
PARALLEL PROCESSING OF BIG POINT CLOUDS USING Z-ORDER-BASED
PARTITIONING

C. Alis∗, J. Boehm, K. Liu

Dept. of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, UK
c.alis@ucl.ac.uk

Commission II, WG II/2

KEY WORDS: Z-order, Spatial partitioning, Big Data, LiDAR, Point Cloud, Apache Spark

ABSTRACT:

As laser scanning technology improves and costs are coming down, the amount of point cloud data being generated can be prohibitively
difficult and expensive to process on a single machine. This data explosion is not only limited to point cloud data. Voluminous
amounts of high-dimensionality and quickly accumulating data, collectively known as Big Data, such as those generated by social
media, Internet of Things devices and commercial transactions, are becoming more prevalent as well. New computing paradigms and
frameworks are being developed to efficiently handle the processing of Big Data, many of which utilize a compute cluster composed of
several commodity grade machines to process chunks of data in parallel.
A central concept in many of these frameworks is data locality. By its nature, Big Data is large enough that the entire dataset would
not fit on the memory and hard drives of a single node hence replicating the entire dataset to each worker node is impractical. The data
must then be partitioned across worker nodes in a manner that minimises data transfer across the network. This is a challenge for point
cloud data because there exist different ways to partition data and they may require data transfer.
We propose a partitioning based on Z-order which is a form of locality-sensitive hashing. The Z-order or Morton code is computed
by dividing each dimension to form a grid then interleaving the binary representation of each dimension. For example, the Z-order
code for the grid square with coordinates (x = 1 = 012, y = 3 = 112) is 10112 = 11. The number of points in each partition is
controlled by the number of bits per dimension: the more bits, the fewer the points. The number of bits per dimension also controls the
level of detail with more bits yielding finer partitioning. We present this partitioning method by implementing it on Apache Spark and
investigating how different parameters affect the accuracy and running time of the k nearest neighbour algorithm for a hemispherical
and a triangular wave point cloud.

1. INTRODUCTION

The release of big point cloud data sets e.g., the Actueel Hoogtebe-
stand Nederland 2 (AHN2) (Swart, 2010) dataset, has enabled re-
searchers to have access to a high-quality and high-density point
cloud of a large area. It has also brought to light the challenges of
dealing with point clouds with a total disk size comparable to the
volume of what can be considered as Big Data. AHN2, for ex-
ample, consists of 446 billion points spread across 1351 LAS zip
files for a total uncompressed size of 9 TB. Handling and process-
ing the data on a single machine is challenging even impractical.

The problem of handling large amounts of data is not unique to
those working with big point clouds. In recent years, with the rise
of new communication and information technologies as well as
with improved access to affordable computing power, substantial
work is being done in developing systems, frameworks and algo-
rithms for handling voluminous amounts of high-dimensionality
and quickly accumulating data, collectively known as Big Data.

By definition, Big Data is voluminous that it typically does not
fit on a single hard drive. Even if it does, transferring data from
storage to processing machine over a slow bus (network) results
in a huge performance penalty. The solution to these problems
would be to split the data into different partitions which may be
stored across several processing machines. We want the data to be
on the processing machine as much as possible, a concept known
as data locality, to avoid slow network transfers.

∗Corresponding author

Individual data points may be randomly assigned to different par-
titions to ensure parallel operations are balanced across process-
ing machines. However, several operations on point clouds re-
quire neighbourhoods of points as input. Thus, a method of parti-
tioning a point cloud is required such that points that are geomet-
rically close are assigned into the same partition.

One of the systems developed for Big Data processing is Apache
Spark1. It can handle data stored across multiple partitions and
user code can be written in Java, Scala, Python and R. Third party
dynamically linked libraries can also be called using the facilities
provided by the programming language of the user code. Sig-
nificant time and effort can then be saved by adapting and using
previously written code and compiled point cloud libraries.

In this paper, we present a partitioning method based on the Z-
order. We show that nearest-neighbours-based, or focal, oper-
ations can be performed by processing each partition indepen-
dently and that doing so is a quick and precise approximation.
We also show how a third party dynamically linked library can
be used to process point clouds on Apache Spark.

We propose indexing the points with a space-filling curve, in par-
ticular, a Z-order curve, which would serve as the basis for par-
titioning. It is a form of a locality-sensitive hashing. Z-order
curves have been in use in grouping and indexing multidimen-
sional points (Orenstein and Manola, 1988, Lawder and King,
2000). More recently, Z-order curves are being employed in
constructing nearest neighbour graphs in parallel on a single ma-
chine (Connor and Kumar, 2010, Orenstein and Manola, 1988),

1spark.apache.org

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B2-71-2016

 
71



Figure 1: 2D Z-order

indexing spatial data on distributed databases (Nishimura et al.,
2012, Wei et al., 2014, Lawder and King, 2000, Connor and Ku-
mar, 2010), and partitioning spatial data on MapReduce (Eldawy
et al., 2015, Nishimura et al., 2012).

The Z-order, also known as Morton code, of a point p is assigned
as follows. The bounding box is first divided into 2b partitions
per dimension (see Figure 1 for an illustration of a 2D case) and
are then sequentially assigned a b-bit number. The number of the
partition where p is found for each dimension is then interleaved
and this becomes the Z-order code.

In the illustration, two bits (b = 2) were assigned per dimension
hence the result is a grid of 22 partitions × 22 partitions. The
index of the lower leftmost partition is 00002 = 0 whilst that
of the upper rightmost partition is 11112 = 15. The point p is
in coordinates (102, 012). Interleaving the coordinates, we get
01102 = 6 and this is the Z-order. Connecting the centre of each
partition sequentially based on the index would result to a Z-like
curve hence the name Z-order.

We implement this partitioning method in Apache Spark which
is a system for distributed computing. It can scale from a single
machine to hundreds of thousands of worker machines. It can
also read from various data stores such as from a local file or
from a distributed file system such as the Hadoop Distributed File
System (HDFS). User code can be written in Java, Scala, Python
and R. It is an open source project under very active development
and with a vibrant user community.

The core abstraction of Spark is the resilient distributed dataset
(RDD), which is a distributed collection of elements. Instead of
immediately executing an operation on an RDD, Spark instead
builds an execution graph until it encounters an operation, known
as an action, to force the graph to be executed. This allows the
actual execution to be optimized based on succeeding operations.
For example, instead of reading an entire file, Spark may read
only those parts that will be processed in succeeding steps.

Spark has also introduced the DataFrames application program-
ming interface (API), which essentially wraps an RDD into SQL-
like tables. This API also eases optimization by adding more con-
text to the desired action. Another benefit of the API is that the
methods are implemented in Java and Scala, the native languages
of Spark, regardless of the language used by the user. This is a
major boost for Python and R users, which are typically executed
more slowly than Java or Scala.

Logically, a Spark system can be divided into driver and ex-
ecutors. The driver is the machine process that reads the input
user code, creates the execution graph and breaks it down into
stages, which are chunks of parallelizable subgraphs in the exe-
cution graph. The stages are then distributed among the execu-
tors, which are typically several, and may or may not reside on
the same machine as the driver. Parallelization is implemented
by having many executors, each working on a stage assigned to
them.

Datasets are typically composed of several partitions, which may
be physically stored on different machines. Executors work on
a single partition of data. Before an executor can process a par-
tition, the data in that partition must be located on the same ma-
chine as the executor. The process of transferring data from where
it is located to where it should be is known as a shuffle. Because
it involves reading and writing data from/to disks and/or mem-
ory and may pass through the network, it is a slow process and
is avoided as much as possible. Unlike Hadoop2, however, Spark
can store intermediate data in memory rather on disk only.

User scripts written in Java or Scala are executed natively. The
data processing and handling of Python scripts are handled by a
separate function process but uses the generic distributed com-
puting capabilities in Spark. As mentioned above, DataFrame
methods are implemented in Java and Scala. Dynamically linked
libraries can be called using the facilities provided by the pro-
gramming language used by the user.

There is no native support for point clouds in Spark but there are
libraries and systems that add support for raster and vector data.
SpatialSpark (You et al., 2015) implements spatial join and spa-
tial query for vector data in Spark and may use an R-tree index
to speed up point-in-polygon processing. Magellan3 is another
library for geospatial analytics of vector data using Spark and
aims to support geometrical queries and operations efficiently.
Geotrellis4 is a complete system, not just a library, for geographic
data processing based on Spark. It is initially intended for raster
data but some support for vector data is also available. It can also
employ Z-order and Hilbert curve indices.

We propose and explore the accuracy and running time of a hand-
ful of workflows which employ Z-order-based partitioning to per-
form nearest-neighbour based computations. We are not aware
of any k nearest neighbours (kNN) selection implementation in
Spark, however, there are at least two algorithms for kNN join
using MapReduce, which is a framework for parallel processing
wherein operations are through a series of map and reduce func-
tions.

The H-zKNNJ algorithm (Zhang et al., 2012) partitions a dataset
based on Z-order. Multiple copies of each point are created by
adding a constant random vector for each copy. Each point is then
assigned into partitions based on its and its copies’ Z-orders. The
points in each partition serve as the search space for candidate
nearest neighbours of each point in the partition. The candidate
nearest neighbours are then grouped by points and reduced to the
final k nearest neighbours.

The method proposed by Lu et al. (Lu et al., 2012) partitions the
dataset into a Voronoi lattice. It requires the pivot points to be
known beforehand. The first MapReduce operation assigns each
point into one or more partitions based on different approaches
e.g., distance, random or k-means. The rest of the method is
similar to H-zKNNJ: the partitions act as the search space for
candidate nearest neighbours which are then reduced to the final
k nearest neighbours.

2. WORKFLOWS

We investigate four workflows for performing nearest-neighbour
based computations of a big point cloud and were implemented
in Apache Spark using Python. To do so, we have to select the k
nearest neighbours of each point, which we define as

2hadoop.apache.org
3github.com/harsha2010/magellan
4geotrellis.io

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B2-71-2016

 
72



Definition 1. (k nearest neighbors) Given point p ∈ S, point
cloud S and an integer k, the k nearest neighbors of p in S,
denoted as KNN(p) is a set of k points in S such that ∀q ∈
KNN(p), ∀r ∈ S\KNN(p), ‖p, q‖ ≤ ‖p, r‖.

Note that ∀r ∈ S, ‖p, p‖ = 0 ≤ ‖p, r‖, thus, p ∈ KNN(p). We
use the 2D Euclidean distance as the norm.

Figure 2: Flowchart of the workflows. The tables surrounded by
broken lines show the minimum columns in the data frame at that
point in the workflow.

For all workflows (Figure 2), the input point cloud is first con-
verted into a Spark DataFrame, with each point represented as a
row. A 62-bit Z-order index from the normalised x and y coor-
dinates is then assigned to each point. Its normalisation is based
on the bounding box of the entire point cloud with (0,0) being
the lower left corner and (231 − 1, 231 − 1) being the upper right
corner. From the index, the 2b-bit partition number (b bits per
dimension) for each point is computed by bitwise shifting the in-
dex to the right by (62− 2b) bits. The dataset is then partitioned
by the partition number then sorted by the index within each par-
tition. The call to the partition() method of the data frame
would trigger a shuffle.

The first workflow, FLANN, selects the k nearest neighbours (kNN)
of each point by passing the contents of each partition to an ap-
propriate third party library, which is Fast Library for Approx-
imate Nearest Neighbors (FLANN)5 in our implementation and
experiments.

5www.cs.ubc.ca/research/flann

The second workflow, WINDOW, exploits the windowing feature
of the Spark DataFrames API. In this workflow, w preceding
rows, w succeeding rows and the current row, for a total of at
most (2w + 1) rows, are considered in each window. The dis-
tance from each neighbouring point to the point is computed and
the k points with the smallest distances are then selected as the k
nearest neighbours. Neighbourhood-based computations, which
may be through a third party library, can then be carried out fur-
ther on this window.

Points near the partition boundaries may not have access to their
true nearest neighbours which may be in other partitions. Par-
titions can be made to span other partitions by creating a mov-
ing window buffer by replicating the first w and the last w rows
by as many partitions as needed. After partitioning and sorting
with partitions, the result is a data frame of points which can
then be treated as the input for FLANN or WINDOW. We call
these modified workflows as FLANN-SPAN and WINDOW-SPAN,
respectively.

The spanning step is similar to the replication step in the kNN join
algorithms discussed above. However, instead of adding a ran-
dom vector, as in H-zKNNJ, or using a heuristic as in the method
proposed by Lu et al. (Lu et al., 2012), we only base the partition-
ing of the duplicates on the position of the row on the data frame
sorted by the 62-bit Z-order.

Note that enabling spanning triggers a shuffle. To summarise,
FLANN and WINDOW require at least one shuffle whilst FLANN-
SPAN and WINDOW-SPAN require at least two shuffles. We expect
that a workflow with spanning is slower than one without. With
a handicap on runtime, we then have to investigate by how much
accuracy improves with spanning, if it does, and what is the per-
formance penalty for that improvement, assuming accuracy does
improve.

3. EXPERIMENTAL RESULTS

We investigate the accuracy a defined as

a =
nc

k
, (1)

where nc is the number of correctly selected points and k is the
number of nearest neighbours, of the different workflows. We
also look at the running time of the different workflows as various
parameters of the point cloud and workflows vary.

We consider two kinds of synthetic point clouds: hemispherical
and triangular wave. The former is a smooth point cloud while the
latter is a sharper point cloud. The hemisphere is parameterized
by its radius r and is in the +z half-space. The triangular wave
is parameterized by the number of peaks p and is also in the +z
half-space. The wave is travelling along the x-axis, that is, z is a
function of x only.

The normals of both point clouds point upwards. Thus, the com-
puted normals ~nc in the workflow are reversed (−~nc) if they are
pointing upwards.

All experiments were implemented in Apache Spark 1.6.1 with
a local master and 8 executor cores. The memory allocation is
8 GB for the driver and 1 GB for the executors. The workflows
were implemented in Python.

In these experiments, we measure the performance of the work-
flows in kNN computations where we used the FLANN library
for the FLANN and FLANN-SPAN workflows.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B2-71-2016

 
73



Figure 3: kNN accuracy in processing a hemispherical point
cloud for a particular set of parameters for different workflows.
In A-D, the points are projected onto the x-y plane. The colour
corresponds to the kNN accuracy, defined as the fraction of cor-
rectly selected k nearest neighbours, at each point. In E-H, the
distribution of the accuracy is shown with the yellow vertical line
indicating the value of the median. The workflows are: (A,E)
FLANN, (B,F) FLANN-SPAN, (C,G) WINDOW, (D,H) WINDOW-
SPAN. The values of the parameters are bit per dimension b = 2,
number of points per partition Np = 1000, radius r = 1, number
of nearest neighbours k = 20 and look-back/look-ahead length
w = 20.

3.1 Hemispherical Point Cloud

The hemispherical point cloud that we tested has a radius r, cen-
tred at the origin and is in the +z half-space. The motivation of
selecting this geometry is to test the workflows on a smooth point
cloud.

3.1.1 Spatial Accuracy Figure 3 shows the accuracy for hemi-
spherical point clouds and workflows with bits per dimension
b = 2, number of points per partition Np = 1000, radius r = 1,
k = 20, and window look-back/look-ahead length w = 20.

For this set of parameters, the results for the spanning and non-
spanning versions of FLANN and WINDOW are the same. Grid-
like lines can be made out from Figures 3A and 3B and this is due
to the lower accuracy of points near partition boundaries. Grid-
like lines are also visible in Figures 3C and 3D but there are more
lines and the spacing is much less, which suggests that the grid
more likely due to Z-order indexing rather than due to partition
boundaries.

The colours of Figures 3A and 3B are darker than those of Fig-
ures 3C and 3D suggesting that the former are more accurate than
the latter. There is a prominent peak at a = 0.9 in Figures 3E and
3F corresponding to at least 50% of the points having an accuracy
of at least 0.9. On the other hand, the distribution in Figures 3G
and 3H are more spread and there is a less prominent peak at
a = 0.65. Comparing the median of 0.9 for FLANN and FLANN-
SPAN with the median of 0.65 for WINDOW and WINDOW-SPAN,
we conclude that FLANN and FLANN-SPAN are more accurate
than WINDOW and WINDOW-SPAN at least for this set of param-
eters. Furthermore, WINDOW and WINDOW-SPAN have a mini-
mum accuracy of 0.05 i.e., only the point itself was selected as
a nearest neighbour, which is less compared to a minimum accu-
racy of 0.1 for FLANN and 0.2 for FLANN-WINDOW.

3.1.2 Effect of Different Parameters on Accuracy We now
look at the accuracy of the workflows for different parameter val-
ues as shown in Figure 4. Except for a few particular instances,
the lines are constant with respect to the radius which suggests
that accuracy does not depend on the curvature of the point cloud.

Figure 4: kNN accuracy in processing a hemispherical point
cloud for different parameter values. Panels A, C and E em-
ployed either FLANN or FLANN-SPAN whilst panels B, D E and
G employed either WINDOW or WINDOW-SPAN. Solid lines cor-
respond to FLANN or WINDOW whereas broken lines are for
FLANN-SPAN and WINDOW-SPAN. The varied parameters are
(A-B) number of nearest neighbours k, (C-D) bits per dimen-
sion b, (E-F) number of points per partition Np and (F) window
look-back/look-ahead length w. If a parameter is not varying in a
panel, value used is b = 2, Np = 1000, k = 20 and w = 20.

Except for a few particular instances as well, the (broken) lines
for the spanning version of each workflow coincide with the non-
spanning version, which also suggests that the added complica-
tion of spanning does not usually result to any significant im-
provement in the accuracy.

One can easily notice in Figure 4A that the median accuracy for
k = 10 is 1.0 which implies that as long as k ≤ 10 then the
selected nearest neighbours are likely to be all correct. As k in-
creases the accuracy decreases, which is expected since as more
neighbours are required, the likelihood of one of these neighbours
being outside the partition increases. Adding spanning mitigated
this partition effect slightly as shown in Figure 4A but the line
for k = 30 (FLANN-SPAN) is too close and too intertwined (the
accuracy at r = 2 is worse than for FLANN) for us to make any
stronger conclusions. The drop in the accuracy due to increasing
k > kthres after some threshold kthres seems to be nonlinear since
the change in median accuracy from k = 10 to k = 20 is 0.1
whilst from k = 20 to k = 30 is 0.17.

Comparing the results with that for WINDOW and WINDOW-SPAN
(Figure 4B), the difference in the accuracy is more apparent. Whilst
for k = 10, the median accuracy for FLANN and FLANN-SPAN
is 1.0, the median accuracy for WINDOW and WINDOW-SPAN is
0.8 which is closer to the median accuracy of 0.73 for k = 30
(FLANN). Using spanning does not seem to have an effect on the
median accuracy. As expected, the median accuracy decreases as

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B2-71-2016

 
74



k increases but unlike in FLANN and FLANN-SPAN, the change is
more linear with a drop of 0.15 from k = 10 to k = 20, and 0.12
from k = 20 to k = 30.

A smaller b means more points per partition for a constant total
number of points N in the point cloud. However, the Np is held
constant so what we are observing in Figures 4C and 4D are the
effect of the Z-order and partitioning on the accuracy. In Fig-
ure 4C, the median precision for FLANN is 0.9 for b = 1 and
b = 2 and 0.85 for b = 3. The values are the same for b = 1 and
b = 2 for FLANN-SPAN but jumps to 0.95 for b = 3. It seems that
for b = 3, the partitions are too small that a significant number
of nearest neighbours are in other partitions such that enabling
spanning significantly improves and beats the median precision
for smaller values of b.

The advantage of enabling spanning is also observed in Figure 4D
albeit the best median precision of 0.7 is still less than the worse
precision of 0.85 for FLANN. These results suggest that spanning
can improve accuracy for some minimum value of b although
we cannot confidently state the value of that threshold at this
point. These also support the possible use of spanning in working
around issues related to partitioning.

When Np is increased, the number of points near a partition bound-
ary increases but so are the number of points that are inside and
that have all their nearest neighbours within the partition. The
rate of increase of the latter should be more than that of the for-
mer so the net effect would be that the accuracy tends to increase
as Np increases. This effect is somewhat observed in Figure 4E
where the median accuracy for FLANN jumped from 0.85 for
Np = 102 to 0.9 for Np = 103 and stayed there for Np = 104.
Spanning improved the median accuracy of FLANN-SPAN to 0.9
for r = 2−2 and r = 22, which may be related to the area cov-
ered by the point cloud in corner partitions.

The expected effect of Np is opposite to what is observed in
Figure 4F. The median accuracy of WINDOW is 0.65 for both
Np = 102 and Np = 103 but drops to 0.6 for Np = 104. This
unexpected result can be explained by recalling that WINDOW re-
lies on sorting based on Z-order. As more points are added, the
bias against nearest neighbours that are not along the traversal
direction of the Z-order increases leading to a decrease in the
accuracy. Enabling spanning improves the median accuracy to
Np = 0.7.

Not surprisingly, increasing w improves accuracy as shown in
Figure 4G. In this case, the median accuracy linearly increased
from 0.65 for w = 20 to 0.85 for w = 60. Since Np = 1000,
this corresponds to a window size of 4.1% to 12.1% of the number
of points in the partition. Spanning has no effect on the median
accuracy.

3.2 Triangular Wave Point Cloud

We test the workflows on a non-smooth, triangular wave point
cloud with p peaks parallel to the y-axis and residing in the +z
half-space.

3.2.1 Spatial Accuracy The accuracy distribution of FLANN
and FLANN-SPAN, and WINDOW and WINDOW-SPAN (Figure 5)
for a triangular wave point cloud is similar within each pair. The
triangular wave peaks are oriented vertically in the figure.

There are noticeable horizontal lines in Figures 5A and 5B, which
are due to the lower accuracy of points near partition boundaries.
There is only one visible vertical line and this corresponds to the

Figure 5: kNN accuracy in processing a triangular wave point
cloud for a particular set of parameters for different workflows. In
A-D, the points are projected onto the x-y plane. The colour cor-
responds to the kNN accuracy, defined as the fraction of correctly
selected k nearest neighbours, at each point. In E-H, the distribu-
tion of the accuracy is shown with the yellow vertical line indi-
cating the value of the median. The workflows are: (A,E) FLANN,
(B,F) FLANN-SPAN, (C,G) WINDOW, (D,H) WINDOW-SPAN. The
values of the parameters are bit per dimension b = 2, number of
points per partition Np = 1000, number of peaks p = 3, number
of nearest neighbours k = 20 and look-back/look-ahead length
w = 20.

only triangular wave peak that coincides with a partition bound-
ary. Taken together, the position of the visible lines imply that
points near partition boundaries are not guaranteed to have lower
accuracy than inner points.

It is harder to identify any prominent features in Figures 5C and
5D but, upon closer inspection, a light vertical line can be made
out at the middle, which again corresponds to the triangular wave
peak that coincides with a partition boundary. Two dark lines
at each side of the light vertical line can also be seen and these
correspond to triangular wave peaks and troughs.

All workflows have lesser accuracy (Figure 5E-H) when the input
is a triangular wave point cloud instead of a hemispherical point
cloud. From a median accuracy of 0.9 for a hemispherical point
cloud, the median accuracy of FLANN and FLANN-SPAN for a tri-
angular wave point cloud is 0.75. Similarly, the median accuracy
of WINDOW and WINDOW-SPAN dropped from 0.65 to 0.45. The
peaks are less prominent and shifted to the left as well. The dip in
the accuracy is expected because a nearest neighbour of a point
may be on the other side of a peak or dip and this would be farther
along in sequence of the Z-order.

3.2.2 Effect of Different Parameters on Accuracy There is
a general trend of decreasing accuracy for increasing peaks (Fig-
ure 6), which is expected. FLANN and FLANN-SPAN are also more
accurate than WINDOW and WINDOW-SPAN.

Unlike with hemispherical point cloud where k ≤ 10 results to a
median accuracy of 1.0 for FLANN and FLANN-SPAN in all values
of r considered, for triangular wave point clouds (Figure 6A), it
is 1.0 only if p ≤ 2. This can be extended to p = 3 if spanning
is enabled but if p > 3, the median accuracy is constant at 0.9.
Enabling spanning also improves the median accuracy for p =
3 when k = 20. However, spanning results in lower median
precision for k = 30. Spanning has no effect on the accuracy of
WINDOW and WINDOW-SPAN (Figure 6B).

The distance between the k = 10 and k = 20 curves is noticeably
larger than that between the k = 20 and k = 30 curves for all
workflows. The difference in distance suggests that accuracy is

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B2-71-2016

 
75



Figure 6: kNN accuracy in processing a triangular wave point
cloud for different parameter values. Panels A, C and E em-
ployed either FLANN or FLANN-SPAN whilst panels B, D E and
G employed either WINDOW or WINDOW-SPAN. Solid lines cor-
respond to FLANN or WINDOW whereas broken lines are for
FLANN-SPAN and WINDOW-SPAN. The varied parameters are
(A-B) number of nearest neighbours k, (C-D) bits per dimen-
sion b, (E-F) number of points per partition Np and (F) window
look-back/look-ahead length w. If a parameter is not varying in a
panel, value used is b = 2, Np = 1000, k = 20 and w = 20.

more sensitive between k = 10 and k = 20 than between k = 20
and k = 30.

The curves in Figure 6C are overlapping so it is difficult to ascer-
tain the effect of b on the median accuracy. However, b = 3 tends
to have the smallest median accuracy for FLANN but enabling
spanning makes the workflow the most accurate among the curves
in Figures 6C and D. This is more acutely seen in Figure 6D
wherein the curve for b = 3 (WINDOW-SPAN) is clearly above
the other curves, which are coinciding. The same behaviour of
b = 3 (WINDOW-SPAN) is also seen for a hemispherical point
cloud and the same explanation holds.

The curves are overlapping in Figures 6E and F so it is difficult
to issue a strong statement on the effect of Np on the median ac-
curacy of different workflows. The observation on hemispherical
point clouds that median accuracy tends to increase with Np for
FLANN and FLANN-SPAN but tends to decrease for WINDOW and
WINDOW-SPAN no longer holds.

There is a general trend of increasing median accuracy for in-
creasing w as shown in Figure 6G. However, the trend is less
defined than in hemispherical point cloud because of overlapping
curves. There is an improvement in the median accuracy in some
instances if spanning is enabled.

Figure 7: Relative running times of kNN for processing a hemi-
spherical point cloud. Relative running time is computed as the
ratio between the running time of each workflow and the running
time of FLANN and is based on the mean of five trials. Panels
A, C and E are for FLANN-SPAN only whilst panels B, D E and
G employed either WINDOW or WINDOW-SPAN. Solid lines cor-
respond to WINDOW whereas broken lines are for FLANN-SPAN

and WINDOW-SPAN. The varied parameters are (A-B) number of
nearest neighbours k, (C-D) bits per dimension b, (E-F) number
of points per partition Np and (F) window look-back/look-ahead
length w. If a parameter is not varying in a panel, the value used
is b = 2, Np = 1000, k = 20 and w = 20.

3.3 Running Time

The running time for both hemispherical and triangular wave point
clouds are similar so we only analyse that of the hemispherical
point cloud.

The fastest workflow is FLANN as shown in Figure 7 where all
relative running times are greater than 1.0. Spanning workflows
are also slower than their corresponding non-spanning workflows
because these involve an extra shuffle.

The relative running times of FLANN-SPAN with respect to r (Fig-
ure 7A) is almost constant for k = 10 and k = 20 with the
former having consistently larger relative running times (1.29 to
1.32) than the latter (1.20 to 1.25). The relative running time for
k = 30 is more erratic with it being almost the same as in k = 10
for r = 2−1 and as in k = 20 for r = 21. The apparent decreas-
ing relative running time as k increases suggest that the overhead
of spanning decreases as k increases.

The somewhat erratic behaviour of the relative running time as r
increases is also observed (Figure 7B) in WINDOW and WINDOW-
SPAN. However, there is a general trend that relative running time
increases as k. Although WINDOW is slower than FLANN-SPAN,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B2-71-2016

 
76



the relative running time of WINDOW does not exceed 1.7 com-
pared to that of WINDOW-SPAN which is at least 2.0. In general,
the relative running time of WINDOW-SPAN is about twice that of
WINDOW.

The relationship between relative running time and r remains in-
definite when b (Figure 7C) is varied. The effect of b itself is also
irregular with the line for b = 1 criss-crossing the line for b = 2.
However, the line for b = 3 which is not too surprising because
larger b implies more partitions to shuffle.

Enabling spanning on WINDOW (Figure 7D) would result to an
around 75% increase in relative running time for varying b. The
lines for different b are too intertwined to conclude as to the effect
of r on the relative running time.

There is an unexplained dip at r = 21 that can be seen in Fig-
ure 7E-G. The maximum relative running time is at r = 20 as
well. Although there is a superlinear increase in the relative run-
ning time (Figure 7E) as Np is increased, the maximum relative
running time remains below 1.5. Enabling spanning on WINDOW
(Figure 7F) doubles the relative running time and can exceed
three times the running time of FLANN for Np = 104. Increas-
ing w (Figure 7G) results to a larger relative running time and
enabling spanning doubles running time.

4. CONCLUSION

The increasing volume of point clouds increases the need for pro-
cessing them in parallel. This would require breaking them down
into partitions and distributing across multiple machines. Data
locality is important here, which is the concept that data must be
on the processing machine as much as possible because network
transfer would be very slow.

We proposed a Z-order-based partitioning scheme and imple-
mented it on Apache Spark. We showed that it is an effective
method and a convenient one as well because third-party libraries
and code may still be used. Enabling spanning may not be too
useful as well as the improvement in median accuracy is mini-
mal.

We have only investigated the accuracy of kNN selection but the
accuracy of other nearest-neighbourhood-based operations may
be investigated as well. For example, extracting normals from
point clouds using PCA may prove to be more robust to the ef-
fects of partitioning.

An advantage of Z-order partitioning is that the level of detail
i.e., partition size, can be easily adjusted. We intend to imple-
ment an adaptive Z-order indexing such that partitions can be
automatically adjusted to have a more constant number of points
per partition.

ACKNOWLEDGEMENTS

We would like to acknowledge that this work is in part supported
by EU grant FP7-ICT-2011-318787 (IQmulus).

REFERENCES

Connor, M. and Kumar, P., 2010. Fast construction of k-nearest
neighbor graphs for point clouds. IEEE Transactions on Visual-
ization and Computer Graphics 16(4), pp. 599–608.

Eldawy, A., Alarabi, L. and Mokbel, M. F., 2015. Spatial Par-
titioning Techniques in SpatialHadoop. Proc. VLDB Endow.
8(12), pp. 1602–1605.

Lawder, J. K. and King, P. J. H., 2000. Using Space-Filling
Curves for Multi-dimensional Indexing. In: B. Lings and K. Jef-
fery (eds), Advances in Databases, Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 20–35.

Lu, W., Shen, Y., Chen, S. and Ooi, B. C., 2012. Efficient Pro-
cessing of K Nearest Neighbor Joins Using MapReduce. Proc.
VLDB Endow. 5(10), pp. 1016–1027.

Nishimura, S., Das, S., Agrawal, D. and Abbadi, A. E., 2012.
MD-HBase: design and implementation of an elastic data infras-
tructure for cloud-scale location services. Distributed and Parallel
Databases 31(2), pp. 289–319.

Orenstein, J. A. and Manola, F. A., 1988. PROBE spatial data
modeling and query processing in an image database application.
IEEE Transactions on Software Engineering 14(5), pp. 611–629.

Swart, L. T., 2010. How the Up-to-date Height Model of the
Netherlands (AHN) became a massive point data cloud. NCG
KNAW.

Wei, L.-Y., Hsu, Y.-T., Peng, W.-C. and Lee, W.-C., 2014. In-
dexing spatial data in cloud data managements. Pervasive and
Mobile Computing 15, pp. 48–61.

You, S., Zhang, J. and Gruenwald, L., 2015. Large-scale spatial
join query processing in Cloud. In: 2015 31st IEEE International
Conference on Data Engineering Workshops (ICDEW), pp. 34–
41.

Zhang, C., Li, F. and Jestes, J., 2012. Efficient Parallel kNN Joins
for Large Data in MapReduce. In: Proceedings of the 15th Inter-
national Conference on Extending Database Technology, EDBT
’12, ACM, New York, NY, USA, pp. 38–49.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B2, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B2-71-2016

 
77




