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ABSTRACT:

Forest stands are the basic units for forest inventory and mapping. Stands are large forested areas (e.g., > 2 ha) of homogeneous tree
species composition. The accurate delineation of forest stands is usually performed by visual analysis of human operators on very
high resolution (VHR) optical images. This work is highly time consuming and should be automated for scalability purposes. In
this paper, a method based on the fusion of airborne laser scanning data (or lidar) and very high resolution multispectral imagery for
automatic forest stand delineation and forest land-cover database update is proposed. The multispectral images give access to the tree
species whereas 3D lidar point clouds provide geometric information on the trees. Therefore, multi-modal features are computed, both
at pixel and object levels. The objects are individual trees extracted from lidar data. A supervised classification is performed at the
object level on the computed features in order to coarsely discriminate the existing tree species in the area of interest. The analysis at
tree level is particularly relevant since it significantly improves the tree species classification. A probability map is generated through
the tree species classification and inserted with the pixel-based features map in an energetical framework. The proposed energy is
then minimized using a standard graph-cut method (namely QPBO with a-expansion) in order to produce a segmentation map with a
controlled level of details. Comparison with an existing forest land cover database shows that our method provides satisfactory results

both in terms of stand labelling and delineation (matching ranges between 94% and 99%).

1. INTRODUCTION

Fostering information extraction in forested areas, in particular at
the stand level, is driven by two main goals : statistical inven-
tory and mapping. Forest stands are the basic units and can be
defined in terms of tree species or tree maturity. From a remote
sensing point of view, the delineation of the stands is a segmenta-
tion problem. In statistical forest inventory, segmentation is help-
ful for extracting statistically meaningful sample points of field
surveys and reliable features (basal area, dominant tree height,
etc.) (Means et al., 2000, Kangas and Maltamo, 2006). In land-
cover mapping, this is highly helpful for forest database updating
(Kim et al., 2009). Most of the time, for reliability purposes, each
area is manually interpreted by human operators with very high
resolution geospatial images. This work is extremely time con-
suming. Furthermore, in many countries, the wide variety of tree
species (around 20) makes the problem harder.

The use of remote sensing data for the automatic analysis of
forests is growing, especially with the synergetical use of air-
borne laser scanning (ALS) and optical imagery (very high reso-
Iution multispectral imagery and hyperspectral imagery)
(Torabzadeh et al., 2014).

Several state-of-the-art papers on automatic forest stand delin-
eation with Earth Observation data have been already published.
First, it can be achieved with a single remote sensing source. A
stand delineation technique using hyperspectral imagery is pro-
posed in (Leckie et al., 2003). The trees are extracted using a
valley following approach and classified into 7 tree species (5
coniferous, 1 deciduous, and 1 non-specified) with a maximum
likelihood classifier.

A stand mapping method using low density airborne lidar data is
proposed in (Koch et al., 2009). It is composed of several steps
of feature extraction, creation and raster based classification. For-

est stands are created by grouping neighbouring cells within each
class. Then, only the stands with a pre-defined minimum size are
accepted. Neighbouring small areas of different forest types that
do not reach the minimum size are merged together to a forest
stand.

The forest stand delineation proposed in (Sullivan et al., 2009)
uses low density airborne lidar for an object-oriented image seg-
mentation and supervised classification. Three features (canopy
cover, stem density, and average height) are computed and raster-
ized. The segmentation is performed using a region growing ap-
proach. Spatially adjacent pixels are grouped into homogeneous
discrete image objects or regions. Then, a supervised discrimi-
nation of the segmented image is performed using a Battacharya
classifier, in order to define the maturity of the stands (i.e., the
labels correspond to the maturity of the stands).

A forest stand delineation based on high density airborne lidar
data is also proposed in (Wu et al., 2014). Three features are first
extracted from the point cloud ; the tree size indicator (TSI), the
forest density index (FDI), and the tree species indicator (SPI).
The TSI is 85% of the canopy height model values with a spatial
resolution of 4 m x 4 m per pixel. The FDI is the percentage
of non-ground points over all points, at each pixel of 4 mx4 m
size. The SPI is obtained from the point cloud using 3D alpha
shape techniques and principal component analysis. A coarse
forest stand delineation is then performed on the 3-band feature
image using the Mean-Shift algorithm, with high value of the pa-
rameters in order to obtain under-segmented raw forest stands. A
forest mask is then applied to the segmented image in order to re-
trieve forest and non-forest raw stands. It may create some small
isolated areas that will be merged to their most similar neighbour
until their size is larger than a user-defined threshold. The forest
stands are then refined. But, instead of using the original pixels
from the 3-band feature image, superpixels are generated with
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Figure 1. Flowchart of the proposed method. Colour codes : Douglas, spruce, woody heathland.

TSI, FDI and SPI features. Forest stand refinement is achieved
with a seeded region growing approach. This method provides a
coarse-to-fine segmentation with relatively large stands.

Other methods using the fusion of different types of remote sens-
ing data have also been developed. Two segmentation methods
are proposed in (Leppinen et al., 2008) for a forest composed of
Scots Pine, Norway Spruce and Hardwood. A hierarchical seg-
mentation on crown height model and a limited iterative region
growing approach on composite of lidar and Coloured Infra-Red
(CIR images). The second method proposes a hierarchical seg-
mentation on crown height model where each image object is
connected both to upper and lower level image objects. This al-
lows to consider final segments onto the finest segmentation level,
like recognizing individual trees in the area.

The analysis of the lidar and multispectral data is performed at
three levels in (Tiede et al., 2004). The first level represents small
objects (single tree scale; individual trees or small group of trees)
that can be differentiated by spectral and structural characteristics
using a rule-based classification. The second level corresponds to
the stand. It is built using the same classification process which
summarizes forest-development phases by referencing to small
scale sub-objects at level 1. The third level is generated by merg-
ing objects of the same classified forest-development into larger
spacial units. This method produces a mapping guide in order to
assess the forest development phase (i.e., the labels do not corre-
spond to tree species).

Since the stands are the basic unit for statistical inventory some
segmentation methods for that purpose have been developed in
(Diedershagen et al., 2004) and (Hernando et al., 2012).

With respect to existing methods, it appears that there are no for-
est stand segmentation method based on tree species that can sat-
isfactorily handle a large number of classes (>5). It also appears
that working at the object level (usually tree level), in order to dis-
criminate tree species, produces better the stand segmentation re-
sults. Several methods for tree species classification at tree level
have been investigated in (Heinzel and Koch, 2012), (Leckie et
al., 2003) and (Dalponte et al., 2015a). However, is likely to be

imprecise, resulting in an inaccurate tree classification. However,
the output of the classification of tree species at tree level may be
used for forest stand delineation.

In this paper, a method for species-stand segmentation is pro-
posed. The method is composed of three main steps. Features
are first derived at the pixel and at the tree level. The trees are
extracted using a simple method, since this appears to be suffi-
cient for subsequent steps. A classification is performed at the
tree level as it significantly improves the discrimination results
(about 20% better than the pixel-based approach). This classifi-
cation is then regularised through an energy minimisation. The
regularisation, performed with a graph-cut method, produces ho-
mogeneous tree species areas with smooth borders.

The paper is structured as follows : the method is presented in
Section 2. In this section, the feature extraction, the classification
and the regularisation are presented. The method is evaluated in
Section 3. The dataset is presented followed by the results of the
method. Finally, a conclusion is proposed in Section 4. with a
summary of the method and the forthcoming improvements of
the method.

2. METHOD

The proposed method is composed of three main steps. First, 12
features are derived from the ALS and multispectral data (Sec-
tion 2.1). They are computed at the pixel level as it is needed for
the energy minimisation. They are also computed at the object
level (trees); the features are more consistent at the tree level and
significantly improve the accuracy of the classifiers. Then, the
classification of tree species is performed using standard classi-
fiers (Section 2.2). Finally, a smooth regularisation based on an
energy minimisation framework is carried out in order to obtain
the final segments (Section 2.3). A summary of the method is
presented in Figure 1.

2.1 Feature computation

Feature computation is composed of several steps. The first step
is individual tree extraction from the ALS point cloud, since the
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features will be computed both at the pixel and object level. For
the lidar data, features are computed at the point level and then
rasterized using a pit-free method (see Section 2.1.4) at the res-
olution of the multispectral image. Multispectral features are
also computed at the pixel level. The pixel-based feature maps
are merged in order to create a global pixel-based feature map.
Then, an object-based feature map is created using the pixel-
based feature map and the extracted trees. The feature com-
putation method is summarized in Figure 2. The various com-
puted features are presented in Table 3 and described in Sec-
tions 2.1.2,2.1.3 and 2.1.4.

[ Multispectral

[ Lidar point cloud ]
image

[ Individual trees ]

Point-based lidar
feature map

Pixel-based | [ Pixel-based lidar
multispectral feature map
feature map

[ Pixel-based | [

Object-based
feature map

feature map

Figure 2. Feature extraction flowchart.

Lidar features

CHM

Vegetation density based on
local tree top

Vegetation density based on
ratio of ground points

over non-ground points

Multispectral features
Reflectance in

the red band
Reflectance in

the green band
Reflectance in

in the blue band

Planarity Reflectance in

Scatter the near-infra-red band
NDVI
DVI
RVI

Table 3. Computed features both at pixel and object levels.

2.1.1 Tree extraction. Recently, tree delineation has been
extensively investigated in the literature, see for instance
(Dalponte et al., 2015b) and (Tochon et al., 2015) for the latest
existing methods. Many methods exist and it is well known that
there is no golden standard for individual tree crown delineation
(Kaartinen et al., 2012). Here, accurate tree delineation is
not the aim of the proposal but a geometrically meaningful
over-segmentation technique for object-based image analysis and
feature computation. Consequently and for scalability purposes,
a simple method with few parameters is sufficient.

A coarse method is adopted: the tree tops are first extracted using
a local maxima filter (from experiments, a 5 meter radius filter
appears to be the best choice on the considered dataset). Only
the points above 5 meters are retained. Points are aggregated to
the tree tops according to their relative height to the tree top and
distance from the closest point from the tree. An example of our

tree delineation is presented in Figure 4.

(b)

Figure 4. Result of the tree delineation. (a) Orthoimage (1 km?):
the red square corresponds to the sub-area where the tree delin-
eation results (b) are presented.

2.1.2 Point-based lidar features. Lidar-derived features
(such as vegetation density, scatter and planarity) require a con-
sistent neighbourhood for their computation. For each lidar point,
3 cylindrical neighbourhoods are used (1 m, 3 m and 5 m radius).
Two vegetation density features are computed; one based on the
number of local maxima within the neighbourhoods and an other
related to the number of non-ground points within the neighbour-
hoods (ground points were previously determined by filtering).
The scatter s and the planarity p are computed as follow (Wein-
mann et al., 2015) :
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where A1 > A2, > A3, are the eigenvalues of the ALS points
within the cylindrical neighbourhoods of radius 7.

4 features are extracted during this step. These features provide
information about the structure of the forest that is related to
species it is composed of.

Some other features such as percentiles can be computed using
the same method as they are known to be relevant for tree species
classification (Dalponte et al., 2014, Torabzadeh et al., 2015).
They are not used here in order to reduce the complexity of the
method and the computation times.

2.1.3 Pixel-based multispectral features. The original 4
bands from the image are kept and considered as multispectral
features. The Normalized Difference Vegetation Index (NDVI)
(Tucker, 1979), the Difference Vegetation Index (DVI) (Bacour
et al., 2006) and the Ratio Vegetation Index (RVI) (Jordan, 1969)
are computed as they are relevant vegetation indicators. These
indicators provide more information about the species than
the original bands alone. Finally, the pixel-based multispectral
features map is composed of 7 features. Some other feature
could be processed such as texture features but were also not
considered in this study order to reduce the complexity of the
method and the computation times.

2.1.4 Pixel-based lidar features. The features computed
in Section 2.1.2 are rasterized at the same resolution of the
multispectral image using a pit-free method proposed in (Khos-
ravipour et al., 2014). The Canopy Heigh Model (CHM) is
also computed using this method. This rasterization method is
interesting because it produces smooth images that will lead to
better results for classification and regularisation.
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Figure 5. Classification results; comparison of the classifiers and of the pixel and object based approach. Species colour codes : beech,

chestnut, robinia, oak,

2.1.5 Object-based feature map. The pixel-based multi-
spectral and lidar maps are merged so as to obtain a pixel-based
feature map. Then, an object-based feature map is created using
the individual trees and the pixel-based feature map. The value
of a pixel belonging to a tree in the object-based feature map is
the mean value of the pixels belonging to that tree. Otherwise,
the pixel keeps the value of the pixel-based feature map (see
Figure 6). In this paper, only the mean value of the pixels within
the tree is envisaged but one can also consider other statistical
values (minimum, maximum, percentiles etc.).

Other features could be derived from the lidar cloud point at
the object-level. For instance, an alpha-shape can be performed
on the individual trees and a penetration feature can be derived
as it can help classifying tree species (some species let the
lidar penetrate the canopy). However, low point densities
(1-5 points/m?) compatible with large-scale lidar surveys are
not sufficient in order to derive a significant penetration indicator.

s
Object-based density map

Pixel-based density map

Figure 6. Difference between the pixel-based feature map and
the object-based feature map of the sub area of Figure 4(b).
Black color corresponds to low vegetation density area and
white color to high vegetation density area.

2.2 Tree species classification

The classification is performed using a supervised classifier in
order to discriminate tree species provided by the training set.
Two classical classifiers are used and their accuracies will be
compared ; the Random Forest (RF), implemented in OpenCV
(Bradski and Kaehler, 2008) and the Support Vector Machine
(SVM) with radial basis function kernel, implemented in LIB-
SVM (Chang and Lin, 2011). Two strategies are carried out; one
on the object-based feature map and the other on the pixel-based
feature map. The 12 features (lidar and multispectral) are
used for the classification. 4 scenario are considered: RF on
the pixel-based feature map (RF-p), SVM on the pixel-based
feature map (SVM-p), RF on the object-based feature map
(RF-0), and SVM on the object-based feature map (SVM-o). For
each classifier, 1000 samples per class are randomly selected

, Douglas, spruce, woody heathland, herbaceous formation.

from the manually delineated forest stands in order to train the
model. The optimisation of the SVM parameters is carried out
through a cross-validation. The outputs of the classification
are a classification map and a probability map (probabilities of
belonging to the class for each pixel/object). This probability
map is one of the input for the regularisation step.

The classification results are presented for a 1 km? mountainous
forest area in Figure 5. The accuracy is obtained by comparing
classified pixel to all labelled pixel in the manual delineation. It
appears clearly that the pixel-based approach leads to noisy label
maps. Conversely, even if the tree extraction is approximative,
the object-based feature map leads to a more spatially consistent
classification. One can also see that both classifiers are equivalent
in terms of discrimination results as stated in other studies (Du
et al., 2012). In terms of accuracy, the RF-p performs the worse
with 66% of well classified pixels. The SVM-p performs slightly
better with 73% of correctly classified pixels. The SVM-o and
RF-o perform the best with respectively 89% and 90% of well
classified pixels. These same kind of results are observed on the
other zones.

2.3 Regularisation

As shown in Figure 5, the classification is not sufficient to ob-
tain homogeneous areas with smooth borders. Regularising the
classification at the pixel level, through an energy minimisation
framework, appears to be a good method to overcome this prob-
lem.

The energy model is a probabilistic graph taking into account the
probabilities of belonging to the classes and the pixel-based fea-
ture map A. For an image I and a classification C, the energy E
is formulated as follows :

E(I,C) = Eaata(C(W) +7 D Ebinary(C(w),C(v)),

" 3)
with
g [0’ 00[7
Eaata(C(u)) = [f(P(C(w))),
Ebinary(C(u) =C(v)) = 0,
Ebvinary(C(u) #C(v)) = V(u,v)

where N is the 8-connectivity neighbourhood, and P(C(u))
is the probability that the pixel w belong to class C. FEgqatq is
related to the classification, if Egq¢q(C(u)) is small, the pixel
w has a high probability to belong to the class C. FEpinary
corresponds to the difference between the features of the pixel
u and the features of its neighbour. If Ejiyqary is important, the
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values of the features of the pixel u are different from the one
of its neighbour. The total energy expresses how good the pixel
is classified and how close its features are from the ones of its
neighbours.

Some other methods such as Conditional Random Fields (CRF)
could be envisaged for the expression of the energy (Volpi and
Ferrari, 2015), Epinary Would then be expressed relatively to
all the pixel within the image instead of only the 8-connectivity
neighbourhood. They were not adopted here.

2.3.1 Data term. The function f related to F44t4 is the fol-
lowing:

1—x
f(z)= Mol 4
z € [0,1],
Ap €] — 1, 00].

This function allows to control the importance we want to give to
the raw classification step (see Figure 7). The more A, is close
to —1, the more the value of the energy will be important, even if
the pixel has a high probability to belong to the class. Conversely,
the greater )\, is, the less the value of the energy will be impor-
tant, even if the pixel has a low probability to belong to the class.
This parameter is highly relevant in case of complex tree species
discrimination and a large number of misclassified pixels.

f

P(C(u))
0 1

Figure 7. Function related to Egqtq-

2.3.2 Regularisation term. The regularisation term controls
the value of the energy according to the value of the features
within the 8-connexity neighbourhood. Two pixels with differ-
ent class labels but with close feature values are more likely to
belong to the same class than two pixels of different classes and
different feature values. The value of the energy should be near
to 0 when the feature values are close and increase when they are
different. The binary energy is expressed as follows:

Vi A €0,00],

V(w,v) =Y (1—exp(=il|Ai(u) — Ai(v)[]2),  (5)

where i is related to a feature.

A is a vector of length equal to the number of computed features.
This vector allows to assign different weights to the different
features. If A\; = 0, the feature will not be taken into account in
the regularisation process. The more )\; is important, the more a
small difference in the feature value will lead to an increase of the
energy. The features are of different types (height, reflectance,
density, etc.), it is therefore important to have a term in [O, 1] for
each feature, even if they do not have the same range. In the next
experiment, \; is set to 1 for the 4 multispectral bands, NDVI,
height and \; was set to O for the other features. These 6 features
were arbitrarily chosen. Additional investigation on the value of
the A; will be conducted in the future.

2.3.3 Energy minimisation. The energy minimisation is
performed by quadratic pseudo-boolean optimization (QPBO)

method with a-expansion. The QPBO is a popular and efficient
graph-cut method as it efficiently solve energy minimization
problems by constructing a graph and computing the min cut
(Kolmogorov and Rother, 2007). The a-expansion allows to deal
with multiclass problems (Kolmogorov and Zabih, 2004).

The effect of ~y is presented in Figure 8. When v = 0, the energy
minimisation has no effect; the most probable class is attributed
to the pixel. When v # 0, the result is more homogeneous.
One can also see that the border of the homogeneous zones
are smoother when ~ increases. However, the greater -y is, the
smaller area might be merged with the larger ones. In order to
have a good compromise between smooth borders and consistent
areas, 7y should be in [1, 3].

3. EVALUATIONS

In this section, the test area is first presented. The results are then
discussed and the computation times of our method are presented.

3.1 Data

The test area is a mountainous forest in the East of France. 8
areas of 1 km? composed of a wide range of tree species are
processed (see Figure 13). The multispectral images have 4
bands; 430-550nm (blue), 490-610 nm (green), 600-720 nm (red)
and 750-950 nm (near infra-red) at 0.5 m spatial resolution. The
average point density for airborne lidar data is 3 points/m?. Data
was acquired under leaf-on conditions.

The lidar data was pre-processed: the point cloud was filtered
in order to remove outliers and determine ground points. The
ground points were extrapolated so as to derive a Digital Terrain
Model (DTM) at 1 m resolution. Then, the DTM was subtracted
from the point cloud since a normalized point cloud is necessary
in order to perform the coarse tree delineation.

The multispectral images and ALS data are perfectly co-
registered but were acquired at different epochs. This may imply
some minor errors that have no real impact on our results.

The polygons delineated by photo-interpreters were used in
order to train the classifiers and also to evaluate the results.
Only the polygons containing at least 75% of a species were
used for the classification. The polygons of natural bare soils
(woody heathland and herbaceous formation) are also used for
the classification. As it is based only on species, the ground
truth used will only cover a small part of the area (the test areas
contain also stands of mixed species). Each of the 8 areas were
processed separately. The 40 polygons cover only a small part
of the areas and thus, only few species are available for the
classification. Additionally, stands borders resulting from the
methods might not match with the border of the polygons.

3.2 Results

The results presented in this section were produced using the RF-
o classification as it provides the best tree species classification.
The regularisation was performed with A\, = 1 and A\; = 1 for
the 4 multispectral bands, NDVI, height and A\; = 0 otherwise.
Only the effect of the variation of + is investigated. The results
are presented in Figure 13. The values tested for v are 1, 2 and
3 for the 8 areas. For the 3 values of ~, the results are close; the
main difference relies on the small homogeneous tree species
that might be removed if + is important (e.g., small Scots pine
and Douglas areas in Area 1). From a visual point of view, the
method performs well; the areas are homogeneous in terms of
tree species and have smooth borders that correspond to real
forest variations. The matching of the polygons obtained after
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Figure 8. Effect of the smoothing parameter + on the segmentation. See Figure 5 for the colour codes.

regularisation with the ones from the manual delineation ranges
between 94% and 99% (results are presented for each area in
Table 9),compared to a matching < 90% after classification. The
matching ratio is obtained by comparing the well classified pixel
to all labelled pixel in the manual delineation. The improve-
ments also concern the homogeneity of the segments delineated
automatically. Segmentation results are much less noisy than the
classification results. The errors occur at the borders between
the delineated stands. There are two kinds of errors: (i) the ones
due to the uncertainty of the borders, and (ii) the ones due to
misclassification (see Figure 10). The uncertainty of the borders
is related to the generalisation of our ground truth. The manual
and the automatic delineation are performed at the same spatial
resolution, this implies inevitable small shifts at the borders of
the stands.

Segmentation
accuracy
Area 1 98.7%
Area 2 99.0%
Area 3 99.6%
Area 4 98.2%
Area 5 97.1%
Area 6 98.7%
Area 7 94.2%
Area 8 99.3%

Table 9. Matching of the polygons obtained after regularisation
with the ones from the manual delineation.

(@) (b)

Figure 10. Differences between the human delineation and our
segmentation. In (a), white is a correct classification of species,
black is a wrong classification and grey is unknown (i.e., no
polygon). In (b), erroneous areas are superposed on the orthoim-
age, blue corresponds to errors due to the uncertainty of the bor-
der, red corresponds to misclassification.

Figure 11 shows how well our method fits to the forest borders.
Some borders are modified and are more consistent visually.

Stands that were not delineated by human operators are found
with our method. However, some forested areas are merged to
non-forested areas. These errors can easily be explained ; the
ground truth contains wrong data such as trees in non-forested
areas, that leads to misclassification. This example also shows
that the open forest (canopy cover between 10% and 40%) raises
problems as they are merged to non-forested areas. The case of
open forest should be considered separately (see Section 4.).

)

Figure 11. Delineation of the stands (in blue) superposed to the
IRC orthoimage (area 7 in Figure 13). (a) Delineation by human
operator. (b) Automatic delineation. 1 : training error, 2 : new
forest stands, 3 : new border more consistent visually, 4 : forested
areas merged with herbaceous formation, 5 : open forest (canopy
cover between 10% and 40%) labelled as woody heathland.

3.3 Computation times

The computation times, averaged over the 8 zones, are summa-
rized in Table 12. The most time consuming step is related to
the processing of the ALS data, and especially the computation
of the feature. However, the code could be improved in order
to reduce the computation times. For the classification, the
RF performs faster than the SVM and, since the tree species
classification are close for both classifiers (see Section 2.2), the
use of the RF classifier more relevant.

Computation time

Tree extraction 1 h 30 min
Per-point lidar features 30 min
Lidar features rasterization* 7h
Multispectral features* 1h

RF (training & classification) 2 min

SVM (training & classification) 15 min
Regularisation 10 min
Whole algorithm ~10h

* computed both at pixel and object levels at the same time.
The code for feature computation has not been optimized.

Table 12. Mean computation times (over the 8 areas) for a 1 km?
zone on a Intel® Core™i7 @ 3.40 GHz.
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Figure 13. Results of the method for 8 areas of 1 km?. The first
column contains the orthoimage of the areas, the second contains
the polygons delineated by photo-interpreters (black color cor-
responds to unlabelled data) and the third column contains the
result of the regularisation. See Figure 5 for the colour codes.

4. CONCLUSION
4.1 Discussion

In this paper, a 3-step method for forest stand delineation
according to tree species was proposed. The fusion of ALS
data and multispectral images produces good results since both
remote sensing modalities provide complementary observations.
The final segments have a good matching with the segment
delineated by human operators. The method relies on the
computation of lidar and multispectral features at different levels
(pixel and tree) for a supervised classification of tree species.
Good discrimination scores are already obtained with standard
features and classifiers, which is a strong basis for accurate
delineation. A regularisation was then performed through an
energy minimisation in order to obtain homogeneous areas in
terms of species and smooth borders. This energy is formulated
according to both classification results and feature values. It is
highly helpful in order to control the level of details required
for the segments, which depends on the inventory or land-cover
database specifications.

4.2 Forthcoming improvements

A first improvement is on the feature computation; some other
features could be extracted in order to improve the classification
on both multispectral and ALS data (Torabzadeh et al., 2015).
Investigation should also be conducted about the energy formu-
lation and especially the choice of the relevant features and the
automatic tuning of their related A\;. Some experiment should
also be conducted to see the effect of A, on the result of the
regularisation and how it can be automatically tuned.

More experiments should also be conducted in order to assess
the benefit of the object-level classification on the final result.
Since the aim is to delineate forest stands according to tree
species, the use of hyperspectral images might be interesting so
as to obtain more information about the species. Some other
vegetation indices can also be derived from hyperspectral data.
The use of higher density ALS data ( ~ 10 pts/m?) might also
improve the results of the method; trees would be extracted more
precisely and some new structural features could be derived.

For land-cover mapping, the energetical framework will be mod-
ified in order to be able to retrieve other levels of hierarchical
forest databases, with the same inputs (trees and species): mixed
forests (not any of a single tree specie cover > 75%) and open
forests (canopy cover between 10% and 40%).

Finally, during the training step of the classifiers, some pixels
might not belong to the species of the concerned polygon (since
polygons are pure at least at 75%) and only few classes are
available. The model should be trained on a larger area and
an unsupervised classification should be conducted in order to
remove outliers and better tailor the training set.
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