/8/8781/2011/bgd-8-8781-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

3.3 Radar data

Six ALOS PALSAR (Advanced Land Observing Satellite Phased Array L-band SAR)
scenes captured on the 25 June 2009 (3 scenes) and 24 July 2009 (3 scenes) were
acquired through an ESA (European Space Agency) Category-1 Proposal. These were
FBD (Fine-Beam Dual-polarisation) scenes, provided at the 1.1 processing level. We
projected the scenes using the Alaska Satellite Facility’s software package MapReady
2.3. Terrain slope has a significant impact on radar scenes, impacting both the pro-
jection of the slant-range image, and the backscatter values, which due to changes
in the radar incidence angle are increased on slopes facing the sensor, and reduced
on slopes facing away. To perform the terrain correction we needed a Digital Ele-
vation Model (DEM): we used the 90 m resolution Shuttle Radar Topography Mis-
sion (SRTM) dataset, using the void-filled Version 4 product produced by CGIAR-CSI
(http://srtm.csi.cgiar.org). We used MapReady to correct geolocation and radiomet-
ric problems due to terrain (including adjusting pixel areas due to incidence angle,
adjusting backscatter values to account for radar incidence angle, and interpolating
layover/shadow regions). The terrain correction was successful, with the topography
not visible in the corrected HH and HV images, and there being no residual correlation
between the corrected backscatter values and the radar incidence angle.

All processing, including the extraction of radar data values for the field plots, was
performed at a 100 m (1 ha) spatial resolution: the same scale as the majority of the
field plots (76 out of 96), and a scale at which the heterogeneity of forest structure is
normally distributed (Chave et al., 2004), and at which we are confident in our geolo-
cation.

3.4 LiDAR data

Space-borne LiDAR data were collected from 2003—2007 over LNP by the Geoscience
Laser Altimeter System (GLAS) on the Ice Cloud and Land Elevation Satellite (lce-
SAT). These data are in the form of circular footprints, with each footprint ranging from
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0.2-0.25ha in size, depending on the terrain slope. In total data for 37021 individ-
ual footprints overlapping with the PALSAR scenes were recorded. However, 26 747
of these footprints were removed through cloud filtering, with a further 3132 points re-
moved as they fell on steep slopes (> 20 %), where accuracy decreases markedly (Lef-
sky et al., 2005). This left 7142 GLAS footprints coincident with our six radar scenes
(Fig. 1b). Features of the waveforms were correlated with measured Lorey’s height
from 95 plots in three forest sites in the Amazon, with field plots coincident with GLAS
data (r:2 =0.83, RMSE = 3.3m, n =95), see Lefsky, (2010) for details.

3.5 Unsupervised classification

Due to saturation, direct regression between the field plots data and radar backscatter,
as performed for example in (Mitchard et al., 2009), was thought to be poorly suited to
estimating AGB for LNP, apart from in the small area of savanna in the north. Though
we performed the analysis for comparison, it is the LiDAR data that has the potential to
estimate the AGB of LNP above the saturation limit of the radar. Rather than averaging
the heights of the LiDAR footprints to get an average value for the park, we pursued a
solution that would include the spatial information on vegetation structure contained in
the radar data.

The Radar Forest Degradation Index (RFDI) (Saatchi et al., 2011) is a ratio between
the power of the HH and HV polarisations, designed to assess the strength of the
double-bounce term. It is defined as:

RFDI = HH-HYV (3)
HH +HV

and picks out this term because HH is sensitive to both volume scattering and double

bounce, whereas HV is mostly sensitive to volume scattering. We therefore found it to

be a useful layer in helping to differentiate different vegetation types, pulling out more

information from the dual-polarisation radar data.

We therefore used the radar backscatter (in HH and HV polarisations), RFDI, and
altitude (from the DEM) to develop an unsupervised classification of the park (Fig. 2).
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We aimed to use as many classes as possible, to enable us to fully characterise the
different vegetation structures, and after experimentation we chose 40 classes as this
left each class with at least 100 LiDAR observations.

The classification was performed using ENVI 4.7 (ITT Systems), using both the K-
means and IsoData unsupervised classification methods, with 40 classes and 100 iter-
ations. All four bands (HH, HV, RFDI & DEM height) were scaled to have an identical
mean and standard deviation. At this number of iterations both methodologies pro-
duced an identical classified map. We then extracted the derived AGB value from each
GLAS footprint within each class, averaged these AGB values, and assigned these
mean AGB values to each class in order to produce an AGB map.

4 Results
4.1 Stem heights to DBH

We required AGB estimates for the field plots, but though we had DBH and species
data for every stem, no stem height data was collected in 2009. Therefore we wished
to develop a site-specific relationship between DBH and stem height, based on 3673
stem DBH and heights measured over four transects in 1989. The stem heights (H)
were strongly correlated with DBH (D) (r2 =0.62, p <0.0001, standard error of esti-
mate = 4.97 m, Fig. 3). The fitted equation was:

H=a+b[D] (4)

with coefficients (+ standard errors): a=-4.25+1.20, b=4.37+0.90, c=0472+
0.037. This relationship was applied to the stems measured in 2009, allowing AGB to
be calculated from the Chave et al. (2005) equation involving DBH, wood density and
height.
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4.2 Lorey’s height to field biomass

We had estimates of Lorey’s height from the LiDAR data, but needed to use field plot
data to convert these Lorey’s height estimates into AGB. To do this we used Lorey’s
heights (H, ) from the 88 field sites (both from within and near Lopé, and from the Mbam
Djerem National Park in Cameroon) where height had been measured for every stem
(see Methods). We found that Lorey’s height was strongly related to AGB of these plots
(r2 =0.81, p<0.0001, Fig. 4); we treated AGB as the dependent variable here, as it
was this that we wished to predict from Lorey’s height. The fitted equation was:

AGB = a [(HL)b] (5)
with coefficients (+ standard errors): a=0.564+0.013, b =1.945+0.096.
4.3 Direct biomass estimation with radar

We then correlated the terrain-corrected radar data (in both the HH and HV polarisa-
tions) with the field data. We found a strong relationship with both polarisations, with
a saturation point around 100 Mg ha™' for HH, and around 150 Mg ha™' for HV (Fig. 5).
The best fit model was the same as that used in Mitchard et al. (2011), also identical in
form to the Water Cloud Model (Attema and Ulaby, 1978) (for coefficients see Table 1):

035 =a+b[1-EXP(c-AGB)] (6)

Equation 5 was rearranged as follows to allow the production of an AGB map over the
study area using the HV PALSAR data:

0
(6] -a
AGB=.In [1 _ 958 ] (7)

c b

The relationship between PALSAR HV and AGB saturates at ~150 Mg ha™" (Fig. 5b,
Mitchard et al., 2009, 2011), and thus the map produced was limited at this value
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(Fig. 6a). Using this upper limit means that using radar data in this way to estimate the
AGB of LNP will result in a large underestimation; however for comparison, and as an
absolute lower limit, this methodology estimates the aboveground biomass of LNP to
be 67.5Tg, equivalent to 33.7 Tg C (Fig. 6a).

4.4 Classification and mapping by GLAS

A K-means and IsoData classification with 40 classes and 100 iterations were found to
give identical results, and a classification that, based on our field knowledge, classified
separately and accurately all the major vegetation types. No more than 40 classes
were used, as experimentation showed that more would have resulted in fewer than
100 GLAS footprints falling within each class.

Each class was given an average AGB value by converting each GLAS footprint
into an AGB estimate (Eq. 4), then averaging these AGB estimates within each class
(Table S1). This gives a carbon stock estimate for LNP of 156 Tg biomass, 78 TgC
(Fig. 6b). It gives the average AGB as 315Mg ha™', which compares much better to
the field plots and LiDAR data-derived averages (390 and 251 Mg ha™’ respectively)
than the 136 Mgha™" from the (limited at 150 Mgha™') PALSAR HV-derived map.

4.5 Comparisons with independent data

The LiDAR data were not used in the creation of the radar-based AGB map, and simi-
larly the field data were not used to create the classification-based map. This allows a
test of the accuracy of both approaches using independent data.

4.5.1 Comparison of radar-derived AGB map to LiDAR data

Due to geolocation errors and differences in scale a direct comparison between the
100 m AGB pixels and the 0.2—0.25 ha GLAS footprints would not give an appropriate
estimation of error; even with a perfect AGB map there would be a lot of scatter in the
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result. Instead the HV-derived AGB map was divided into 6 classes (0-25, 25-50, 50—
75, 75-100, 100-150, and > 150 Mg ha™’ ), and the mean and standard deviation of the
LiDAR-derived AGB values in each class compared (Table 2). The mean of the LiDAR-
derived AGB values for each class fall within that class, suggesting the PALSAR HV-
derived map is producing consistent, unbiased results throughout its sensitivity range.

4.5.2 Comparison of LiDAR and classification-derived AGB map to field data

We do not have access to a sufficient number of field plots to enable the use of these
to confirm the accuracy of all 40 classes. However, ten of the classes, covering 34.7 %
of LNP in total, had four or more field plots located within them. The mean of these
field plots were an average of 9.5 % (range: 1%-16 %) different from the mean AGB
derived from the GLAS data (Table 3). These data provide evidence of a small bias,
with the average AGB values for the field data being on average 4.5 % higher than the
mean value for the class derived from LiDAR data.

5 Error estimation

When providing estimates of carbon stocks for REDD+ and other carbon forestry
projects, an estimate is useless without an associated estimate of accuracy. Normally
the number of carbon credits awarded is based on the most conservative estimate
(e.g. the lower boundary of a 95 % confidence interval about the mean) (Grassi et al.,
2008; GOFC-GOLD, 2009). The results in Sect. 4.5 provide some confidence in our
methodologies, but due to the limited number and spatial distribution of the field plots,
and the inaccuracies inherent in LIDAR-AGB estimation, these do not provide an esti-
mate of the true error of the analysis.

The uncertainty of any measurement can be divided into two components: that of
accuracy and precision (IPCC, 2000). Accuracy is the distance of the mean (of many
observations) from the true value: it is thus influenced by biases (consistent errors) in
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the estimation process. It is this parameter that we are principally interested in here.
The other component, precision, relates to how close an individual measurement is to
the mean value of many measurements of the same parameter: in other words it is
related to random errors. These random errors are caused by spatial and structural
heterogeneity, geolocation errors, changes in vegetation between observations, and
measurement error, and are responsible for much of the noise observable in Figs. 3-5,
and the differences between field plot averages and the GLAS-averages of their classes
reported in Sect. 4.5.2 and Table 3. It is not as important to quantify the degree of
precision for our purposes here (calculating carbon stocks over a large area), as these
random errors will cancel out over the very large number of measurements. However,
the precision is important when measuring changes at a pixel level: therefore for any
methodology that wishes to assess change precision is very important (see Mitchard
et al., 2011). But precision will be discussed no further in this section, as it does not
affect the uncertainty of the AGB estimate for the whole park: we are interested here
only in accuracy, and thus in trying to estimate the magnitude of potential degree of
biases throughout the stages of our estimation process.

5.1 Uncertainties in the LiDAR-classification map

1. Allometric equations: the AGB values derived from both the field and LiDAR data
are ultimately derived from measurements of the diameter, height and species of
trees. These are converted to AGB for this study using the Chave et al. (2005)
equations, which while believed to be the best available, have significant, but hard
to estimate, uncertainties. They are not derived from African trees, which may
be a problem as there are known to be differences in height-DBH relationships
between the continents (Feldpausch et al., 2010); however our use of a locally-
derived DBH-height relationship should correct for this, and Lewis et al. (2009)
showed that locally-derived relationships did not dramatically alter their biomass
estimates from African forests (Lewis et al., 2009b). We therefore estimate the po-
tential bias due to the allometric equation at + 10 % (at the 95 % confidence level),
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which though twice the figure published in the original paper with this equation
(Chave et al., 2005), is similar to that discovered by Lewis et al. (2009), who prop-
agated estimated height and diameter errors in their biomass estimates, and by
Djomo et al. (2010), who used destructive sampling of trees in Africa to estimate
the accuracy of various pantropical equations.

. LIDAR waveform to Lorey’s height: the relationship used to derive Lorey’s height

from the LiDAR waveforms is based on field plots coincident with LiDAR foot-
prints from three sites in the Brazilian Amazon (Lefsky, 2010). Unfortunately no
LiDAR footprints intersected with our field plots from LNP, so we cannot discern
the extent to which this could cause inaccuracies, though the results in Sect. 4.5
provide some confidence. There are structural differences between the two con-
tinents’ forests (Djomo et al., 2010), so we add an uncertainty of £5 %, similar in
magnitude to the detected potential bias in Sect. 4.5.2, to account for this.

. Classification: classifying the image into forty different clusters, based on similar

radar returns and altitude, is bound to introduce errors by both over-simplification
(the resulting vegetation types will not necessarily have identical average AGB val-
ues in different spatial locations) and mis-classification. As the clusters are only
covered by LiDAR data from a spatially-limited portion of the image (Fig. 1b), this
is likely to introduce biases. To test this we ran four additional models, excluding
LiDAR data from one quarter of the park each time, and comparing the biomass
results produced from that quarter with the original biomass estimates. This re-
sulted in changes in the biomass estimate for each quarter of 4.8 % (range 4—7 %).
This procedure only estimates part of the potential error due to this source, so to
be conservative we add an error of + 10 %.

5.2 Summing uncertainties

As these errors are all independent, and in order to use the most conservative method,
these errors should be summed to give an estimate of the most extreme error (Eq. A1.1,
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Page A.16, IPCC, 2000): this is £25%. This gives the total AGB stocks of LNP, us-
ing the LiDAR data and unsupervised classification methodology, to be between 58.5
and 97.5TgC, with the lower number being that recommended for carbon payment
purposes.

6 Discussion

Despite the high biomass and persistent cloud-cover, we have produced a high resolu-
tion (100 m) map of AGB over Lopé National Park in Gabon. This estimate was made
possible through a novel fusion of radar and spaceborne LiDAR data. Also, using a
conservative error-estimation method optimised for carbon payments for REDD+, we
have shown that these estimates at a park level have a +25% uncertainty, due to
potential biased errors in our input data and estimations. We have shown from our
field data that there is a strong relationship between Lorey’s height and field-derived
AGB, and then used this to give us an additional 7042 point-based AGB estimates from
spaceborne LiDAR waveforms, which can estimate Lorey’s height with high confidence
(Lefsky, 2010). Finally we used the information in our dual-polarisation radar data,
along with a DEM, to classify the vegetation into units with distinct biophysical param-
eters, enabling the spatial extrapolation of the radar data. While none of these steps
are novel or controversial, we believe this new combination of methodologies provides
an excellent pathway for combining the strengths of GLAS and radar data to produce
AGB maps of high biomass forest.

This methodology enables the production of carbon maps for a tropical region or
country, a requirement for example in advance of a deforestation-reduction program
such as REDD+. The high resolution and spatially-explicit nature of these maps goes
beyond the requirements of the lower two assessment standards given by the Interna-
tional Panel on Climate Change (IPCC), which rely on maps giving changes in land-
cover type and not on spatially-explicit AGB maps. Therefore using such a methodol-
ogy could give data required for the highest tier, Tier 3 (GOFC-GOLD, 2009). Running
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Tier 3 assessments may be advantageous, as the increased certainty may lead to
a larger number of certified emissions reductions for a landscape. Additionally, Tier
3 monitoring may increase investor confidence leading to increased investments in
REDD. Furthermore, such monitoring may lead to this carbon being trade at a price
premium if the REDD scheme moves to become a market-based scheme. The method
developed here shows that a large investment in a high density of field plots or airborne
LiDAR data may not be necessary to reach the accuracy required by this tier: a high
density of GLAS plots, combined with optical or radar data for vegetation classification,
may suffice, as long as there are sufficient field plots for validation.

Our approach to the uncertainty analysis, using conservative estimates of poten-
tial biases from a wide variety of sources, and then summing them, is conservative,
but appropriate to the problem in hand. For such a large area it will produce much
wider confidence intervals than commonly used estimates based on standard errors
of means, but this is appropriate as for the purposes of conserving carbon stocks we
must find the minimum likely carbon stocks of the park, not a mean estimate. We
believe such an approach is essential for the monitoring of deforestation, where the
conservativeness principle outlined by Grassi et al. (2008), that for the purposes of
forest conservation the most conservative estimate of any parameter must always be
used, must apply. This conservative approach is essential for two reasons. Firstly, if
avoided deforestation credits are to be used to offset actual fossil fuel carbon emis-
sions, then any overestimate of carbon savings realised would result in REDD+ have
a net negative impact on net CO, emissions, exactly the opposite of its original inten-
tions. Secondly, the majority of the errors included in our analysis are very hard to
quantify, that is these uncertainties are themselves very uncertain. Therefore our con-
servative approach assists in ensuring that the confidence bands presented span the
full range of possible values.

GLAS-LIDAR is clearly not the ideal tool for mapping biomass: its footprints cover
only a tiny percentage of the total land-area of the planet, and the footprints, at 0.2—
0.25ha, are too large for detailed mapping. It would always be preferable to use
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airborne LiDAR, as for example Asner et al. (2010) have done in the Peruvian Ama-
zon, using a similar approach as described here but with airborne-LiDAR, extrapolated
to other areas using the classification of high-resolution optical rather than radar data.
However, airborne LiDAR data is expensive to collect, thus whole country censuses, let
alone with annual repeat, are unlikely in the near future. GLAS represents a spatially
distributed set of footprints, with hundreds of thousands to millions of footprints freely
available across every country (Lefsky, 2010), and as such is a useful resource to as-
sist mapping forest biomass carbon stocks. The patchy coverage necessitates using
another dataset to classify the landscape: here we use radar data and a DEM due
to data availability, but if cloud-free optical data (or other high quality spatially-explicit
datasets) were available they should be added into the classification procedure.

A limitation with the approach we set out here is that IceSAT GLAS is no longer oper-
ational: suitable data were only produced from 2003 until 2007. Two satellites are being
planned, both with a higher laser-footprint density than GLAS: IceSAT Il and DESDynl.
However, IceSAT Il will not be launched until 2015 at the earliest, and DESDynl, a sys-
tem with both a spaceborne LiDAR and an L-band fully-polarimetric radar, will not be
launched until 2017. Thus the system can currently be used to produce carbon maps
for the mid- to late- 2000s, but unfortunately not for change detection or deforestation
monitoring. However this is still a useful development: both optical and radar systems
can easily be used to detect changes in forest area, and so having an accurate carbon
map at one time-point will allow the emissions caused by deforestation to be better
estimated from landcover-change results.

Acknowledgements. This work is dedicated to the memory of Fabiane Lima de Oliveira, who
passed away in Gabon in 2009 after falling ill whilst on fieldwork for this project. Her deep
knowledge and love of the forest was highly respected by all who she met. She is greatly
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Table 1. Coefficients in radar-biomass regressions (+ standard errors).

2

Polaraisation a b c r p n

HH -15.01+1.82 6.85+1.77 -0.012+0.0038 0.4 <0.0001 96

HV -23.40 £2.79 10.00+1.76 -0.017+0.003 0.76 <0.0001 96
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Table 2. Mean LiDAR-derived AGB in broad radar-derived biomass classes. e

T

AGB class from Mean AGB from LiDAR footprints Standard Deviation Number of -%;

PALSAR HV (Mg ha"1) within this class (Mg ha"1) LiDAR-AGB (Mg ha’1) LiDAR footprints = _

0-25 141 13.1 148 —

50-75 68.7 33.8 158 5

100-150 134.4 455 1847 2

> 150 297.2 102.9 4522 g' ! !
=
s [N
g ! !
3
(= _
(7]
@,
o
~, | primerfencly Version |
=
Q
)
3

8808 o () @

2


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/8781/2011/bgd-8-8781-2011-print.pdf
http://www.biogeosciences-discuss.net/8/8781/2011/bgd-8-8781-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

Table 3. Comparison of mean AGB for classes from LiDAR with mean AGB from field plots

found within these classes.
Class Class mean AGB (from Mean AGB field Standard Deviation of Number field
number GLAS) (Mg ha‘1) plots (Mg ha_1) field plots (Mg ha_1) plots in class
14 296.1 305.2 44.6 5
5 313.0 310.0 82.1 5
9 314.5 271.6 109.0 13
15 325.6 359.9 74.5 8
12 337.3 370.0 163.8 16
23 338.5 405.3 52.4 6
28 347.7 363.9 111.2 11
18 366.1 320.7 90.7 5
11 393.0 453.6 152.7 8
20 4211 458.9 95.0 4
Mean 345.3 361.9 97.6 8.1
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a) Landcover map b) PALSAR radar (2009) c) Lopé National Park only
with GLAS footprints showing field plots

forest (1500 m)
Croplands

o
[ open grassland

[_] Open grassland with sparse shrubs

Fig. 1. (a) Map showing the location of the field site within a Landcover map for the year 2000
(Mayaux et al., 2004), (b) the ALOS PALSAR radar mosaic (HH in red, HV in green, and HH/HV
in blue) shown with the location of the GLAS lidar footprints post-filtering, (c) the same radar
image, but cut out around Lopé National Park, showing the location of the field plots.
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20 km

Fig. 2. Images of Lopé National Park using (a) PALSAR HH, (b) PALSAR HV, (c) Radar Forest
Degradation Index (RFDI), (d) Digital Elevation Model (DEM), (e) Classified map, showing 40

classes with arbitrary colours.

c) RFDI

&
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d) DEM

e) Classification
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0

Fig. 3. The relationship between diameter (DBH, cm) and height (m) for 3673 trees measured

in 1989 is shown.
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r? =0.81
p < 0.0001
n=388

—y
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o
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Field measured AGB (Mg ha)

0 - T T T T
0 10 20 30 40 50

Lorey’s height from field data (m)

Fig. 4. Field measured AGB for 88 field plots from Lopé in Gabon, nearby plots in Gabon, and
Mbam Djerem National Park in Cameroon, plotted against field-measured Lorey’s height for
these plots. This plot dataset is different to that used for the radar-biomass relationship, as the
emphasis here was for plots from the same vegetation-type where every stem was measured,
to produce an accurate regression relationship between Lorey’s height and AGB.
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Fig. 5. ALOS PALSAR backscatter in (a) HH and (b) HV polarisations is plotted against AGB

1000

-10

-11 A

-12

-13

14 4

-15 4

-16

=17

-18

-19

b) PALSAR HV

rP=0.75
p < 0.0001
n =96
0 260 4&0 660 860
AGB (Mg ha™)

for 96 field plots (including 75 x 1 ha sections of long transects).
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a) PALSAR HV

ace  (limited at 150)
(Mg ha) ‘
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Fig. 6. Two different AGB maps for Lopé national park are displayed. (a) is for the regression
with PALSAR HV, which is limited at 150 Mg ha™' due to the saturation of these data; (b) is for
the map produced by classifying PALSAR data and giving the 40 classes AGB values derived

from GLAS footprints.

b) Classification & GLAS
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