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Abstract 21 

Although great progress has been made in estimating surface solar radiation (Rs) 22 

from meteorological observations, satellite retrieval and reanalysis, getting best 23 

estimated of long-term variations in Rs are sorely needed for climate studies. It has been 24 

shown that sunshine duration (SunDu)-derived Rs data can provide reliable long-term 25 

Rs variation. Here, we merge SunDu-derived Rs data with satellite-derived cloud 26 

fraction and aerosol optical depth (AOD) data to generate high spatial resolution (0.1) 27 

Rs over China from 2000 to 2017. The geographically weighted regression (GWR) and 28 

ordinary least squares regression (OLS) merging methods are compared, and GWR is 29 

found to perform better. Whether or not AOD is taken as input data makes little 30 

difference for the GWR merging results. Based on the SunDu-derived Rs from 97 31 

meteorological observation stations, the GWR incorporated with satellite cloud fraction 32 

and AOD data produces monthly Rs with R2 = 0.97 and standard deviation = 11.14 33 

W/m2, while GWR driven by only cloud fraction produces similar results with R2 = 34 

0.97 and standard deviation = 11.41 w/m2. This similarity is because SunDu-derived Rs 35 

has included the impact of aerosols. This finding can help to build long-term Rs 36 

variations based on cloud data, such as Advanced Very High Resolution Radiometer 37 

(AVHRR) cloud retrievals, especially before 2000, when satellite AOD retrievals are 38 

not unavailable. The merged Rs product at a spatial resolution of 0.1 in this study can 39 

be downloaded at https://doi.pangaea.de/10.1594/PANGAEA.921847 (Feng and Wang, 40 

2020).  41 
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 50 
 51 
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Key Points: 53 

(1) We merge SunDu-derived Rs data with cloud fraction and AOD data to generate 54 

high spatial resolution (0.1) Rs over China from 2000 to 2017. 55 

(2) Whether or not AOD is taken as inputs makes little difference for the GWR merging 56 

results because the SunDu-derived Rs have included the AOD’s impact. 57 
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1. Introduction 59 

A clear knowledge of variations in surface solar radiation (Rs) is vitally important 60 

for an improved understanding of the global climate system and its interaction with 61 

human activity (Jia et al., 2013; Myers, 2005; Schwarz et al., 2020; Wang and Dickinson, 62 

2013; Wild, 2009, 2017; Zell et al., 2015). Widespread direct measurements have shown 63 

that Rs has significant decadal variability, namely, a decrease (global dimming) from 64 

the 1950s to the late 1980s and subsequent increase (global brightening) (Wild, 2009). 65 

The variation in Rs is closely related to Earth’s water cycle, the whole biosphere, and 66 

the amount of available solar energy. This situation emphasizes the urgency to develop 67 

reliable Rs products to obtain the variability in Rs. 68 

Great progress has been made in the detection of variability in Rs by 69 

meteorological observations, satellite retrieval and radiation transfer model simulations 70 

or reanalysis Rs products in previous studies (Rahman and Zhang, 2019; Wang et al., 71 

2015). However, each estimation has its advantages and disadvantages. Direct observed 72 

data provide accurate Rs records; however, careful calibration and instrument 73 

maintenance are needed. Previous studies have reported that direct observed Rs 74 

measurements over China may have major inhomogeneity problems due to sensitivity 75 

drift and instrument replacement (Wang, 2014a; Wang et al., 2015; Yang et al., 2018). 76 

Before 1990, the imitations of the USSR pyranometers had different degradation rates 77 

of the thermopile, resulting in an important sensitivity drift. To overcome radiometer 78 

ageing, China replaced its instruments from 1990 to 1993. However, the new solar 79 

trackers failed frequently and introduced a high missing data rate for the direct radiation 80 

component of Rs (Lu and Bian, 2012; Mo et al., 2008). After 1993, although the 81 

instruments were substantially improved, the Chinese-developed pyranometers still had 82 

high thermal offset with directional response errors, and the stability of these 83 
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instruments was also worse than that of the World Meteorological Organization (WMO) 84 

recommended first-class pyranometers (Lu et al., 2002; Lu and Bian, 2012; Yang et al., 85 

2010). 86 

Sunshine duration observations collected at weather stations in China have been 87 

used to reconstruct long-term Rs (Feng et al., 2019; He and Wang, 2020; He et al., 2018; 88 

Yang et al., 2020). Based on the global SunDu-derived Rs records, He et al. (2018) 89 

found that SunDu permitted a revisit of global dimming from the 1950s to the 1980s 90 

over China, Europe, and the USA, with brightening from 1980 to 2009 in Europe and 91 

a declining trend Rs from 1994 to 2010 in China. Wang et al. (2015) also found that the 92 

dimming trend from 1961 to 1990 and nearly constant zero trend after 1990 over China, 93 

as calculated from the SunDu-derived Rs, was consistent with independent estimates of 94 

AOD (Luo et al., 2001); they also observed changes in the diurnal temperature range 95 

(Wang and Dickinson, 2013; Wang et al., 2012a) and the observed pan evaporation 96 

(Yang et al., 2015). Although direct observations and SunDu-derived Rs can provide 97 

accurate long-term variations in Rs, both direct observations and sunshine duration 98 

records are often sparsely spatially distributed. 99 

Satellite Rs retrieval and radiation transfer model simulation or reanalysis Rs 100 

products can provide Rs estimation with large spatial coverage. Model simulations and 101 

reanalysis Rs products have substantial biases due to the deficiency of simulating cloud 102 

and aerosol quantities (Feng and Wang, 2019; Zhao et al., 2013). Previous comparative 103 

studies have shown that the accuracies of Rs from reanalyses are lower than those of 104 

satellite products (Wang et al., 2015; Zhang et al., 2016) due to the good capability of 105 

capturing the spatial distribution and dynamic evolution of clouds in satellite remote 106 

sensing data. 107 

Table 1 lists the current satellite-based Rs products, which have been widely 108 
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validated in previous studies. Zhang et al. (2004) found that the monthly International 109 

Satellite Cloud Climatology Project-Flux Data (ISCCP-FD) Rs product had a positive 110 

bias of 8.8 w/m2 using Global Energy Balance Archive (GEBA) archived data as a 111 

reference. By comparing 1151 global sites, Zhang et al. (2015) evaluated four satellite-112 

based Rs products, including ISCCP-FD, the Global Energy and Water Cycle 113 

Experiment-Surface Radiation Budget (GEWEX-SRB), the University of 114 

Maryland/Shortwave Radiation Budget (UMD-SRB) and the Earth’s Radiant Energy 115 

System energy balanced and filled product (CERES EBAF), and concluded that CERES 116 

EBAF shows better agreement with observations than other products. A similar overall 117 

good performance of CERES EBAF can also be found (Feng and Wang, 2018; Ma et 118 

al., 2015). 119 

Table 1. Current satellite-derived surface solar radiation (Rs) products 120 

Satellite Rs product Source 
Spatial 

resolution 
Time range 

ISCCP-FD ISCCP 2.5° 1983-2009 

GEWEX-SRB ISCCP-DX 1° 1983-2007 

UMD-SRB METEOSAT-5 0.5° 1983-2007 

GLASS-DSR 
Terra/Aqua, GOES, MSG, 

MTSAT 
0.05° 2008-2010 

CLARA-A2 AVHRR 0.25° 1982-2015 

MCD18A1 Terra/Aqua, MODIS 5.6 km 2001-present 

Himawari-8 SWSR Himawari-8 5 km 2015-present 

SSR-tang ISCCP-HXG, ERA5, MODIS 10 km 1982-2017 

Cloud_cci AVHRR-

PMv3 
AVHRR/CC4CL 0.05° 1982-2016 

 121 

Although CERES EBAF uses more accurate input data to provide Rs data, its 122 

spatial resolution is only 1° (Kato et al., 2018). Since 2010, new-generation 123 

geostationary satellites have provided opportunities for high temporal and spatial 124 

resolution Rs data, such as Himawari-8 (Hongrong et al., 2018; Letu et al., 2020). 125 

However, the time span of the new-generation satellite-based Rs product is short. The 126 

long-term AVHRR records provide the possibility of building long-term radiation 127 
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datasets. The CLoud, Albedo and RAdiation dataset, the AVHRR-based data-second 128 

edition (CLARA-A2), covers a long time period, but the spatial resolution is only 0.25° 129 

(Karlsson et al., 2017). Recently, Tang et al. (2019) built a satellite-based Rs (SSR-tang) 130 

dataset using ISCCP-HXG cloud data. By using a variety of cloud properties derived 131 

from AVHRR, Stengel et al. (2020) presented the Cloud_cci AVHRR-PMv3 dataset 132 

generated within the Cloud_cci project. However, the long-term cloud records also 133 

contain uncertainties. For example, ISCCP cloud products, which directly combine 134 

geostationary and polar orbiter satellite-based cloud data, have large inhomogeneity due 135 

to different amounts of data from polar orbit and geostationary satellites and their 136 

different capabilities for detecting low-level clouds (Dai et al., 2006; Evan et al., 2007). 137 

This inhomogeneity of the cloud products might introduce significant inhomogeneity 138 

to the Rs values calculated from the cloud products (Montero-Martín et al., 2020; 139 

Pfeifroth et al., 2018b), and Rs long-term variability estimation still needs improvement. 140 

Efforts have been made to further improve Rs products. Merging multisource data 141 

has become an effective empirical method for improving the quality of Rs products 142 

(Camargo and Dorner, 2016; Feng and Wang, 2018; Hakuba et al., 2014; Journée et al., 143 

2012; Lorenzo et al., 2017; Ruiz-Arias et al., 2015). For instance, to produce 144 

spatiotemporally consistent Rs data, multisource satellite data are used in Global LAnd 145 

Surface Satellite (GLASS) Rs products (Jin et al., 2013). By merging reanalysis and 146 

satellite Rs data by the probability density function-based method, the reanalysis Rs 147 

biases can be substantially reduced (Feng and Wang, 2018). This finding suggests that 148 

fusion methods are effective ways to improve the estimation of Rs, especially when Rs 149 

impact factors are considered (Feng and Wang, 2019). Although linear regression 150 

fusion methods can produce Rs data incorporated with Rs impact factors, the stable 151 

regression parameters might have negative effects on the final fusion results due to the 152 
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complex characteristics of Rs spatial-temporal variability. 153 

On the other hand, the spatial resolution of Rs data is crucial for regional 154 

meteorology studies, as the minimum requirement of the spatial resolution of Rs data, 155 

as suggested by the Observing Systems Capabilities Analysis and Review of WMO 156 

OSCAR), is 20 km (Huang et al., 2019). Interpolation methods are often included in Rs 157 

fusion methods to further improve the spatial resolutions of Rs data (Loghmari et al., 158 

2018). For example, Zou et al. (2016) estimated global solar radiation using an artificial 159 

neural network based on an interpolation technique in southeast China. By integrating 160 

Rs data from 13 ground stations with Meteosat Second Generation satellite Rs products, 161 

Journée and Bertrand (2010) found that kriging with the external drift interpolation 162 

method performed better than mean bias correction, interpolated bias correction and 163 

ordinary kriging with satellite-based correction. However, interpolation results have 164 

uncertainties due to the lack of detailed high spatial resolution information. Although 165 

traditional linear regression fusion methods can incorporate high spatial resolution data 166 

during the fusion process, the impacts of the stable regression parameters need further 167 

investigation. 168 

Geographically weighted regression (GWR) is an extension of the traditional 169 

regression model by allowing the relationships between dependent and explanatory 170 

variables to vary spatially. Researchers have examined and compared the applicability 171 

of GWR for the analysis of spatial data relative to that of other regression methods (Ali 172 

et al., 2007; Gao et al., 2006; Georganos et al., 2017; LeSage, 2004; Sheehan et al., 173 

2012; Zhou et al., 2019a). Due to the large spatial heterogeneity of Rs over China, the 174 

GWR method might produce accurate Rs variability estimations with an improved 175 

spatial resolution. 176 

This study is established to merge SunDu-derived Rs data with satellite-derived 177 
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cloud fraction (CF) and AOD data to generate high spatial resolution (0.1) Rs over China 178 

from 2000 to 2017. The GWR and ordinary least squares (OLS) regression merging 179 

methods are compared. CF and AOD are important Rs impact factors. In this study, 180 

whether much improvement is made in merging Rs by incorporating AOD is also 181 

evaluated. The output of this study can provide guidance to merge multisource data to 182 

generate long-term Rs data over China. Direct Rs observations and sunDu data records 183 

from CMDC cannot be easily downloaded for the researchers from outside China due 184 

to the authentication of the China data use policy. This further demonstrate the 185 

importance of our merged Rs product. 186 

2. Data and Methodology 187 

2.1. Ground-based observations 188 

2.2.1 Direct observations 189 

Rs direct observations from 2000 to 2016 are obtained from the China 190 

Meteorological Data Service Center (CMDC, http://data/cma/cn/) of the China 191 

Meteorological Administration (CMA). TBQ-2 pyranometers and DFY4 pyranometers 192 

have been used to measure Rs since 1993. Daily Rs values from 97 Rs stations are 193 

collected, and we calculated monthly Rs values by averaging daily Rs values when daily 194 

observed data are available for more than 15 days for each month at each radiation 195 

station. These monthly Rs values from direct measurements and collocated SunDu-196 

derived Rs are used as independent reference data to investigate the performances of the 197 

fusion methods (Fig. 1). The whole area over China is further divided into nine zones 198 

by the K-mean cluster method based on geographic locations and multiyear mean Rs 199 

using 97 Rs direct observation sites, as shown in Figure 1. The download instructions 200 

of the Rs direct observations can be found in table 2. 201 
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 202 

Figure 1. The 2,400 sunshine duration (SunDu) merging sites are shown as light brown 203 

points, and 97 independent validation sites, including Rs direct measurements and 204 

SunDu-derived Rs measurements, are shown as brown red points. The whole region is 205 

classified into nine subregions (I to IX) by the K-mean cluster method based on 206 

geographic locations and multiyear mean Rs using 97 Rs direct observation sites. The 207 

base hillshade map was produced by an elevation map of China using the global digital 208 

elevation model (DEM) derived from the Shuttle Radar Topography Mission 30 209 

(SRTM30) dataset. 210 

 211 
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Table 2. Summary of availability information for all source data used in this study. 220 

CMDC is the China Meteorological Data Service Center. SunDu is the sunshine 221 

duration data. Rs is surface solar radiation and AOD is the aerosols optical depth. 222 

 223 

2.2.2 SunDu-derived Rs observations 224 

Sunshine duration observations (SunDu) and other meteorological data (e.g., air 225 

temperature, relative humidity and surface pressure) from 1980 to 2017, which were 226 

collected from approximately 2,400 meteorological stations (http://data/cma/cn/) from 227 

the CMA, are used to calculate the SunDu-derived Rs (Fig. 1). Rs values are calculated 228 

following the method of the revised Ångström-Prescott equation (Eq. (1-2)) (He et al., 229 

2018; Wang, 2014a; Wang et al., 2015; Yang et al., 2006). 230 

𝑅𝑠

𝑅𝑐
= 𝑎0 + 𝑎1

𝑛

𝐾
+ 𝑎2(

𝑛

𝐾
)2                   (1) 231 

𝑅𝑐 = ∫(𝜏𝑐_𝑑𝑖𝑟 + 𝜏𝑐_𝑑𝑖𝑓) × 𝐼0𝑑𝑡              (2) 232 

where n represents the measured SunDu, and K represents the theoretical value of the 233 

Data Source 

Derived 

Parameters 

used in this 

Study 

Version 

Number 
Access Point Notes 

Direct Rs 

measurement data 

from CMDC 

Rs Version 1.0 http://data/cma/cn/ 

Authentication is 

required for the 

China data use 

policy 

SunDu observations 

and other 

meteorological data 

Rs Version 1.0 http://data/cma/cn/ 

Authentication is 

required for the 

China data use 

policy 

CERES EBAF Rs Ed4.1 

https://ceres.larc.na

sa.gov/data/#ebaf-

level-3b 

A email address to 

order the data 

CERES SYN1deg AOD Ed4A 

https://ceres.larc.na

sa.gov/data/#syn1d

eg-level-3 

A email address to 

order the data 

MODAL2 M CLD 
cloud 

fraction 
- 

https://neo.sci.gsfc.

nasa.gov/view.php

?datasetId=MODA

L2_M_CLD_FR  

Directly download 
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SunDu. a0, a1, and a2 are the station-dependent parameters (Wang, 2014a). Rc is the 234 

daily total solar radiation at the surface under clear-sky conditions (Eq. 2). τc_dir and τc_dif 235 

represent the direct radiation transmittance and the diffuse radiation transmittance under 236 

clear-sky conditions. I0 is the solar irradiance at the top of the atmosphere (TOA). 237 

SunDu data are relatively widely distributed and have a long-term record 238 

(Sanchez-Lorenzo et al., 2009; Wild, 2009). Existing studies have also confirmed that 239 

SunDu-derived Rs data are reliable Rs data, which can capture long-term trends of Rs 240 

and reflect the impacts of both aerosols and clouds at time scales ranging from daily to 241 

decadal (Feng and Wang, 2019; Manara et al., 2015; Sanchez-Lorenzo et al., 2013; 242 

Sanchezromero et al., 2014; Tang et al., 2011; Wang et al., 2012b; Wild, 2016). 243 

Based on the classified subregions using 97 direct Rs observations in Figure 1, the 244 

intercomparison results in Figure 2 and Figure 3 show that the agreement between 245 

SunDu-derived Rs and CERES EBAF Rs estimates is better than that between the direct 246 

observations and SunDu-derived Rs estimates, which is likely due to the inhomogeneity 247 

issue of direct Rs observations over China, as mentioned in many previous studies 248 

(Wang, 2014b; Yang et al., 2018). These results indicate that SunDu-derived Rs data can 249 

be used to analyse the variation in Rs over China. 250 

The SunDu-derived Rs observations, excluding SunDu observations located at 251 

direct observation sites, are used for merging. Ten percent merging observations are 252 

randomly selected for GWR parameter optimization. The download instructions of the 253 

SunDu observations can be found in table 2. 254 
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 255 

Figure 2. Statistical summary of annual anomaly Rs from direct observed Rs, SunDu-256 

derived Rs and CERES EBAF Rs estimates in different subregions. The statistics include 257 

the mean absolute bias (MAB), standard deviation (Std) and root mean square error 258 

(RMSE). We use MAB due to the cancelling out effect of positive bias and negative 259 

bias. Nine subregions (I to IX) over China are shown in Figure 1. S-D represent 260 

comparisons between SunDu-derived Rs and directly observed Rs. C-D represent 261 

comparison between CERES EBAF Rs and directly observed Rs. S-C represent 262 

comparisons between SunDu-derived Rs and CERES EBAF Rs. 263 
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 264 

Figure 3. Similar to Figure 2, but this statistical summary is for R2. 265 

 266 

2.2. Satellite data 267 

Rs data from the Clouds and Earth’s Radiant Energy System energy balanced and 268 

filled product (CERES Synoptic (CERES) EBAF) surface product (edition 4.1) (Kato 269 

et al., 2018), cloud fraction from MODAL2 M CLD data product (Platnick et al., 2017) 270 

and AOD from the CERES SYN1deg) edition 4A product (Doelling et al., 2013) are 271 

collected in this study. CERES EBAF Rs data are used as reference data. AOD from 272 

CERES SYN1deg and cloud fraction from MODAL2 M CLD are used as input data for 273 

fusion methods. 274 

CERES is a 3-channel radiometer measuring three filtered radiances, including 275 

shortwave (0.3-5 µm), total (0.3-200 µm) and window (8-12 µm). Rs from CERES 276 

EBAF are adjusted using radiative kernels, including bias correction and Lagrange 277 
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multiplier processes. The input data of CERES EBAF are adjusted during the product 278 

generating process constrained by CERES observations at the TOA. The biases in 279 

temperature and specific humidity from the Goddard Earth Observing System (GEOS) 280 

reanalysis are adjusted by atmospheric infrared sounder (AIRS) data. Cloud properties, 281 

such as optical thickness and emissivity, from MODIS and geostationary satellites are 282 

constrained by cloud profiling radar, Cloud-Aerosol Lidar, and Infrared Pathfinder 283 

Satellite Observations (CALIPSO) detectors and CloudSat. The uncertainties of 284 

CERES EBAF data, reported by (Kato et al., 2018), in all sky global annual mean Rs is 285 

4 W m-2. Previous studies (Feng and Wang, 2019; Feng and Wang, 2018; Ma et al., 286 

2015; Wang et al., 2015) have shown that the CERES EBAF surface product provides 287 

reliable estimations of Rs. 288 

CERES SYN1deg AOD derived from an aerosol transport model, named 289 

Atmospheric Transport and Chemistry Modelling (MATCH) (Collins et al., 2001), 290 

which assimilates MODIS AOD data, is used to obtain spatiotemporally consistent 291 

AOD data. Different aerosol constituents, including small dust (<0.5 μm), large dust 292 

(>0.5 μm), stratosphere, sea salt, soot and soluble, are used to compute the optical 293 

thickness for a given constituent optical thickness for a given constituent. 294 

Cloud fraction data from MODAL2 M CLD are collected as input cloud fraction 295 

data with a spatial resolution of 0.1° and time span from 2000 to 2017 (Platnick et al., 296 

2017). The MODAL2 M CLD data are synthesized based on the cloud data from 297 

MOD06. Cloud fraction data from MOD06 are generated by the cloud mask product of 298 

MOD35 with a spatial resolution of 1 km. The MOD35 cloud mask is determined by 299 

applying appropriate single field of view (FOV) spectral tests to each pixel with a series 300 

of visible and infrared threshold and consistency tests. Each land type has different 301 

algorithms and thresholds for the tests. For each pixel test, an individual confidence 302 
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flag is determined and then combined to produce the final cloud mask flag. The three 303 

confidence levels included in the cloud mask flag output are (i) high confidence for 304 

cloudless pixels (Group confidence values > 0.95); (ii) low confidence for unobstructed 305 

views on the surface (Group confidence values Q ≤ 0.66); and (iii) values between 0.66 306 

and 0.95, and spatial and temporal continuity tests are further applied to determine 307 

whether the pixel is absolutely cloudless. Then, the cloud fraction is calculated from 308 

the 5 x 5-km cloud mask pixel groupings, i.e., given the 25 pixels in the group, the 309 

cloud fraction for the group equals the number of cloudy pixels divided by 25. 310 

2.3. Methods 311 

2.3.1 Fusion models 312 

OLS regression and GWR are used to build fusion methods for estimating Rs data. 313 

Clouds fraction and AOD have been important factors that affect variations in Rs. We 314 

compare different combinations of input data for the fusion methods, which can be 315 

classified into two types. The first type only contains cloud fraction data. The second 316 

type contains clouds fraction and AOD (Feng and Wang, 2020). 317 

GWR is a regression model that allows the relationships between the independent 318 

and dependent variables to vary by locality (Brunsdon et al., 2010; Brunsdon et al., 319 

1998). GWR deviates from the assumption of homoskedasticity or static variance but 320 

calculates a specific variance for data within a zone or search radius of each predictor 321 

variable (Brunsdon et al., 1998; Fotheringham et al., 1996; Sheehan et al., 2012). The 322 

regression coefficients in GWR are not based on global information; rather, they vary 323 

with location, which is generated by a local regression estimation using subsampled 324 

data from the nearest neighbouring observations. The principle of GWR is described as 325 

follows: 326 

𝑦𝑖 = 𝛿(𝑖) + ∑ 𝛿𝑘(𝑖)𝑥𝑖𝑘 + 𝜀𝑖

𝑘

 (3) 
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where yi is the value of Rs unit i; i=1,2,…,n, n denotes location i, xik indicates the value 327 

of the xik variable, such as cloud fraction and AOD, and ε denotes the residuals. δ（i） is 328 

the regression intercept. δk(i) is the vector of regression coefficients determined by 329 

spatial weighting function w(i), which is the weighting function quantifying the 330 

proximities of location i to its neighbouring observation sites; X is the variable matrix, 331 

and b is the bias vector. 332 

𝛿𝑘(𝑖) = (𝑋𝑇𝑤(𝑖)𝑋)−1𝑋𝑇𝑤(𝑖)𝑏 (4) 

The weighting functions are generally determined using the threshold method, 333 

inverse distance method, Gauss function method, and Bi-square method. Due to the 334 

irregular distribution of observation sites and computer ability, the adaptive Gaussian 335 

function method is selected as a weighting function that varies in extent as a function 336 

of Rs observation site density. 337 

𝑤𝑖𝑗 = exp (−(𝑑𝑖𝑗/𝑏)2) (5) 

where wij is the weighting function for observation site j that refers to location i; dij 338 

denotes the Euclidian distance between j and i; and b is the size of the neighbourhood, 339 

the maximum distance away from regression location i, called “bandwidth”, which is 340 

determined by the number of nearest neighbour points (NNPs). 341 

2.3.2 GWR parameter comparison 342 

To perform the local regression for every local area, the numbers of NNPs are 343 

required to estimate spatially varying relationships between CF, AOD and Rs in the 344 

GWR-based fused method. To identify the best combination of parameter values, we 345 

test the numbers of NNPs ranging from 29 to 1000. Ten percent of merging SunDu-346 

derived Rs data are randomly selected to validate these GWR parameters (Fig. 1). The 347 

results show that R2 increases and bias decreases when the number of NNPs decreases. 348 

However, when the NNP is smaller than 30, the GWR-based fusion method produces 349 
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spatially incomplete Rs data due to the local collinearity problem with large spatial 350 

variability. Therefore, 30 is selected as the NNP parameter (Table 3). 351 

 352 

Table 3. Statistical summary of GWR parameter optimization. NPP is the number of 353 

nearest neighbour points. GWR-CF presents the GWR-based fused method using only 354 

cloud fraction (CF) input, and GWR-CF-AOD presents that of using both CF and 355 

aerosol optical depth (AOD) as input. MAB is the mean absolute bias. Std is the 356 

standard deviation. RMSE is the root mean square error. 357 

NNP 
GWR-CF GWR-CF-AOD 

R2 Bias MAB Std RMSE R2 Bias MAB Std RMSE 

29 0.91 -0.21 7.45 9.90 9.90 0.91 -0.13 7.47 9.93 9.92 

30 0.91 -0.23 7.45 9.90 9.90 0.91 -0.14 7.47 9.92 9.91 

31 0.91 -0.24 7.45 9.90 9.90 0.91 -0.14 7.47 9.91 9.91 

32 0.91 -0.25 7.46 9.91 9.91 0.91 -0.14 7.47 9.91 9.90 

33 0.91 -0.26 7.47 9.92 9.92 0.91 -0.15 7.46 9.90 9.90 

34 0.91 -0.27 7.47 9.93 9.93 0.91 -0.14 7.46 9.90 9.89 

35 0.91 -0.28 7.48 9.94 9.94 0.91 -0.14 7.46 9.89 9.88 

36 0.91 -0.28 7.49 9.94 9.94 0.91 -0.14 7.46 9.89 9.88 

37 0.91 -0.29 7.49 9.95 9.95 0.91 -0.14 7.46 9.88 9.87 

38 0.91 -0.30 7.50 9.96 9.96 0.91 -0.14 7.46 9.88 9.87 

39 0.91 -0.31 7.51 9.98 9.98 0.91 -0.14 7.46 9.87 9.87 

40 0.91 -0.32 7.52 9.99 9.99 0.91 -0.14 7.46 9.87 9.87 

50 0.90 -0.38 7.62 10.12 10.12 0.91 -0.12 7.51 9.91 9.91 

100 0.89 -0.57 8.20 10.90 10.91 0.90 -0.02 7.86 10.31 10.30 

500 0.81 -1.08 10.89 14.50 14.54 0.86 0.20 9.55 12.45 12.45 

1000 0.75 -1.13 12.60 16.57 16.61 0.82 0.26 10.68 13.84 13.85 

 358 

3. Results 359 

3.1 Site validation 360 

Based on the independent SunDu validation sites, both the GWR and OLS 361 

methods explain 97%~86% of Rs variability (Fig. 4). The GWR method generally 362 

shows an improved performance compared with the OLS method due to the 363 

representativeness of the spatial heterogeneity relationship between Rs and its impact 364 

factors in GWR. Both the GWR and OLS methods produce better simulations of Rs if 365 
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satellite and AOD data are incorporated. 366 

Direct observations from 2000 to 2016 are also used to further evaluate the 367 

performance of the fusion methods (Fig. 4). The comparative result shows that both 368 

fusion methods show slightly reduced performances when using direct Rs observations 369 

rather than the SunDu-derived Rs. Both the GWR and OLS methods explain 91%~82% 370 

of Rs variability by using direct observations as reference data. Similarly, the GWR 371 

method exhibits better performances than the OLS-based fusion method, with an R2 of 372 

0.91 and root mean square error (RMSE) ranging from 19.89 to 19.97 W/m2 at the 373 

monthly time scale (Table 4). 374 

 375 

Figure 4. Comparison of surface solar radiation (Rs) derived from the GWR method 376 
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and the OLS method. Subplots (a, c, e, g) represent validation results using SunDu-377 

derived Rs data as a reference, while that of subplots (b, d, f, h) use directly observed 378 

Rs data. Subplots (a, b, c, d) denote the GWR validation results, and subplots (e, f, g, h) 379 

denote the OLS validation results. 380 

 381 

Table 4. Validation of fusion methods driven by cloud fraction (CF) and AOD. GWR-382 

CF and OLS-CF represent the GWR fusion method and OLS fusion method driven only 383 

by CF. GWR-CF-AOD and OLS-CF-AOD represent GWR and OLS fusion methods 384 

driven by CF and AOD, respectively. 385 

 Time scale Ref R2 Bias Std RMSE 

GWR-CF monthly SunDu Rs 0.97 -1.17 11.41 11.47 

GWR-CF-AOD monthly SunDu Rs 0.97 -0.82 11.14 11.17 

OLS-CF monthly SunDu Rs 0.86 -3.80 25.03 25.32 

OLS-CF-AOD monthly SunDu Rs 0.89 -1.37 22.10 22.15 

GWR-CF monthly Direct Obs 0.91 4.88 19.29 19.89 

GWR-CF-AOD monthly Direct Obs 0.91 5.24 19.27 19.97 

OLS-CF monthly Direct Obs 0.82 2.18 26.73 26.82 

OLS-CF-AOD monthly Direct Obs 0.85 4.64 24.71 25.15 

GWR-CF spring SunDu Rs 0.95 -1.3 11.5 11.57 

GWR-CF-AOD spring SunDu Rs 0.95 -0.86 11.2 11.23 

OLS-CF spring SunDu Rs 0.77 -4.97 23.65 24.16 

OLS-CF-AOD spring SunDu Rs 0.84 -1.35 19.85 19.9 

GWR-CF summer SunDu Rs 0.9 -2.09 14.08 14.23 

GWR-CF-AOD summer SunDu Rs 0.9 -1.38 13.76 13.82 

OLS-CF summer SunDu Rs 0.65 -6.49 26.18 26.97 

OLS-CF-AOD summer SunDu Rs 0.77 -1.37 21.17 21.22 

GWR-CF autumn SunDu Rs 0.95 -1.27 9.48 9.56 

GWR-CF-AOD autumn SunDu Rs 0.96 -1.04 9.17 9.23 

OLS-CF autumn SunDu Rs 0.67 -3.22 25.62 25.82 

OLS-CF-AOD autumn SunDu Rs 0.71 -1.97 23.79 23.87 

GWR-CF winter SunDu Rs 0.94 0.01 9.87 9.86 

GWR-CF-AOD winter SunDu Rs 0.94 0.04 9.78 9.78 

OLS-CF winter SunDu Rs 0.63 -0.37 24.16 24.16 

OLS-CF-AOD winter SunDu Rs 0.65 -0.78 23.41 23.42 

GWR-CF annual Direct Obs 0.37 5.62 4.73 10.42 

GWR-CF-AOD annual Direct Obs 0.37 5.98 4.79 10.53 

OLS-CF annual Direct Obs 0.30 3.06 5.01 15.01 

OLS-CF-AOD annual Direct Obs 0.33 5.45 4.89 13.34 

GWR-CF annual SunDu Rs 0.57 -1.19 4.30 6.76 

GWR-CF-AOD annual SunDu Rs 0.58 -0.84 4.30 6.68 

OLS-CF annual SunDu Rs 0.35 -3.58 5.63 15.17 
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OLS-CF-AOD annual SunDu Rs 0.39 -1.23 5.44 13.40 

GWR-CF annual mean SunDu Rs 0.94 -1.50 6.63 6.76 

GWR-CF-AOD annual mean SunDu Rs 0.95 -1.15 6.41 6.47 

OLS-CF annual mean SunDu Rs 0.62 -3.90 17.11 17.46 

OLS-CF-AOD annual mean SunDu Rs 0.71 -1.58 14.90 14.90 

GWR-CF annual mean Direct Obs 0.89 5.08 9.85 11.03 

GWR-CF-AOD annual mean Direct Obs 0.89 5.43 9.75 11.11 

OLS-CF annual mean Direct Obs 0.70 2.57 16.31 16.42 

OLS-CF-AOD annual mean Direct Obs 0.77 4.88 14.00 14.75 

 386 

3.2 Seasonal and annual variations in Rs 387 

To analyse the impacts of AOD on the GWR fusion results, the GWR driven with 388 

only CF (GWR-CF) and GWR driven with CF and AOD (GWR-CF-AOD) are 389 

compared. Two validation sites (Chang Chun, 43.87°N 125.33°E and Bei Hai, 21.72°N 390 

109.08°E) are randomly selected to evaluate the seasonal and annual variations in Rs 391 

derived from the GWR method (Fig. 5). As shown in subplots (a and b), both GWR-392 

CF and GWR-CF-AOD produce similar seasonal variation patterns compared with 393 

SunDu-derived Rs and CERES EBAF Rs data. Small differences are found in the 394 

seasonal variation in Rs derived from GWR regardless of whether AOD was 395 

incorporated. Examination of the annual variation Rs from the GWR-CF and GWR-CF-396 

AOD are shown in subplots (c and d) of Figure 5. The two fusion methods also 397 

produce similar annual Rs variations. The similar performances of the GWR-CF and 398 

GWR-CF-AOD might suggest that the impacts of AOD have already been included in 399 

the SunDu-derived Rs site data. 400 
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 401 
Figure 5. Seasonal and annual variations in Rs at two sites: Chang Chun (a and c, 402 

43.87°N and 125.33°E) and Bei Hai (b and d, 23.50°N, 99.72°E). SunDu Rs is the 403 

SunDu-derived Rs data, and GWR-CF Rs is Rs produced by the GWR method 404 

incorporating only the cloud fraction. GWR-CF-AOD is Rs produced by the GWR 405 

method incorporating cloud fraction and AOD. 406 

 407 

We also analysed the performances of fusion methods for different seasons at all 408 

validation sites, as shown in Table 4. At seasonal scales, both the GWR-CF and GWR-409 

CF-AOD methods have high R2 values ranging from 0.94 to 0.96, compared with direct 410 

Rs measurement or SunDu-derived Rs. GWR-CF and GWR-CF-AOD show slight 411 

differences, indicating that both fusion methods produce consistent Rs seasonal 412 

variation patterns, which might be because the impacts of AOD have already been 413 

included in the SunDu-derived Rs site data at seasonal time scales. Comparatively, the 414 

GWR methods perform best in autumn, with RMSEs ranging from 9.23W/m2 to 9.56 415 
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W/m2 followed by winter, spring and summer. Both the GWR-CF and GWR-CF-AOD 416 

methods produce similar annual variations in Rs from 2000 to 2016, with R2 values 417 

ranging from 0.57 to 0.58 (Table 4). The statistics indicate that the GWR can produce 418 

reasonable seasonal and annual variations in Rs. 419 

3.3 Multiyear mean and long-term variability in Rs 420 

Figure 6 shows the performance of GWR-CF and GWR-CF-AOD on simulating 421 

the multiyear mean Rs by using 97 direct Rs observation sites and independent SunDu-422 

derived Rs sites. Based on direct Rs measurements, both GWR-based methods show 423 

good performances with high R2 (0.89~0.95) and low RMSE (11.03~11.11 W/m2), and 424 

few differences are found for the GWR merging results, whether or not AOD is taken 425 

as input data (Table 4). 426 

 427 

Figure 6. Comparison of multiyear mean surface solar radiation (Rs) derived from the 428 

GWR method. Subplots (a, c) represent validation results using SunDu-derived Rs data 429 

https://doi.org/10.5194/essd-2020-231

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 3 November 2020
c© Author(s) 2020. CC BY 4.0 License.



24 
 

as a reference, while that of subplots (b, d) use direct observed Rs data. 430 

The spatial distributions of the multiyear means of Rs from 2000 to 2017 are shown 431 

in Figure 7. The SunDu sites show that Rs is high in northwest China, ranging from 180 432 

to 300 W/m2, and low in eastern China, ranging from 120 to 180 W/m2. Both the GWR-433 

CF and GWR-CF-AOD methods show consistent Rs spatial patterns with SunDu-434 

derived Rs observations and CERES EBAFs, indicating that the relationship between 435 

Rs and impact factors is not linearly stable and is closely related to spatial position. The 436 

spatial distribution of the Rs trend derived from the GWR method is also consistent with 437 

the SunDu-derived Rs trend, especially in western China (Fig. 8). 438 

 439 

Figure 7. Spatial distribution of multiyear mean monthly surface solar radiation (Rs) 440 

from 2000 to 2017. The first line (a, b) shows the observed multiyear mean monthly Rs 441 

from SunDu and CERES EBAF; the multiyear mean monthly Rs derived from the GWR 442 

method are shown in the second line (c, d), respectively. 443 
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 444 

Figure 8. Spatial distributions of monthly anomaly trends of surface solar radiation (Rs) 445 

from 2000 to 2017. The first line (a, b) shows the SunDu-derived Rs and CERES EBAF 446 

Rs; the Rs-derived GWR fusion methods are shown in the second line (c, d). Subplots 447 

(c) incorporate only CF, and subplots (d) incorporate CF and AOD. The black dots on 448 

the maps represent significant trends (P<0.05). 449 

Based on the classified subregions using 97 direct Rs observations in Figure 1, the 450 

regional means of Rs annual anomaly variation from 2000 to 2016 are shown in Figure 451 

9. Compared with observations, both the GWR-CF and GWR-CF-AOD methods 452 

produce consistent long-term Rs trends with SunDu-derived Rs and CERES EBAF Rs 453 

(Figures 2, 3 and 9), indicating that the GWR-CF and GWR-CF-AOD methods can 454 

produce reasonable annual Rs variations over China. 455 

In zones I and II, located in northern arid/semiarid regions, the annual anomaly Rs 456 

variation shows small fluctuations ranging from -10 to 10 W/m2. In contrast, zones IV, 457 

V, VIII and IX covering the Sichuan Basin, Yunnan-Guizhu Plateau, Qinghai-Tibet 458 

Plateau and North China Plain show large Rs variation trends. Li et al. (2018) found a 459 
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sharply increasing Rs trend over East China, especially in the North China Plain, which 460 

is due to controlling air pollution and reducing aerosol loading. However, our results 461 

indicate that the increased surface solar radiation in North China is not confirmed by 462 

satellite retrieval (CERES) and SunDu-derived Rs. 463 

 464 

Figure 9. The regional mean of the annual anomaly of the surface solar radiation (Rs) 465 

for different subregions. Nine subregions (I to IX) over China are shown in Figure 1. 466 

Direct Rs observations, SunDu-derived Rs, and CERES EBAF are shown as black lines, 467 

green lines and red lines, respectively. Light and dark blue represent the Rs variation 468 

derived from the GWR-CF and the GWR-CF-AOD methods. 469 

 470 
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4. Discussion 471 

4.1 Impact factors of Rs 472 

In this study, we merged more than 2400 sunshine duration-derived Rs site data 473 

with MODIS CF and AOD data to generate high spatial resolution (0.1) Rs over China 474 

from 2000 to 2017. The results show that the GWR method incorporated with CF and 475 

AOD (GWR-CF-AOD) performs best, indicating the non-neglected role of clouds and 476 

aerosols in regulating the variation in Rs over China. 477 

Clouds and aerosols impact the solar radiation reaching the surface by radiative 478 

absorption and scattering (Tang et al., 2017). Recent Rs trend studies over Europe 479 

suggest that CF may play a key role in the positive trend of Rs since the 1990s (Pfeifroth 480 

et al., 2018a). In terms of input data, our results also indicate that the cloud fraction 481 

might be a major factor affecting Rs, which is consistent with our previous studies (Feng 482 

and Wang, 2019). 483 

Changes in aerosol loading have also been reported to be an important impact 484 

factor (Che et al., 2005; Li et al., 2018; Liang and Xia, 2005; Qian et al., 2015; Xia, 485 

2010; Zhou et al., 2019b). The atmospheric visibility data show that the slope of the 486 

linear variation in surface solar radiation with respect to atmospheric visibility is 487 

distinctly different at different stations (Yang et al., 2017), implying that the relationship 488 

between Rs and aerosols varies with location. 489 

4.2 Performances of the fusion methods 490 

The good overall performances of the GWR model have been reported in many 491 

previous studies, including geography (Chao et al., 2018; Georganos et al., 2017), 492 

economics (Ma and Gopal, 2018), meteorology (Li and Meng, 2017; Zhou et al., 2019a), 493 

and epidemiology (Tsai and Teng, 2016). Chao et al. (2018) used the GWR method to 494 

merge satellite precipitation and gauge observations to correct biases in satellite 495 
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precipitation data and downscale satellite precipitation to a finer spatial resolution at 496 

the same time. Zhou et al. (2019a) used GWR to analyse haze pollution over China and 497 

found that the GWR estimate was better than the OLS estimate, with an improvement 498 

in correlation coefficient from 0.20 to 0.75. 499 

Compared with other traditional interpolation methods, such as optimal 500 

interpolation (OI), GWR can theoretically integrate geographical location and Rs impact 501 

factors for spatial Rs estimations and reflect the non-stationary spatial relationship 502 

between Rs and its impact factors. The thin plate spline method can include CF and 503 

AOD as covariates to simulate the approximately linear dependence of these impact 504 

factors on Rs, but this linear function cannot fully describe the relationship among CF, 505 

AOD and Rs (Hong et al., 2005). Comparison results from Wang et al. (2017) also 506 

indicate that the GWR method is better than the multiple linear regression method and 507 

spline interpolation method for near surface air temperature. 508 

5. Data availability 509 

The merged Rs product by GWR methods with cloud fraction and AOD data as 510 

input in this study are available at https://doi.pangaea.de/10.1594/PANGAEA.921847 511 

(Feng and Wang, 2020). 512 

6. Conclusions 513 

Accurate estimation of Rs variability is crucially important for regional energy 514 

budget, water cycle and climate change studies. Recent studies have shown that SunDu-515 

derived Rs data can provide reliable long-term Rs series. In this study, we merged 516 

SunDu-derived Rs data with satellite-derived cloud fraction (CF) and aerosol optical 517 

depth (AOD) data to generate high spatial resolution (0.1) Rs over China from 2000 to 518 

https://doi.org/10.5194/essd-2020-231

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 3 November 2020
c© Author(s) 2020. CC BY 4.0 License.



29 
 

2017 (Feng and Wang, 2020). The GWR and OLS merging methods were also 519 

compared. 520 

Our results show that the spatial resolutions of all fusion results are improved to 521 

0.1° by incorporating MODIS cloud fraction data. The GWR shows better performance 522 

than OLS, with increases in R2 by 9.21%~12.81% and RMSEs reduced by 523 

49.56%~54.68%, indicating that Rs has complex characteristics of spatial variability 524 

over China, which has also indicated the necessity of the high spatial resolution of Rs 525 

data. As clouds and aerosols play vital roles in the variability in Rs, apparent 526 

improvements in the results of SunDu-derived Rs data merging are found if both cloud 527 

fraction and AOD are incorporated. Based on the merging results incorporating only 528 

cloud fraction, cloud fraction is suggested to be the major factor impacting Rs, which 529 

explained approximately 86%~97% of Rs variability. Generally, SunDu-derived Rs data 530 

merging results derived from GWR show more consistent multiyear mean Rs and long-531 

term Rs trends compared with those from OLS. Our results show that the improvement 532 

in Rs variability estimation is closely related to Rs impact factors and Rs spatial 533 

heterogeneity. The merged Rs products derived from GWR-CF-AOD can be 534 

downloaded at https://doi.pangaea.de/10.1594/PANGAEA.921847. We also plan to 535 

expand our Rs dataset from 1983 to 2017 by using AVHRR based cloud retrievals. 536 
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