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ABSTRACT: 

In the geospatial domain we have now reached the point where data volumes we handle have clearly grown beyond the capacity of 

most desktop computers. This is particularly true in the area of point cloud processing. It is therefore naturally lucrative to explore 

established big data frameworks for big geospatial data. The very first hurdle is the import of geospatial data into big data frameworks, 

commonly referred to as data ingestion. Geospatial data is typically encoded in specialised binary file formats, which are not naturally 

supported by the existing big data frameworks. Instead such file formats are supported by software libraries that are restricted to single 

CPU execution. We present an approach that allows the use of existing point cloud file format libraries on the Apache Spark big data 

framework. We demonstrate the ingestion of large volumes of point cloud data into a compute cluster. The approach uses a map 

function to distribute the data ingestion across the nodes of a cluster. We test the capabilities of the proposed method to load billions 

of points into a commodity hardware compute cluster and we discuss the implications on scalability and performance. The performance 

is benchmarked against an existing native Apache Spark data import implementation. 

 

 

1. INTRODUCTION 

While the origins of the term “Big Data” itself might be complex 

(Diebold, 2012) and disputed, one of the most commonly 

accepted definitions of the term was given by Laney (2001). He 

observes “data management challenges along three dimensions: 

volume, velocity and variety”. These are often referred to as the 

3 Vs. While his observations were made in the particular context 

of e-commerce they were subsequently generalized. Nowadays 

the term spans several disciplines and the phenomenon continues 

to grow, so that some even see it as an emerging discipline. The 

phenomenon is not unknown to the geospatial community and 

big spatial data has now been identified as an emerging research 

trend (Eldawy and Mokbel, 2015a). We will focus on a special 

area of big spatial data and a particular challenge in data 

management. We will focus on point clouds and their volume.  

1.1 Point Cloud Data Use 

 In the geospatial domain we have now reached the point where 

data volumes we handle have clearly grown beyond the capacity 

of a single desktop computer. This is particularly true in the area 

of point clouds. Examples are the massive point cloud data sets 

of national mapping or environmental agencies that were released 

to the public domain in recent years. One of these data sets is the 

Dutch AHN2 which contains about 400 billion points (Swart, 

2010). Another example is the 11 terabyte of LiDAR data the 

UK’s Environment Agency has released through their Geomatics 

LIDAR portal (Whitworth, 2015). 

The phenomenon of big LiDAR data sets is however not 

constraint to national agencies, but is observed throughout the 

industry. The preliminary results from the recent OGC survey 

regarding the current state of standards and best practices in the 

management of point cloud data, have shown that many users 

today have to handle very large point clouds (see Figure 1). The 

majority of users have handled point clouds with more than 1 

billion points over the last 12 months. Twenty percent of the users 

have handled more than 1 trillion points over the same period. 

This figures clearly show that point cloud data storage clearly 

faces the challenge of volume, one of the 3 Vs and puts it firmly 

in the domain of big data. 

The storage mechanisms typically employed for point cloud 

storage in industry on the other hand do not reflect this, as shown 

in Figure 2. (Multiple answers were possible so the sum of all 

answers is more than 100%). Most of the respondents store the 

data in files on a traditional file system and very few use cloud 

technology, a typical big data tool. 

1.2 Geo Data as Big Data 

The huge data volume and the underdeveloped adoption of big 

data tools, both clearly indicate a gap in the current toolchain of 

big point cloud data management. These observations confirm 

the need to develop or adapt cloud computing techniques that are 

appropriate for large collections of point cloud data. This is a 

conclusion already drawn by Eldawy & Mokbel  (2015a) in the 

general context of GIS data. 

The EU FP7 project IQmulus is an initiative to provide a high-

volume fusion and analysis platform for geospatial point clouds, 

coverages and volumetric data (IQmulus, 2012). It attempts to 

leverage the information hidden in large heterogeneous 

geospatial data sets and make them a practical choice to support 

reliable decision making. 

The experiments conducted for this work are part of this effort to 

provide scalable, distributed and cloud based tools to handle big 

geospatial data. We concentrate here on point clouds as we see 

them as a premier example for the growing data volume. For this 

work we also focus on the first step in the Big Data pipeline, the 

import of data into the framework, commonly referred to as data 

ingestion. 
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1.3 Cloud Compute Engines 

While the formal definition of big data precedes it, many will 

have become aware of cloud computing through the publication 

of Google’s MapReduce approach (Dean and Ghemawat, 2008). 

MapReduce is a programming paradigm to process large dataset 

in a distributed fashion on a commodity hardware cluster. Apache 

Hadoop (Hadoop, 2016) is an open-source implementation of this 

paradigm and more generally a family of big data tools. This 

includes the Hadoop Distributed File System (HDFS), which is a 

scalable and resilient cluster files system (Shvachko et al., 2010). 

There already exist a small number of geospatial frameworks 

built on Hadoop, e.g. SpatialHadoop (Eldawy and Mokbel, 

2015b). 

In 2010 Spark was developed as a response to some shortcomings 

in Hadoop. It was particularly designed to accommodate 

applications that “reuse a working set of data across multiple 

parallel operations” (Zaharia et al., 2010). Machine learning 

applications were explicitly targeted as falling into this category. 

It was shown that Spark can outperform Hadoop by ten times in 

an iterative machine learning job.   

Apache Spark heavily relies on the concept of Resilient 

Distributed Datasets (RDDs) (Zaharia et al., 2012). They allow 

the in-memory distribution of large datasets across a cluster. 

They are resilient to node failures as the data is replicated across 

the cluster. Keeping the data in memory rather than on disk 

allows for the high speed in computation. 

Again a small number of geospatial frameworks exist that 

leverage the capabilities of Apache Spark. SpatialSpark was 

developed for efficient spatial join queries (You et al., 2015). 

GeoTrellis is focusing on raster data (Kini and Emanuele, 2014).  

 

2. RELATED WORK 

2.1 IQmulus Architecture 

The IQmulus project has suggested and implemented a 

distributed architecture dedicated for large geospatial data 

processing (Krämer and Senner, 2015). While our proposed 

framework is based on Apache Spark and therefore does not rely 

on the scheduling components of the IQmulus architecture, it is 

still relevant as we use its storage mechanism. The IQmulus 

architecture uses HDFS (see above) as a mature and scalable 

storage mechanism.  

In particular, it uses a NFS wrapper which provides a mountable 

file system. This makes HDFS indirectly available to the user 

processes through the operating system’s file system. One 

intention of this work is to explore the suspected implications in 

file access and scalability of this design. Our approach makes 

heavy use of the fact that the data stored in HDFS is available via 

the standard filesystem API. 

2.2 Spark SQL IQmulus Library 

The Spark SQL IQmulus library (Brédif, 2015) implements in 

Scala a Spark DataFrame reader/writer interface for common 

LiDAR file formats, such as LAS and PLY. The use of this 

library has already been demonstrated in an implementation of a 

scalable rendering pipeline for large point clouds (Brédif et al., 

2015). The advantage of this library lies in the fact that it 

implements the import of strongly formatted data directly within 

the Spark framework. Hence it can make use of the high level 

abstraction of Data Sources available in Spark. These include the 

local file system, and distributed filesystems such as HDFS. 

The disadvantage of this high level abstraction is that existing 

format libraries can typically not be used as they assume a classic 

filesystem interface. This means that the format reader has to be 

re-implement from scratch. This can cumbersome if a full set of 

features is required. It might even be prohibitive in cases where 

the format description is not publicly available, e.g. for 

proprietary formats. 

2.3 Single CPU libraries 

As expected for a matured data source such as point clouds 

various libraries exist for reading the most popular file formats. 

We focus on the ASPRS LAS format (“LAS Specification 

Version 1.3,” 2009) as the most commonly used LiDAR format. 

The available libraries for LAS differ in their support for the 

various features of the format such as coordinate reference 

systems, variable length records and waveform data. The LASlib 

from the LAStools set of LiDAR processing tools (Isenburg and 

Schewchuck, 2007) is a popular option which implements many 

of the features.  

 

Figure 1: Typical number of points for point clouds 

encountered by users in practice.  Preliminary 

results extracted from user responses to the OGC 

survey regarding the current state of standards and 

best practices in the management of point cloud 

data. 

 

Figure 2: Preliminary results on the typical storage 

mechanisms for point clouds of the OGC survey 

regarding the current state of standards and best 

practices in the management of point cloud data. 
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The liblas library (Butler et al., 2011, 2011) is another C/C++ 

library for reading and writing LAS files. It also provides a 

Python interface. The source code of liblas is available under the 

terms of the BSD license. It assumes a local filesystem API for 

file access and allows reading a LAS file record by record.  

Laspy is a pure Python implementation for the LAS format 

(Brown, 2012). It uses memory-mapped files to accelerate 

access. While this has significant performance advantages in 

some cases we have also experienced problematic behaviour with 

this library in a cluster environment. 

 

3. PROPOSED METHOD 

The idea behind the proposed method is to re-use existing file 

format libraries for the data import. The typically use a classic 

filesystem interface. If we have the distributed file system (DFS) 

mounted as a virtual filesystem (VFS) in the node’s operating 

system, every node can access the files and load them via a 

filesystem interface. We therefore only need to distribute the 

filenames to the individual nodes to perform the task in parallel. 

Figure 3 schematically shows how the approach bypasses the 

direct data import and uses the VFS for the actual file access. We 

therefore refer to the method as sideloading. We use Python to 

implementing the distribution via a mapping function as it is one 

of the support APIs of Apache Spark and also supports many 

existing file format libraries. 

3.1 Naïve Sideloading 

Sideloading can most easily be implemented as a mapping 

function, which maps a list of filenames to their data content. In 

the case of point cloud import from LAS files this requires a 

mapping function that maps LAS file names to lists of XYZ 

coordinates: 

["file1.las", "file2.las", … ] → [(𝑥, 𝑦, 𝑧, … ), (𝑥, 𝑦, 𝑧, … ), … ] 

If we use Spark’s flatMap capability, we can effectively create 

mapping function that creates a single list of XYZ coordinates 

from all input point clouds: 

["file1.las", "file2.las", … ] → [𝑥, 𝑦, 𝑧, … , 𝑥, 𝑦, 𝑧, … ] 

The pseudo code notation in Figure 4 shows how this can easily 

be achieved in Spark. A mapping function load_map uses an 

existing single CPU LAS library to load an individual LAS file. 

Spark’s resilient distributed dataset is created form a list of input 

files. The mapping function is evoked on the RDD and the 

contents of the files are mapped to a single new RDD. 

3.2 Slicing 

The naïve mapping function introduced above has two major 

problems. First it maps files to the individual nodes / workers. 

Therefore the number of files have to be sufficiently larger than 

the number of nodes / workers. If not there will be nodes that 

remain idle as they have no file to work on. Secondly each file is 

read in its entirety into the worker node’s memory. If however 

the file is larger than the available memory this can cause the 

mapping function to fail. 

It is therefore an obvious idea to subdivide each file further into 

slices. Instead of loading entire files only slices of each file ae 

loaded. This means instead of distributing files to nodes / 

workers, slices are distributed. Subsequently many more tasks are 

created which leads to a finer granularity for the workload 

distribution. This should be generally advantageous for 

distributed computing. 

The approach can be achieved in two simple intermediate 

mapping functions, which store the point count for each file and 

generate the slices consisting of a start- and end-point in the files 

data records. 

["file1.las", "file2.las", … ]

→ [("file1.las", 𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑢𝑛𝑡), ("file2.las", 𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑢𝑛𝑡), … ] 

[("file1.las", 𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑢𝑛𝑡), ("file2.las", 𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑢𝑛𝑡), … ]

→ [("file1.las", 𝑠𝑡𝑎𝑟𝑡1, 𝑒𝑛𝑑1), ("file1.las", 𝑠𝑡𝑎𝑟𝑡2, 𝑒𝑛𝑑2 ), … ] 

 

4. TEST SCENARIO 

The following section briefly describe the test scenario consisting 

of the data and hardware that is used to obtain the running times 

and other characteristics of the proposed method. 

4.1 Data Sets 

Two datasets a re selected for the experimentation. The first is a 

medium size dataset. It consists of 99 files and holds a combined 

1.7 billion (109) points. It is a mobile mapping data set of the 

Bloomsbury area around University College London. It has an 

average point spacing of better than 20 mm. Figure 5 gives an 

overview of the coverage of the data set. Figure 6 gives a detailed 

view and shows the density of the data set. 

 

Figure 3: comparing the schematics of direct data import into 

Sark from a Distributed File System (DFS) versus 

sideloading via a Virtual local File System (VFS) 

and Python. 

def load_map(f): 

    points = load_las.load_las(f) 

    return points 

 

files = ["file1.las", "file2.las", …] 

files_rdd = sc.parallelize(files) 

points_rdd = files_rdd.flatMap(load_map) 

Figure 4: Pseudo code of a naïve mapping function for 

sideloading LiDAR data. 
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Figure 5: Overview of the medium size data set used in the 

experiment. 

 

 

Figure 6: Detail view of the medium size data set used in the 

experiment. 

The second dataset is a larger sized LiDAR point cloud. It is a 

classical airborne LiDAR dataset storing multiple returns. It has 

an average density of 1 point per square meter. The dataset is 

provided by CNR-IMATI. It covers the coastal area of Regione 

Liguria. Figure 7 shows a detail of the dataset. 

4.2 Cluster Architecture 

The cluster we use to establish performance metrics is provided 

by Fraunhofer IGD Darmstadt. It consists of 1 master node and 5 

worker nodes. Each worker node has four virtual cores, which are 

occupied by 4 workers. So overall we have 20 workers with a 

combined memory of 34 GB. The prototype implementation is 

based on Apache Spark 1.6 which is run in cluster mode. We use 

Python to implement the mapping functions and liblas for the 

LAS file handling. 

 

5. EXPERIMENTAL RESULTS 

The following sections show the experimental results obtained 

using the setup described above. 

5.1 Medium Dataset 

The first experiments explore the effect of varying the number of 

nodes while keeping the data volume fixed. We use a subset of 

the medium sized dataset, consisting of 10 files holding 180 

million points. We compare naïve sideloading to sideloading 

with slicing. Both are benchmarked against the native Spark 

implementation of a data import provided by the Spark SQL 

IQmulus library. The results of this experiment are shown in 

Figure 8. We can see that naïve sideloading does not scale very 

well over an increasing number of nodes. This is expected as we 

have observed above that the number of files must be sufficiently 

larger than the umber of nodes / workers. With only 10 files and 

a maximum of 20 workers this is clearly not the case. When we 

introduce slicing however we can observe almost perfect scaling 

of the runtime over the number of nodes. We can observe the 

same for the native Spark implementation. 

The second set of experiments explore the behaviour over an 

increase in the data volume. We scale the data import from a few 

million to just under 2 billion points. Figure 9 shows the graphical 

results. Again we can see that naïve sideloading does not perform 

efficient over a smaller subset of the data. It also shows an offset 

in performance overall. Sideloading with slicing on the other 

hand scales perfectly linear with the increase in data volume, 

which is the desired behaviour. The native Spark implementation 

seems to perform best on the maximum data size. The results of 

the experiment can also be interpreted as data throughput, i.e. 

millions of points ingested per second. Figure 10 shows the bar 

graph for data throughput. While sideloading with slicing seems 

to perform at par with a native Spark data import in most cases, 

for the largest data size that does not hold. 

 

 

 

Figure 7: Detail of the large size data set used in the 

experiment. 

 

Figure 8: Effect of varying the number of nodes for a fixed 

sized point cloud. 
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5.2 Large Dataset 

The performance penalty becomes more apparent when the data 

volume is further increased. Figure 11 shows the results on the 

larger dataset with a maximum of just under 8 billion points. 

Again sideloading with slicing performs perfectly linear under 

the increase of data volume. However it is apparent that there is 

a performance penalty over a native Spark data import. 

 

6. CONCUISONS & OUTLOOK 

We have shown a simple yet efficient method of ingesting very 

large point clouds into the Apache Spark Big Data Engine. The 

proposed method re-uses existing single CPU libraries for file 

format interpretation. It therefore requires minimal 

implementation effort and is easy to adapt to various file formats 

including proprietary formats. When we introduce slicing it 

scales linear both with a varying node count and varying data 

volume. There is an overall performance penalty when compared 

to a native Spark data import implementation. We recon that for 

most applications this is acceptable in the data ingestion stage. 

Understanding large point clouds as big data and using an 

established big data toolchain opens many possibilities. We have 

already shown the successful use of cloud based machine 

learning for point cloud classification (Liu and Boehm, 2015). 

While the established tools do not typically provide spatial 

functionality such as indexing an query, these can be 

implemented on top of existing frameworks (Alis et al., 2016). 
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Figure 11:  Runtime for sideloading of a large sized point cloud data set over varying number of points. 
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