
SIDELOADING – INGESTION OF LARGE POINT CLOUDS INTO THE APACHE

SPARK BIG DATA ENGINE

J. Boehm, K. Liu, C. Alis

Dept. of Civil, Environmental and Geomatic Engineering, University College London, UK

j.boehm@ucl.ac.uk

Commission II, WG II/5

KEY WORDS: Big Data, LiDAR, Cloud Computing, Point Cloud, Spark

ABSTRACT:

In the geospatial domain we have now reached the point where data volumes we handle have clearly grown beyond the capacity of

most desktop computers. This is particularly true in the area of point cloud processing. It is therefore naturally lucrative to explore

established big data frameworks for big geospatial data. The very first hurdle is the import of geospatial data into big data frameworks,

commonly referred to as data ingestion. Geospatial data is typically encoded in specialised binary file formats, which are not naturally

supported by the existing big data frameworks. Instead such file formats are supported by software libraries that are restricted to single

CPU execution. We present an approach that allows the use of existing point cloud file format libraries on the Apache Spark big data

framework. We demonstrate the ingestion of large volumes of point cloud data into a compute cluster. The approach uses a map

function to distribute the data ingestion across the nodes of a cluster. We test the capabilities of the proposed method to load billions

of points into a commodity hardware compute cluster and we discuss the implications on scalability and performance. The performance

is benchmarked against an existing native Apache Spark data import implementation.

1. INTRODUCTION

While the origins of the term “Big Data” itself might be complex

(Diebold, 2012) and disputed, one of the most commonly

accepted definitions of the term was given by Laney (2001). He

observes “data management challenges along three dimensions:

volume, velocity and variety”. These are often referred to as the

3 Vs. While his observations were made in the particular context

of e-commerce they were subsequently generalized. Nowadays

the term spans several disciplines and the phenomenon continues

to grow, so that some even see it as an emerging discipline. The

phenomenon is not unknown to the geospatial community and

big spatial data has now been identified as an emerging research

trend (Eldawy and Mokbel, 2015a). We will focus on a special

area of big spatial data and a particular challenge in data

management. We will focus on point clouds and their volume.

1.1 Point Cloud Data Use

 In the geospatial domain we have now reached the point where

data volumes we handle have clearly grown beyond the capacity

of a single desktop computer. This is particularly true in the area

of point clouds. Examples are the massive point cloud data sets

of national mapping or environmental agencies that were released

to the public domain in recent years. One of these data sets is the

Dutch AHN2 which contains about 400 billion points (Swart,

2010). Another example is the 11 terabyte of LiDAR data the

UK’s Environment Agency has released through their Geomatics

LIDAR portal (Whitworth, 2015).

The phenomenon of big LiDAR data sets is however not

constraint to national agencies, but is observed throughout the

industry. The preliminary results from the recent OGC survey

regarding the current state of standards and best practices in the

management of point cloud data, have shown that many users

today have to handle very large point clouds (see Figure 1). The

majority of users have handled point clouds with more than 1

billion points over the last 12 months. Twenty percent of the users

have handled more than 1 trillion points over the same period.

This figures clearly show that point cloud data storage clearly

faces the challenge of volume, one of the 3 Vs and puts it firmly

in the domain of big data.

The storage mechanisms typically employed for point cloud

storage in industry on the other hand do not reflect this, as shown

in Figure 2. (Multiple answers were possible so the sum of all

answers is more than 100%). Most of the respondents store the

data in files on a traditional file system and very few use cloud

technology, a typical big data tool.

1.2 Geo Data as Big Data

The huge data volume and the underdeveloped adoption of big

data tools, both clearly indicate a gap in the current toolchain of

big point cloud data management. These observations confirm

the need to develop or adapt cloud computing techniques that are

appropriate for large collections of point cloud data. This is a

conclusion already drawn by Eldawy & Mokbel (2015a) in the

general context of GIS data.

The EU FP7 project IQmulus is an initiative to provide a high-

volume fusion and analysis platform for geospatial point clouds,

coverages and volumetric data (IQmulus, 2012). It attempts to

leverage the information hidden in large heterogeneous

geospatial data sets and make them a practical choice to support

reliable decision making.

The experiments conducted for this work are part of this effort to

provide scalable, distributed and cloud based tools to handle big

geospatial data. We concentrate here on point clouds as we see

them as a premier example for the growing data volume. For this

work we also focus on the first step in the Big Data pipeline, the

import of data into the framework, commonly referred to as data

ingestion.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-343-2016

343

1.3 Cloud Compute Engines

While the formal definition of big data precedes it, many will

have become aware of cloud computing through the publication

of Google’s MapReduce approach (Dean and Ghemawat, 2008).

MapReduce is a programming paradigm to process large dataset

in a distributed fashion on a commodity hardware cluster. Apache

Hadoop (Hadoop, 2016) is an open-source implementation of this

paradigm and more generally a family of big data tools. This

includes the Hadoop Distributed File System (HDFS), which is a

scalable and resilient cluster files system (Shvachko et al., 2010).

There already exist a small number of geospatial frameworks

built on Hadoop, e.g. SpatialHadoop (Eldawy and Mokbel,

2015b).

In 2010 Spark was developed as a response to some shortcomings

in Hadoop. It was particularly designed to accommodate

applications that “reuse a working set of data across multiple

parallel operations” (Zaharia et al., 2010). Machine learning

applications were explicitly targeted as falling into this category.

It was shown that Spark can outperform Hadoop by ten times in

an iterative machine learning job.

Apache Spark heavily relies on the concept of Resilient

Distributed Datasets (RDDs) (Zaharia et al., 2012). They allow

the in-memory distribution of large datasets across a cluster.

They are resilient to node failures as the data is replicated across

the cluster. Keeping the data in memory rather than on disk

allows for the high speed in computation.

Again a small number of geospatial frameworks exist that

leverage the capabilities of Apache Spark. SpatialSpark was

developed for efficient spatial join queries (You et al., 2015).

GeoTrellis is focusing on raster data (Kini and Emanuele, 2014).

2. RELATED WORK

2.1 IQmulus Architecture

The IQmulus project has suggested and implemented a

distributed architecture dedicated for large geospatial data

processing (Krämer and Senner, 2015). While our proposed

framework is based on Apache Spark and therefore does not rely

on the scheduling components of the IQmulus architecture, it is

still relevant as we use its storage mechanism. The IQmulus

architecture uses HDFS (see above) as a mature and scalable

storage mechanism.

In particular, it uses a NFS wrapper which provides a mountable

file system. This makes HDFS indirectly available to the user

processes through the operating system’s file system. One

intention of this work is to explore the suspected implications in

file access and scalability of this design. Our approach makes

heavy use of the fact that the data stored in HDFS is available via

the standard filesystem API.

2.2 Spark SQL IQmulus Library

The Spark SQL IQmulus library (Brédif, 2015) implements in

Scala a Spark DataFrame reader/writer interface for common

LiDAR file formats, such as LAS and PLY. The use of this

library has already been demonstrated in an implementation of a

scalable rendering pipeline for large point clouds (Brédif et al.,

2015). The advantage of this library lies in the fact that it

implements the import of strongly formatted data directly within

the Spark framework. Hence it can make use of the high level

abstraction of Data Sources available in Spark. These include the

local file system, and distributed filesystems such as HDFS.

The disadvantage of this high level abstraction is that existing

format libraries can typically not be used as they assume a classic

filesystem interface. This means that the format reader has to be

re-implement from scratch. This can cumbersome if a full set of

features is required. It might even be prohibitive in cases where

the format description is not publicly available, e.g. for

proprietary formats.

2.3 Single CPU libraries

As expected for a matured data source such as point clouds

various libraries exist for reading the most popular file formats.

We focus on the ASPRS LAS format (“LAS Specification

Version 1.3,” 2009) as the most commonly used LiDAR format.

The available libraries for LAS differ in their support for the

various features of the format such as coordinate reference

systems, variable length records and waveform data. The LASlib

from the LAStools set of LiDAR processing tools (Isenburg and

Schewchuck, 2007) is a popular option which implements many

of the features.

Figure 1: Typical number of points for point clouds

encountered by users in practice. Preliminary

results extracted from user responses to the OGC

survey regarding the current state of standards and

best practices in the management of point cloud

data.

Figure 2: Preliminary results on the typical storage

mechanisms for point clouds of the OGC survey

regarding the current state of standards and best

practices in the management of point cloud data.

0% 10% 20% 30% 40% 50%

Less than 100 million

More than 100 million

More than 1 billion

More than 1 trillion

0% 20% 40% 60% 80%

In a file on a network drive

In a file on a computer

In a database

In the cloud

Other

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-343-2016

344

The liblas library (Butler et al., 2011, 2011) is another C/C++

library for reading and writing LAS files. It also provides a

Python interface. The source code of liblas is available under the

terms of the BSD license. It assumes a local filesystem API for

file access and allows reading a LAS file record by record.

Laspy is a pure Python implementation for the LAS format

(Brown, 2012). It uses memory-mapped files to accelerate

access. While this has significant performance advantages in

some cases we have also experienced problematic behaviour with

this library in a cluster environment.

3. PROPOSED METHOD

The idea behind the proposed method is to re-use existing file

format libraries for the data import. The typically use a classic

filesystem interface. If we have the distributed file system (DFS)

mounted as a virtual filesystem (VFS) in the node’s operating

system, every node can access the files and load them via a

filesystem interface. We therefore only need to distribute the

filenames to the individual nodes to perform the task in parallel.

Figure 3 schematically shows how the approach bypasses the

direct data import and uses the VFS for the actual file access. We

therefore refer to the method as sideloading. We use Python to

implementing the distribution via a mapping function as it is one

of the support APIs of Apache Spark and also supports many

existing file format libraries.

3.1 Naïve Sideloading

Sideloading can most easily be implemented as a mapping

function, which maps a list of filenames to their data content. In

the case of point cloud import from LAS files this requires a

mapping function that maps LAS file names to lists of XYZ

coordinates:

["file1.las", "file2.las", …] → [(𝑥, 𝑦, 𝑧, …), (𝑥, 𝑦, 𝑧, …), …]

If we use Spark’s flatMap capability, we can effectively create

mapping function that creates a single list of XYZ coordinates

from all input point clouds:

["file1.las", "file2.las", …] → [𝑥, 𝑦, 𝑧, … , 𝑥, 𝑦, 𝑧, …]

The pseudo code notation in Figure 4 shows how this can easily

be achieved in Spark. A mapping function load_map uses an

existing single CPU LAS library to load an individual LAS file.

Spark’s resilient distributed dataset is created form a list of input

files. The mapping function is evoked on the RDD and the

contents of the files are mapped to a single new RDD.

3.2 Slicing

The naïve mapping function introduced above has two major

problems. First it maps files to the individual nodes / workers.

Therefore the number of files have to be sufficiently larger than

the number of nodes / workers. If not there will be nodes that

remain idle as they have no file to work on. Secondly each file is

read in its entirety into the worker node’s memory. If however

the file is larger than the available memory this can cause the

mapping function to fail.

It is therefore an obvious idea to subdivide each file further into

slices. Instead of loading entire files only slices of each file ae

loaded. This means instead of distributing files to nodes /

workers, slices are distributed. Subsequently many more tasks are

created which leads to a finer granularity for the workload

distribution. This should be generally advantageous for

distributed computing.

The approach can be achieved in two simple intermediate

mapping functions, which store the point count for each file and

generate the slices consisting of a start- and end-point in the files

data records.

["file1.las", "file2.las", …]

→ [("file1.las", 𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑢𝑛𝑡), ("file2.las", 𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑢𝑛𝑡), …]

[("file1.las", 𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑢𝑛𝑡), ("file2.las", 𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑢𝑛𝑡), …]

→ [("file1.las", 𝑠𝑡𝑎𝑟𝑡1, 𝑒𝑛𝑑1), ("file1.las", 𝑠𝑡𝑎𝑟𝑡2, 𝑒𝑛𝑑2), …]

4. TEST SCENARIO

The following section briefly describe the test scenario consisting

of the data and hardware that is used to obtain the running times

and other characteristics of the proposed method.

4.1 Data Sets

Two datasets a re selected for the experimentation. The first is a

medium size dataset. It consists of 99 files and holds a combined

1.7 billion (109) points. It is a mobile mapping data set of the

Bloomsbury area around University College London. It has an

average point spacing of better than 20 mm. Figure 5 gives an

overview of the coverage of the data set. Figure 6 gives a detailed

view and shows the density of the data set.

Figure 3: comparing the schematics of direct data import into

Sark from a Distributed File System (DFS) versus

sideloading via a Virtual local File System (VFS)

and Python.

def load_map(f):

 points = load_las.load_las(f)

 return points

files = ["file1.las", "file2.las", …]

files_rdd = sc.parallelize(files)

points_rdd = files_rdd.flatMap(load_map)

Figure 4: Pseudo code of a naïve mapping function for

sideloading LiDAR data.

Spark

DFS

Spark Python

VFS DFS

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-343-2016

345

Figure 5: Overview of the medium size data set used in the

experiment.

Figure 6: Detail view of the medium size data set used in the

experiment.

The second dataset is a larger sized LiDAR point cloud. It is a

classical airborne LiDAR dataset storing multiple returns. It has

an average density of 1 point per square meter. The dataset is

provided by CNR-IMATI. It covers the coastal area of Regione

Liguria. Figure 7 shows a detail of the dataset.

4.2 Cluster Architecture

The cluster we use to establish performance metrics is provided

by Fraunhofer IGD Darmstadt. It consists of 1 master node and 5

worker nodes. Each worker node has four virtual cores, which are

occupied by 4 workers. So overall we have 20 workers with a

combined memory of 34 GB. The prototype implementation is

based on Apache Spark 1.6 which is run in cluster mode. We use

Python to implement the mapping functions and liblas for the

LAS file handling.

5. EXPERIMENTAL RESULTS

The following sections show the experimental results obtained

using the setup described above.

5.1 Medium Dataset

The first experiments explore the effect of varying the number of

nodes while keeping the data volume fixed. We use a subset of

the medium sized dataset, consisting of 10 files holding 180

million points. We compare naïve sideloading to sideloading

with slicing. Both are benchmarked against the native Spark

implementation of a data import provided by the Spark SQL

IQmulus library. The results of this experiment are shown in

Figure 8. We can see that naïve sideloading does not scale very

well over an increasing number of nodes. This is expected as we

have observed above that the number of files must be sufficiently

larger than the umber of nodes / workers. With only 10 files and

a maximum of 20 workers this is clearly not the case. When we

introduce slicing however we can observe almost perfect scaling

of the runtime over the number of nodes. We can observe the

same for the native Spark implementation.

The second set of experiments explore the behaviour over an

increase in the data volume. We scale the data import from a few

million to just under 2 billion points. Figure 9 shows the graphical

results. Again we can see that naïve sideloading does not perform

efficient over a smaller subset of the data. It also shows an offset

in performance overall. Sideloading with slicing on the other

hand scales perfectly linear with the increase in data volume,

which is the desired behaviour. The native Spark implementation

seems to perform best on the maximum data size. The results of

the experiment can also be interpreted as data throughput, i.e.

millions of points ingested per second. Figure 10 shows the bar

graph for data throughput. While sideloading with slicing seems

to perform at par with a native Spark data import in most cases,

for the largest data size that does not hold.

Figure 7: Detail of the large size data set used in the

experiment.

Figure 8: Effect of varying the number of nodes for a fixed

sized point cloud.

0 200 400 600 800

1

2

3

4

5

Spark Job Runtime (s)

N
u

m
b

er
 o

f
N

o
d

es

Sideloading

Sideloading with
Slicing

Spark IQmulus
Library

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-343-2016

346

5.2 Large Dataset

The performance penalty becomes more apparent when the data

volume is further increased. Figure 11 shows the results on the

larger dataset with a maximum of just under 8 billion points.

Again sideloading with slicing performs perfectly linear under

the increase of data volume. However it is apparent that there is

a performance penalty over a native Spark data import.

6. CONCUISONS & OUTLOOK

We have shown a simple yet efficient method of ingesting very

large point clouds into the Apache Spark Big Data Engine. The

proposed method re-uses existing single CPU libraries for file

format interpretation. It therefore requires minimal

implementation effort and is easy to adapt to various file formats

including proprietary formats. When we introduce slicing it

scales linear both with a varying node count and varying data

volume. There is an overall performance penalty when compared

to a native Spark data import implementation. We recon that for

most applications this is acceptable in the data ingestion stage.

Understanding large point clouds as big data and using an

established big data toolchain opens many possibilities. We have

already shown the successful use of cloud based machine

learning for point cloud classification (Liu and Boehm, 2015).

While the established tools do not typically provide spatial

functionality such as indexing an query, these can be

implemented on top of existing frameworks (Alis et al., 2016).

7. ACKNOWLEDGEMENTS

We would like to acknowledge that this work is in part supported

by EU grant FP7-ICT-2011-318787 (IQmulus). We also

acknowledge that parts of this work are supported by an Amazon

AWS in Education Research Grant award.

8. REFERENCES

Alis, C., Boehm, J., Kun, L., 2016. Parallel Processing of Big

Point Clouds using Z-Order-Based Partitioning. Int. Arch.

Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B3.

Brédif, M., 2015. Spark SQL IQmulus Library [WWW

Document]. URL https://github.com/IGNF/spark-iqmulus

Brédif, M., Vallet, B., Ferrand, B., 2015. Distributed

Dimensionality-Based Rendering of LIDAR Point Clouds.

ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-

3/W3, 559–564. doi:10.5194/isprsarchives-XL-3-W3-559-2015

Brown, G., 2012. Laspy [WWW Document]. URL

https://github.com/grantbrown/laspy

Butler, H., Loskot, M., Vachon, P., Vales, M., Warmerdam, F.,

2011. libLAS: ASPRS LAS LiDAR Data Toolkit. Last Access

15.

Figure 9: Runtime for sideloading over varying number of points from a medium sized point cloud data set.

Figure 10: Throughput of a five node cluster with different

point cloud sizes.

0

200

400

600

800

1,000

1,200

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Sp
ar

k
Jo

b
 R

u
n

ti
m

e
(s

)

Mio. Points Ingested

Sideloading Sieloading & Slicing Spark-IQmulus Library

0.00 1.00 2.00

13.3

57.5

104.8

184.1

425.2

806.7

1744.8

Mio. Points per second

M
io

. P
o

in
ts Sideloading

Sideloading with
Slicing

Spark IQmulus
Library

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-343-2016

347

Dean, J., Ghemawat, S., 2008. MapReduce: simplified data

processing on large clusters. Commun. ACM 51, 107–113.

Diebold, F.X., 2012. A Personal Perspective on the Origin (s) and

Development of’Big Data’: The Phenomenon, the Term, and the

Discipline, Second Version.

Eldawy, A., Mokbel, M.F., 2015a. The Era of Big Spatial Data,

in: Proceedings of the International Workshop of Cloud Data

Management CloudDM 2015. Seoul, Korea.

Eldawy, A., Mokbel, M.F., 2015b. SpatialHadoop: A

MapReduce framework for spatial data, in: Data Engineering

(ICDE), 2015 IEEE 31st International Conference on. IEEE, pp.

1352–1363.

Hadoop [WWW Document], 2016. URL

http://hadoop.apache.org/ (accessed 4.1.16).

IQmulus [WWW Document], 2012. URL http://iqmulus.eu/

Isenburg, M., Schewchuck, J., 2007. LAStools: converting,

viewing, and compressing LIDAR data in LAS format. Avaliable

Httpwww Cs Unc Edu Isenburglastools.

Kini, A., Emanuele, R., 2014. Geotrellis: Adding geospatial

capabilities to spark. Spark Summit.

Krämer, M., Senner, I., 2015. A modular software architecture

for processing of big geospatial data in the cloud. Comput.

Graph. 49, 69–81. doi:10.1016/j.cag.2015.02.005

Laney, D., 2001. 3D data management: Controlling data volume,

velocity and variety. META Group Res. Note 6, 70.

LAS Specification Version 1.3, 2009.

Liu, K., Boehm, J., 2015. Classification of Big Point Cloud Data

Using Cloud Computing. Int. Arch. Photogramm. Remote Sens.

Spat. Inf. Sci. 40, 553.

Shvachko, K., Kuang, H., Radia, S., Chansler, R., 2010. The

hadoop distributed file system, in: Mass Storage Systems and

Technologies (MSST), 2010 IEEE 26th Symposium on. IEEE,

pp. 1–10.

Swart, L.T., 2010. How the Up-to-date Height Model of the

Netherlands (AHN) became a massive point data cloud. NCG

KNAW 17.

Whitworth, M., 2015. Laser surveys light up open data [WWW

Document]. URL

https://environmentagency.blog.gov.uk/2015/09/18/laser-

surveys-light-up-open-data/ (accessed 4.1.16).

You, S., Zhang, J., Gruenwald, L., 2015. Large-scale spatial join

query processing in cloud, in: Data Engineering Workshops

(ICDEW), 2015 31st IEEE International Conference on. IEEE,

pp. 34–41.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,

McCauley, M., Franklin, M.J., Shenker, S., Stoica, I., 2012.

Resilient distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing, in: Proceedings of the 9th USENIX

Conference on Networked Systems Design and Implementation.

USENIX Association, pp. 2–2.

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica,

I., 2010. Spark: Cluster Computing with Working Sets. HotCloud

10, 10–10.

Figure 11: Runtime for sideloading of a large sized point cloud data set over varying number of points.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

0 1000 2000 3000 4000 5000 6000 7000 8000

Sp
ar

k
Jo

b
 R

u
n

ti
m

e
(s

)

Mio. Points Ingested

Sideloading & Slicing

Spark-IQmulus Library

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XLI-B2-343-2016

348

