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Abstract    The   sudden   increase   in   Amazon   fires   early   in   the   2019   fire   season   made   global   headlines.   While   it   has  

been   heavily   speculated   that   the   fires   were   caused   by   deliberate   human   ignitions   or   human-induced   landscape  

changes,   there   have   also   been   suggestions   that   meteorological   conditions   could   have   played   a   role.   Here,   we   ask  

two   questions:   were   the   2019   fires   in   the   Amazon   unprecedented   in   the   historical   record?;   and   did   the  

meteorological   conditions   contribute   to   the   increased   burning?   To   answer   this,   we   take   advantage   of   a   recently  

developed   modelling   framework   which   optimizes   a   simple   burnt   area   model,   and   whose   outputs   are   described   as  

probability   densities.   This   allowed   us   to   test   the   probability   of   the   2019   fire   season   occurring   due   to  

meteorological   conditions   alone.    We   show   that   the   burnt   area   was   indeed   higher   than   previous   years    in   regions  

where   there   is   already   substantial   deforestation   activity   in   the   Amazon,   with   11%   of   the   area   recording   the  

highest   early   season   (June-August)   burnt   area   since   the   start   of   our   observational   record.   However,   areas   outside  

of   the   regions   of   widespread   deforestation   show   less   burnt   area   than   the   historical   average,   and   the   optimized  

model   shows   that   there   is   a   71%   probability   that   this   low   burned   area   would   have   been   expected   over   the   entire  

Amazon   region,   including   regions   already   witnessing   deforestation   and   of   high   fire   occurrence   in   2019.   We  

show   that   there   is   a   <7%   chance   of   the   observed   June-August   fires   being   caused   by   meteorological   conditions  

alone,   decreasing   to   <1%   in   Paraguay   and   Bolivia   dry-forests   and   at   the   eastern   end   of   the   Amazons   arc   of  

deforestation.   This   suggests   that   changes   in   land   use   and   land   cover   or   land   management   are   the   likely   drivers   of  

the   large   increase   in   the   2019   early   fire   season   burnt   area.   Burnt   area   for   the   peak   of   the   fire   season   in  

September   returned   to   levels   expected   from   meteorology   conditions   in   the   arc   of   deforestation,   potentially  

coinciding   with   a   shift   in   policy   from   South   American   governments,   but   remained   high   in   Bolivia   and   Paraguay.    
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1   Introduction  

South   American   fires   made   global   headlines   in   August   2019,   with   the   largest   increase   in   fire   activity   seen   in  

nearly   ten   years    (INPE,   2019;   Lizundia-Loiola   et   al.,   2020) .   Of   the   roughly   100,000   fires   burning   by   the   end   of  

the   month,   around   half   were   in   the   Amazon   rainforest   region    (Andrade,   2019;   INPE,   2019) .   While   fires   in   drier  

savannah   regions   of   South   America   such   as   the   Cerrado   are   more   common,   fires   in   the   rainforest   are   not   a  

natural   occurrence   and   are   rarely   ignited   without   human   intervention    (Aldersley   et   al.,   2011) .   As   such,   fires   in  

humid,   tropical   regions   where   the   vegetation   is   not   adapted   to   frequent   burning    (Kelley,   2014;   Zeppel   et   al.,  

2015) ,   have   much   higher   tree   mortality   rates    (Brando   et   al.,   2014;   Cochrane   and   Schulze,   1999;   Pellegrini   et   al.,  

2017) .   As   a   result,   an   estimated   906,000   hectares   of   the   Amazon   biome   was   lost   to   fires   in   2019    (Butler,   2017) .  

The   amount   of   carbon   and   trace   gas   emission   was   also   a   major   concern   given   the   high   biomass   of   the   areas  

being   burnt,   and   smoke   from   these   fires   reached   cities   as   far   as   São   Paulo   more   than   2,700km   away    (Lovejoy  

and   Nobre,   2019) .   Usually,   small-scale   fires   in   Amazonia   are   associated   with   deliberate   but   localised  

deforestation,   although   in   dry   years   there   is   more   risk   of   these   fires   escaping   into   much   larger   areas    (Aragão   et  

al.,   2018) .   Hence   the   substantial   increase   in   fires   in   2019   sparked   much   debate   about   whether   the   level   of  

burning   was   unprecedented,   whether   increased   burning   was   driven   by   a   drier   than   normal   fire   season   and   if  

raised   levels   of   direct   deforestation   played   a   role    (Arruda   et   al.,   2019;   Escobar,   2019) .   

The   Amazon   was   not   the   only   place   with   recent   unusual   and   high   fire   activity,   with   large-scale   fire   events  

worldwide   in   the   last   couple   of   years   including   in   the   Arctic,   Mediterranean,   Australia,   UK   and   the   US.   In  

November   2018   over   80   people   were   killed   in   the   Camp   fire   in   Paradise   California,   the   most   destructive   in  

California’s   history,   with   the   Camp,   Woolsey   and   Carr   Fires   together   costing   an   estimated   $27   billion   in  

damages    (Nauslar   et   al.,   2019) .   Hundreds   of   fires   burnt   throughout   the   2019   summer   in   Siberia   and   Alaska,  

releasing   over   150   Mega   tonnes   of   CO 2    to   the   atmosphere.   Also   released   were   large   quantities   of   black   carbon  

with   the   potential   to   further   accelerate   local   arctic   ice   melt    (Patel,   2019) .   The   UK   saw   some   burning,   including   a  

peatland   fire   in   north-east   Sutherland   that   doubled   Scotland's   carbon   emission   for   six   days   in   May   2019  

(Wiltshire   et   al.,   2019) .   Between   September   2019   and   February   2020,   fires   across   eastern   Australian   temperate  

woodlands   burnt   around   18.6   million   hectares,   destroyed   over   5,900   buildings,   and   killed   at   least   34   people  

(Boer   et   al.,   2020;   RFS,   2019;   Sanderson   and   Fisher,   2020) .   Unusual   fire   events   such   as   these   are   expected   to  

increase   in   frequency   in   the   future   from   both   changes   in   climate   and   socio-economic   pressures   on   the   landscape  

(Fonseca   et   al.,   2019;   Jones   et   al.,   2020) .   Given   the   concerns   raised   and   the   extent   to   which   much   of   these   fire  

events   captured   the   attention   of   the   public   and   press   in   recent   months,   in   the   aftermath   it   is   important   to   look   at  

these   events   objectively.   In   particular,   it   is   essential   to   determine   if   they   were   unusual   in   the   context   of   the  

historical   record   and   if   so   what   might   be   new   and   emerging   drivers.  

There   are   many   ways   to   assess   drivers   of   historical   fire   events.   Some   studies   simply   correlate   individual   drivers  

with   burnt   area   in   isolation     (Andela   et   al.,   2017;   Van   Der   Werf   et   al.,   2008) .   However,   these   do   not   consider   the  

complex   interaction   of   multiple   drivers   on   fire   and   are   therefore   unable   to   go   beyond   a   loose   attribution   of   a  

particular   forcing   to   fire.   Fire   Danger   Indices   (FDIs),   which   can   capture   simultaneous   drivers,   are   useful   for  

2  

https://doi.org/10.5194/bg-2020-123
Preprint. Discussion started: 11 May 2020
c© Author(s) 2020. CC BY 4.0 License.



70

75

80

85

90

95

100

calculating   the   level   of   risk   of   a   fire   spreading   and   becoming   severe   in   a   particular   area    (de   Groot   et   al.,   2015) .  

FDIs   have   been   adapted   to   assess   recent   and   future   trends   in   climate   on   fire   weather    (Burton   et   al.,   2018;   Jolly   et  

al.,   2015)    and   attribute   increases   in   fire   risk   to   anthropogenic   changes   in   climate    (van   Oldenborgh   et   al.,   2020) .  

These   metrics   thereby   provide   rapid   policy-relevant   information   for   fire   management    (De   Groot   et   al.,   2010;  

Perry   et   al.,   2020) .   However,   FDIs   do   not   account   for   available   fuel   or   ignition,   which   differentiates   them   from  

fire   observations   such   as   burnt   area,   and   makes   them   an   unsuitable   tool   for   assessing   fire   in   the   holistic   context  

of   weather,   fuel   dynamics,   ignition   and   human   land   and   fire   management    (Kelley   and   Harrison,   2014) .  

Fire-enabled   Land   Surface   Models   (LSMs)   can,   however,   account   for   these   drivers    (Kelley   and   Harrison,   2014;  

Lasslop   et   al.,   2016;   Prentice   et   al.,   2011b)    to   simulate   a   physical,   observable   measure   of   fire   regimes,   such   as  

burnt   area   or   number   of   fires    (Rabin   et   al.,   2017) .   However,   most   LSMs   have   been   developed   to   study  

long-term,   often   decadal   timescale   carbon   dynamics   and   therefore   often   fail   to   reproduce   year-to-year   patterns  

of   fire   with   the   required   accuracy   to   be   used   to   determine   causes   of   individual   fire   seasons    (Andela   et   al.,   2017;  

Hantson   et   al.,   2016,   2020) .   This   lack   of   annual   predictive   capability   has   led   to   calls   for   simulation   frameworks  

that   fuse   statistical   representations   of   fire   drivers   with   modelling   techniques,   and   that   consider   such   interactions  

(Fisher   and   Koven,   2020;   Krawchuk   and   Moritz,   2014;   Sanderson   and   Fisher,   2020;   Tollefson,   2018;   Williams  

and   Abatzoglou,   2016) .  

Kelley   et   al.    (2019)    recently   developed   a   methodology   which   addresses   this   gap   by   coupling   process  

representation   found   in   simple   fire   enabled   LSMs    (Rabin   et   al.,   2017)    with   a   Bayesian   inference   framework.  

This   system   can   assess   the   contribution   of   different   fire   drivers   directly   from   observations   and   track   uncertainty  

in   the   model.   We   apply   this   methodology   here,   using   monthly   meteorological   conditions   and   burnt   area   (BA)  

observations   to   constrain   and   drive   the   model,   thus   capturing   interannual   variability   within   the   context   of   a  

changing   meteorological   conditions.   We   use   this   framework   to   answer   the   specific   question:   Did   the  

meteorological   conditions   contribute   to   the   Amazonia   Fires   of   2019?  

2   Methods  

We   largely   followed   the   modelling   protocol   and   optimization   framework   from   Kelley   et   al.    (2019) ,   which  

contains   a   more   detailed   description.   Monthly   burnt   area   (BA)   is   modelled   as   a   product   of   limitations   imposed  

by   four   controls:   1)   fuel   availability;   2)   moisture   in   live   and   dead   fuel;   3)   anthropogenic   and   natural   ignition;   4)  

both   active   suppression   and   landscape   fragmentation   effects   from   human   land   use   (Table   S1   in   Supplement).  

Each   control   is   calculated   as   a   linear   combination   of   its   respective   drivers.   The   impact   each   control   has   on   fire   is  

represented   by   a   logistic   curve   describing   the   maximum   allowed   burnt   area.   Overall   burnt   area   is   then   the  

product   of   these   four   limitations.   

We   made   a   small   number   of   changes   to   the   previous   modelling   protocol   in   order   to   utilise   near-real-time  

meteorological   and   fire   variables   so   that   we   can   produce   relevant   results   that   closely   follow   the   fire   event.   We  

used   MODIS   Collection   6   MCD64A1   burned   area   product    (Giglio   et   al.,   2018)    as   our   target   dataset   and  

replaced   actual   over   potential   evapotranspiration   in   the   moisture   control   with   soil   moisture   (Table   S1).   We   also  

used   both   the   top   10cm   and   10-200cm   soil   moisture    (Kalnay   et   al.,   1996)    as   independent   moisture   drivers   in  
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order   to   capture   the   impact   of   previous   drought   years   on   deepwater   availability   for   live   fuel.   As   near-real-time  

wetday   information   is   also   not   available,   we   replaced   wet   days   in   the   calculation   of   dead   fuel   drying   potential  

(Kelley   et   al.,   2014)    with   a   proxy   for   wetdays,   using   GPCP   precipitation    (Adler   et   al.,   2003)    (pr)   based   on  

(Prentice   et   al.,   2011a) :  

D 1 e W =  −  wd x pr−  (1)  

where     is   an   optimized   parameter. dw  

All   variables   were   resampled   and,   where   necessary,   interpolated   to   a   monthly   timestep   as   per   Kelley   et   al.  

(2019)    although   here   too   a   resolution   of   2.5°,   which   was   the   coarsest   and   most   common   grid   across   all   variables  

used.   MCD64A1,   soil   moisture   and   equilibrium   fuel   moisture   content   were   translated   to   a   2.5-degree   grid   as   per  

Kelley   et   al.    (2014) ,   using   the   “rgdal”    (Bivand   et   al.,   2016)    and   “raster”    (Hijmans   and   van   Etten,   2014)    packages  

in   R    (R   Core   Team,   2015) .   For   MODIS   Vegetation   Continuous   Fields   (VCF)   fractional   covers    (Dimiceli   et   al.,  

2015) ,   tiles   were   merged   and   resampled   to   the   model   grid   using   the   “gdal”   package    (GDAL/OGR   contributors,  

2018) .   Land   use,   population   density,   precipitation,   humidity,   temperature   and   lightning,   were   processed   using  

the   iris   package    (Met   Office,   2013)    with   python   version   3     (Python   Software   Foundation,  

https://www.python.org/ ) .  

The   model     was   optimised   against   MCD64A1   burned   area    (Giglio   et   al.,   2018)    for   the   period   July   2002   to   June  

2018,   which   was   the   common   years   among   all   datasets   (Table   S2)   over   South   America,   south   of   13°N.   We   used  

the   same   Bayesian   Inference   technique   as   per   Kelley   et   al    (2019) .   For   the   purposes   of   this   study,   Bayes’   theorem  

states   that   the   likelihood   of   the   values   of   the   set,   ,   which   contain   our   23   unknown   parameters   (i.e.   the   21 ß  

parameters   from   Kelley   et   al    (2019) ,     from   equation   2,   an   error   term   parameter   )   and   our   known   model dw σ  

inputs,   given   a   set   of   observations   is   proportional   to   the   prior   probability   distribution   of     ( )   multiplied Y s ß (ß)P  

by   the   probability   of     given   ß: Y s  

(β∣Y )  P (β) (Y ∣β)P s ∝  · P s (2)  

where     was   defined   as   a   truncated   normal   distribution: (Y ∣ ß)P s   

                                                                        (3) (Y ∣ ß) ℵ(F , σ) exp  P s =   =  N
σ√2 π 

Σ{ i
N( σ 

y   BAi − i )2}  

and   where     represents   an   individual   data   point,   is   the   burnt   area   observations   and    N    is   the   observation i yi  

sample   size.   

 

The   posterior   solution   was   inferred    for   the   models'   parameters   ( )     using   a   Metropolis-Hastings   Markov (Y ∣ ß)P s  

Chain   Monte   Carlo   (MCMC)   step   with   the   pymc3   python   package    (Salvatier   et   al.,   2016) ,   running    10   chains  

each   over   10,000   iterations.   Unlike   Kelley   et   al.    (2019) ,   we   used   all   of   the   44750   data   points   on   our   2.5°   grid  

and   monthly   time   step   for   16   years.   Due   to   our   sample   size,   our   posterior   probability   dominates   over   our   priors,  
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and   as   with   Kelley   et   al.    (2019) ,   priors   predominantly   were   employed   to   set   physically   plausible   bounds   on   our  

parameters.  

 

Once   optimized,   the   model   was   then   run   from   January   2002   -   December   2019   and   so   the   trained   model   was   in   a  

predictive   mode   for   2019.   Due   to   data   availability   at   the   time   of   writing,    July   2017   -   June   2018   land   cover,   land  

use   and   population   density   were   recycled   for   July   2018   onwards   (Table   S2).   We   sampled   100   parameter  

ensemble   members   from   the   last   5000   iterations   of   each   of   the   10   chains,   providing   us   with   1000   ensemble  

members   to   estimate   the   models’   posterior   solution   to   equation   2.   The   posterior   solution,   inferred   by  

maximising   equation   3,   provides   an   estimate   of   a   burnt   area   based   on   the   parameter   uncertainty   of   our   model,  

corresponding   to   the   yellow   areas   in   time   series   in   Fig.   1.   This   was   validated   as   per   Kelley   et   al.     (2019) ,   along  

with   additional   checks   of   the   models’   ability   to   reproduce   seasonality   and   inter-annual   variability   of   fire.   See  

Fig.   S1-S3   and   model   evaluation   supplement   for   validation   methods   and   results.  

 

In   the   predictive   model,   the   probability   of   a   burnt   area     (where   can   be   outside   training   data   ,   as   is   the y y Y s  

case   for   our   year   2019   analysis),   being   explained   by   our   model   ( -   full   model   uncertainty,   or   model   error,   in (y)P  

tan   areas   on   time   series   in   Fig.   1)   is   proportional   to   the   probability   of     given   a   parameter   set,   ,   weighted   by y β  

  : (β∣Y )P s  

  (y) (β∣Y ) (y∣β) dβ P ∝  ∫
 

P S
P s × P  (4)  

where   is   all   parameter   space. SP  

We   chose   five   regions   (marked   A-E   in   Fig.   1   and   Fig.   S4)   to   represent   forest   areas   already   under   pressure   from  

deforestation:  

A. Acre   and   the   Southern   Amazonas   States   in   Brazil   at   the   western   extent   of   the   “arc   of   deforestation”   in  

the   Tropical   Moist   Forest  

B. Northern   Mato   Grosso,   Brazil,   towards   the   central   regions   of   the   arc   of   deforestation  

C. Maranhão   and   Piauí,   Brazil,   in   coastal   deforestation   regions  

D. Bolivian   dry   forest  

E. Paraguay   dry   forests   and   woodland  

We   also   assessed   an   overall   Area   of   Active   Deforestation   (AAD)   in   the   Amazon   region   (   Fig.   S4).   This   area   is  

defined   as   the   parts   of   South   American   southern   tropics   with   significant   decreasing   tree   cover   trends,   as   seen   in  

VCF     (Dimiceli   et   al.,   2015)    and   increasing   agricultural   fractions   in   the   HYDEv3.1   dataset    (Klein   Goldewijk   et  

al.,   2010) .   Trend   analysis   used   the   same   technique   described   in   Kelley   et   al.    (2019) .   

We   assessed   the   probability   of   2019   fire   activity   being   explained   by   information   provided   to   the   model   in   three  

ways   (Table   1):   
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1. What   was   the   likelihood   of   the   observed   monthly   burnt   area   occurring,   which   is   where   the   observed  

burnt   area   falls   within   the   main   range   e.g.   5%-95%   of   the   model’s   full   posterior   (red   line   vs   tan   area   in  

the   time   series   in   Fig.   1);  

2. How   likely   was   it   that   burnt   area   would   have   been   higher   than   the   annual   average,   i.e   the   fraction   of   the  

model’s   full   posterior   greater   than   the   models   annual   average   climatological   posterior   (the   point   where  

the   vertical   lines   cross   1   in   right-hand   columns   in   Fig.   1)  

3.   What   was   the   likelihood   of   such   an   anomalous   year   occurring   in   the   observations?   Calculated   as   the  

fraction   of   the   models’   full   posteriors   anomaly   being   greater   than   the   observed   anomaly.   

3   Results  

3.1   Burnt   area   in   2019   in   context  

The   year   2019   burnt   area   during   the   early   fire   season   (defined   as   June   to   August)   was   higher   than   the   2002-2019  

average   in   areas   of   recent   historic   deforestation,   despite   a   lower   than   average   burnt   area   over   much   of   the   rest   of  

the   continent   (Fig.   2).   The   AAD   as   a   whole   saw   the   2nd   highest   levels   of   burning   in   the   fire   season   (Fig.   1F,  

August),   behind   2010,   with   11%   of   the   area   experiencing   more   burning   than   in   any   previous   year.   Burnt   area   for  

what   is   normally   the   climatological   peak   of   the   fire   season   in   September   (Fig.   S2-S3)   returned   to  

lower-than-normal   levels   along   the   Brazilian   arc   of   deforestation,   though   remained   high   along   the   border  

between   Brazil,   Bolivia   and   Paraguay   (Fig.   1   D,   E   and   3).   This   meant   that,   while   the   burnt   area   was   higher   than  

usual   in   2019,   it   was   not   exceptionally   higher   over   the   entire   fire   season   (June   -September).   Other   high   years  

were   2004   in   the   Bolivian   dry   forest   (red   line   in   Fig.   1D),   2005   in   the   eastern   arc   of   deforestation   (Fig.   1A)   and  

Paraguay   dry   forest   (Fig.    1E),    2002   in   Paraguay,   2007   in   monsoonal   coastal   forests   (Fig.   1C)   and   2010   in  

Bolivia   and   Paraguay   dry   forests   (Fig.   1C   and   D).   Deforestation   rates   in   2004/05   were   high    (Marengo   et   al.,  

2018) ,   whereas   2005   and   2010   burning   have   previously   been   associated   with   droughts   driven   by   a   Tropical  

North   Atlantic   warming   anomaly    (Marengo   and   Espinoza,   2016) .   The   increase   in   fire   activity   in   2007     has   been  

linked   to   deforestation   across   the   Amazon    (Morton   et   al.,   2008) .  

3.2   Climatic   conditions   in   2019  

The   model   shows   with   statistical   high   confidence   that   most   of   Amazonia   should   have,   in   fact,   experienced   less  

fire   than   normal   for   June-August   when   accounting   for   2019   meteorological   conditions.   This   expected   low   fire  

rate   included   areas   in   the   AAD   that   saw   higher   than   annual   average   burning   in   observations   (Fig.   2).   Only   2   ±  

0%   area   (i.e.   one   grid   cell   throughout   the   sampled   posterior)   showed   unprecedented   high   burning   in   the   model.  

This   is   despite   a   good   agreement   between   the   modelled   and   the   observed   burnt   area   in   preceding   years   across   all  

locations   (yellow   in   time   series   in   Fig.   1),   and   the   model   also   ranking   the   order   of   most   previous   fire   seasons  

across   the   region   accurately   (Fig.   S1-S3   and   model   evaluation   supplement).   The   model   also   identifies   an  

increase   in   burning   across   the   region   in   the   meteorological   dry   years   of   2004/2005   and   2010   (Fig.   1F).   The  

observed   burnt   area   exceeds   the   model   in   all   our   regions   in   2019   (Fig.   1)   except   region   C   in   the   already   heavily  
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converted   agricultural   land   near   the   Brazilian   coast   (Fig.   S4).   While   the   observed   burnt   area   falls   within   the   full  

models   posterior   for   regions   A-C,   for   regions   D   and   E   it   exceeds   the   99%   confidence   interval   of   the   full   model  

posterior   for   June-September,   and   in   August   for   the   entire   deforested   region   (tan   in   Fig.   1,   Table   1),   indicating  

that   the   fire   levels   in   2019   fall   outside   of   the   expected   range,   especially   in   southern   Amazonia.   

The   observed   anomaly   for   2019   is   higher   than   the   modelled   anomaly   for   August   in   all   regions   (Fig.   1,   “August”  

column,   red   points).   This   is   particularly   prominent   in   regions   D   and   E   where   the   model   suggests   that  

meteorological   conditions   alone   should   have   resulted   in   a   fire   season   with   a   67-89%   reduction   in   burnt   area   in   D  

and   57-76%   for   E   compared   to   the   August   average   based   on   parameter   uncertainty,   with   only   a   6%   and   8%  

chance   of   a   greater   burnt   area   than   the   average   for   D   and   E   respectively.   Observations   instead   show   that   burnt  

area   was   45%   and   130%   greater   than   the   August   average   (Table   1).   Even   in   regions   A   and   B,   where   there   was   a  

48%   and   22%   probability   of   seeing   greater   than   average   burning,   the   model   suggests   that   the   likely   burnt   area  

was   42-70%   and   71-80%    reduction   in   burnt   area   compared   to   the   August   average.   These  

meteorologically-based   estimates   are   much   less   than   the   154%   and   148%   increases   seen   in   the   observations.  

There   are   other   anomalous   years   in   individual   regions   (2014/2015   in   region   E,   which   the   model   suggests   should  

have   had   a   higher   burnt   area   than   observed,   and   2007,   2012   in   C   and   2010   in   D,   where   the   models   suggest   less  

there   should   have   been   less   fire).   However,   none   are   as   far   outside   the   model   range   as   2019.   For   the   AAD,   only  

2019   is   shown   to   be   a   significantly   anomalous   year,   with   only   a   7-8%   chance   of   the   levels   of   burning   seen   in  

observations   (Table   1),   or   just   1%   in   regions   B,   D   and   E.  

4   Discussion  

The   observed   spatial   pattern   of   burnt   area   in   June-August   2019   shows   that   unprecedented   burning   was   only   seen  

in   regions   normally   associated   with   deforestation.   Our   modelling   framework   demonstrates   that,   based   on  

meteorological   conditions   alone,   reduced   burning   seen   across   the   rest   of   Tropical   South   America   should   have  

extended   into   these   regions.   Specifically,   our   analysis   suggests   that   there   is   only   a   7%   probability   that   the   levels  

of   burning   in   the   early   fire   season   would   have   been   caused   by   2019   meteorological   conditions   or   natural  

ignitions   alone   (time   series   Fig.   1).   Eastern   areas   normally   associated   with   deforestation   did   show   expected  

levels   of   burning,   but   in   the   western   and   central   parts   of   the   arc   of   deforestation   and   Bolivia   and   Paraguay   dry  

forests,   burning   was   much   higher.   Here   there   is   a   <1%   of   such   anomalous   levels   of   burning   compared   to   the  

background   rate   (Fig.   1   “August”   column).   As   we   account   for   deep   soil   moisture,   we   can   also   eliminate   the  

possibility   that   longer-term   drier   conditions   contributed   to   the   2019   fires.   The   cause   of   increased   burning   in  

2019   is   therefore   either   a   driver   left   static   in   the   model   for   2019,   or   a   process   not   considered.   Because   of   the  

non-availability   of   near-real-time   data,   drivers   held   unchanged   at   2018   values   for   2019   are   tree   cover,   land   use  

and   human   population.   The   only   plausible   way   tree   cover   could   have   substantially   changed   is   through   increased  

deforestation   rates    (Zhang   et   al.,   2015) .   Thereby   changes   in   drivers   not   accounted   for   in   2019   would   only   have  

caused   increased   burning   through   direct   human   manipulation   of   the   landscape   rather   than   the   particular  

meteorological   features   of   that   year.  
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Improved   descriptions   of   evolving   changes   in   human   fire   and   landscape   interactions   over   time   may   also   be  

required   to   capture   direct   human-driven   changes   in   burnt   area.   This   is   likely   to   include   changes   in   demography  

or   human   behaviour,   for   example   we   currently   account   for   the   impact   of   a   changing   population   on   fire   starts   and  

suppression,   but   not   how   fire   ignitions   per   person   change   over   time.   An   evolving   policy   could   have   also   been  

the   cause   of   the   unusual   fire   activity.   It   should   also   be   noted   that   observed   fire   activity   returned   to   expected  

levels   given   meteorological   conditions   in   September   in   the   Northern   end   of   the   deforestation   region   (Fig.   1,   3).  

This   reduction   could   be   after   the   June-August   fires   received   international   media   coverage,   triggering   efforts   in  

combating   fires   from   South   American   governments    (BBC   news,   2019;   NASA,   2019) .   

5   Conclusion  

In   this   study,   we   have   used   a   novel   Bayesian   modelling   approach   to   track   uncertainties   in   modelling   fire   in   the  

land   surface.   Our   framework   provides   a   rapid   assessment   of   whether   there   was   any   influence   of   meteorological  

conditions   across   the   Amazon   that   exacerbated   fire   levels   in   2019.  

The   model   predicts   a   lower   burnt   area   than   we   see   in   the   observations   for   Amazonia   during   June-August   2019,  

indicating   that   from   observed   meteorological   data   alone,   we   would   not   expect   2019   to   be   a   high-fire   year.   This  

result   points   strongly   to   the   importance   of   including   socio-economic   factors   having   a   strong   role   in   the   high  

recorded   fire   activity.    Specifically,   we   conclude   that   it   is   likely   (93%   probability)   based   on   past   relationships  

between   burnt   area   and   meteorological   conditions,   that   the   weather   conditions   did   not   trigger   the   increase   in  

burning   in   Amazonia   during   the   early   fire   season   in   2019.   This   result   holds   over   the   entire   area   of   active  

deforestation   and   furthermore   is   extremely   likely   (>99%)   in   central   and   Southeastern   Amazonia.  
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Figure   1:   Time   series   and   fire   season   anomalies   for   modelled   and   observed   burnt   area.   Top   5   rows   show   regions   A   -  

E,   while   the   bottom   row   shows   F,   the   “Area   of   Active   Deforestation”   region   which   incorporates   areas   where   there   has  

been   a   significant   increase   in   agriculture   and   decrease   in   tree   cover.   See   Fig.   S4   for   location.    Red   lines   show   monthly  

burnt   area   observations   from   MCD64A1,   yellow   shows   model   accounting   for   parameter   uncertainty   (5-95%)   and  

brown   shows   full   model   uncertainty   (5-95%).    The   red   line   is   dashed   when   observations   and   model   accounting   for  

parameter   uncertainty   overlap.   Vertical   grid   lines   are   positioned   for   August   each   year.   Right-hand   plots   show  

observed   (x-axis)   and   modelled   (y-axis)   anomaly,   calculated   as   2019   burnt   area   over   2002-2019   climatological   average  

burnt   area   for   (first   column)   August   and   (second   column)   September.   Thin   lines   show   5-95%   full   model   uncertainty,  

while   dots   and   thick   line   indicate   5%   and   95%   parameter   uncertainty.  
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450

Figure   2:   Maps   of   modelled   and   observed   %   burnt   area.   First   row:   observed   burnt   area,   June-August   2002-2019  

annual   average   (left)   and   anomaly   in   2019   (centre),   and   the   number   of   years   2019   burnt   area   exceeds   (right).   Second  

row:   as   top   row,   as   simulated   by   the   model.   Annual   stippling   represents   where   the   5%   percentile   >   half   the   95%  

percentile   of   models   posterior,   2019   anomaly   stripling   when   95%   of   the   models   posterior   agree   on   the   direction   of   the  

anomaly,   and   no   of   years   stippling   when   95%   of   the   models   posterior   agree   on   the   number   of   years   2019   exceeds.   

15  

https://doi.org/10.5194/bg-2020-123
Preprint. Discussion started: 11 May 2020
c© Author(s) 2020. CC BY 4.0 License.



455

 

 

Figure   3:   Same   as   Fig.   2   but   for   September.    
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Table   1:   Observed   and   model   anomaly   in   burnt   area   for   August   and   September   2019   as   a   fraction   of   August   and  

September   averages   2002-2019   across   selected   regions   (see   methods).   Red   indicates   more   burning   than   normal,   blue  

less   and   yellow   around   average   burning.   The   model   is   expressed   as   5-95%   of   the   posterior   accounting   for   parameter  

uncertainty.   Likelihood   gives   the   percentage   probability   that   (1st   column)   the   observed   burnt   area   is   suggested   by   the  

model   (2nd)   that   the   model   suggests   a   higher   than   average   burnt   area   for   the   given   month,   and   (3rd)   that   the   model  

captures   the   observed   anomaly   based   on   the   full   model   posterior.  

Regions  Observed  
anomaly  
 
 

Model   anomaly  Likelihood   (%)  

A  

 5%  95%  Burnt   area  
Higher   than  
average  Anomaly  

Aug   2019  2.539  0.296  0.584  37  48  8  

Sep   2019  0.758  0.149  0.689  75  49  59  

B  

       

Aug   2019  2.484  0.200  0.292  13  22  1  

Sep   2019  1.008  0.49  1.089  61  43  43  

C  

       

Aug   2019  0.812  0.245  0.413  12  45  60  

Sep   2019  0.607  0.225  0.592  22  41  80  

D  

       

Aug   2019  1.454  0.106  0.330  1  6  1  

Sep   2019  1.650  0.472  0.812  1  45  7  

E  

       

Aug   2019  2.303  0.239  0.428  1  8  1  

Sep   2019  2.664  0.519  0.707  1  35  1  

F  

       

Aug   2019  1.596  0.280  0.630  8  29  7  

Sep   2019  1.248  0.402  1.187  13  45  26  
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