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ABSTRACT:

Current 3D data capturing as implemented on for example airborne or mobile laser scanning systems is able to efficiently sample the
surface of a city by billions of unselective points during one working day. What is still difficult is to extract and visualize meaningful
information hidden in these point clouds with the same efficiency. This is where the FP7 IQmulus project enters the scene. IQmulus
is an interactive facility for processing and visualizing big spatial data. In this study the potential of IQmulus is demonstrated on a
laser mobile mapping point cloud of 1 billion points sampling∼ 10 km of street environment in Toulouse, France. After the data is
uploaded to the IQmulus Hadoop Distributed File System, a workflow is defined by the user consisting of retiling the data followed by
a PCA driven local dimensionality analysis, which runs efficiently on the IQmulus cloud facility using a Spark implementation. Points
scattering in 3 directions are clustered in the tree class, and are separated next into individual trees. Five hours of processing at the
12 node computing cluster results in the automatic identification of 4000+ urban trees. Visualization of the results in the IQmulus fat
client helps users to appreciate the results, and developers to identify remaining flaws in the processing workflow.

1. INTRODUCTION

Urban management has many geospatial and geometric aspects.
Every street contains different street furniture like lamp posts and
street signs, while many streets are flanked by trees that occur in a
variety of sizes and shapes. Collecting information on the state of
street furniture and street trees can be very time consuming and
therefore costly. In recent years however it has been demonstrated
that mobile mapping systems equipped with cameras and laser
scanners are able to densely sample the geometry of the street
surroundings. Indeed, resulting point or pixel densities are in the
order of millimetre to centimetre. This high sampling density
causes a new problem: how to efficiently and accurately extract
information at centimetre level from dense point clouds covering
tens of kilometres of urban street surroundings?

The IQmulus project is a FP7 project with the aim of creating
a high-volume fusion and analysis platform for geospatial point
clouds, coverages and volumetric data sets. In this work we will
report on how the IQmulus platform can be used to efficiently
process a mobile mapping point cloud of 83 GB sampling∼10
km of streets in the city of Toulouse. It will be demonstrated how
the point cloud data is stored, processed and visualized. The goal
of the processing is to extract and visualize the location of all
individual trees as sampled by the point cloud.

To obtain this goal the following steps are followed. The input
*.ply data from the mobile mapping system is tiled and stored as
a collection in a Hadoop Distributed File System (HDFS). Next,
a workflow is defined in a workflow editor that creates a pro-
cessing chain of several consecutive algorithms with appropriate
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parameters. Key algorithms are developed that can profit opti-
mally from the available cloud infrastructure, for example using
parallel Spark implementations. The computational performance
of the algorithms is automatically evaluated using a scalability
testing framework. The results of the processing chain, including
quality parameters and intermediate outcomes are stored again on
the HDFS to make them available to the visualization processing.
To be able to efficiently visualize the point cloud in a stream-
ing fashion the data is processed into a suitable structure. This
structure is used to interactively access the point cloud to provide
a view-dependent level of detail to a WebGL based point cloud
renderer running in a standard web-browser.

Several alternative workflows are still being compared in terms
of computational performance and quality, but one main work-
flow processes the point cloud data as follows: so-called dimen-
sionality features are determined for each point that expresses its
amount of linearity, planarity or scattering. In either a simple
rule based or a more sophisticated random forest classification,
basically points with high scattering are collected in a tree class.
Next, tree points may separated into individual trees by analysing
local point density variations. The final result is again a point
cloud, but with an extra label for each point indicating whether
it belongs to a tree, and if so, to what tree. At the current state
of affairs, the point cloud of∼ 10 km, consisting of 1500 mil-
lion points is processed in 5 hours using 12 nodes at the IQmulus
infrastructure.

2. METHODS

In this chapter background on IQmulus methodology is given,
demonstrated on an urban showcase. First the IQmulus infras-
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Figure 1. IQmulus architecture

tructureis discussed, next, different algorithms and their efficient
implementations to extract information from points clouds, fol-
lowed by a explanation of the visualization methodology.

2.1 The IQmulus infrastructure

IQmulus is a research project funded by the European Commis-
sion running from November 2012 to October 2016. Within this
project we have developed a software architecture for the pro-
cessing of very large geospatial data. Figure 1 shows the main
components of the IQmulus architecture.

The users (typically GIS experts) use the web-based user inter-
face to upload data to the distributed file system (HDFS). They
define a workflow using a Domain-Specific Language (DSL). The
workflow for the use case presented in this paper is described be-
low. When the users press the Execute button the workflow is
transferred to the JobManager, a component managing the infras-
tructure and the execution of workflows. The JobManager selects
the compute nodes in the Cloud on which the workflow should be
executed. It then spawns the processing services on these com-
pute nodes and oversees their execution. The JobManager can
manage complex workflows in which processing services depend
on the results from others. It employs a sophisticated rule-based
scheduling algorithm to control the execution, (Krämer and Sen-
ner, 2015).

The processing services load the data previously imported by the
users from the distributed file system, process it, and then save the
results back to the HDFS. Finally the users can view the results
in the web-based visualisation client or a desktop client. The
following sections focus on the processing services used in this
use case.

2.2 Dimensionality features

The first step in the pipeline is to perform a local dimensionality
analysis of the point cloud which performs a scale-adaptive Prin-
cipal Component Analysis (PCA) on the point cloud in order to
extract the most relevant radius of analysis for each point. From
the PCA, a number of dimensionality features may be derived
such as linearity, planarity, scattering, omnivariance, anisotropy,
eigenentropy and change of curvature, (Demantke et al., 2011).

This step is embarrassingly parallel, as the new features of each
input point may be computed independently. However, the data
access pattern of these computations is overlapping, as the com-
putation of each point needs to read the positions of its K nearest
neighbors for some content-adaptive value K.

The alternatives for distributing these computations are to either
(i) introduce an approximation by processing the input lidar tiles
independently, thus possibly introducing edge effects, or (ii) en-
suring that while independently processing each tile, its neigh-
boring tiles are also accessible on the same machine. For sim-
plicity, or if tile adjacencies are not available, tiles may be pro-
cessed independently as the scale-adaptive property of (Deman-
tke et al., 2011) has the nice tendency of reducing the optimized
scale of analysis so that it is fully contained in the current tile,
thus minimizing the edge effects. Alternatively, if tile adjacen-
cies are known, or if the dataset is re-partitioned into tiles (e.g.
grid tiling), then it is easy to list the few number of tiles that may
be read while computing the dimensionality features of a given
tile.

The proposed method when the dataset is sorted in sequential
acquisition order (either because it has not been shuffled by a
preprocess or because per-point acquisition timestamps are avail-
able) is to simply process each tile with a read access to the
immediately preceding and succeeding tiles. This has the com-
bined advantage of (i) not requiring any retiling or shuffling as
raw datasets are actually acquired and stored in time-sequential
chunks rather than spatial partitions and (ii) that the processing is
then almost insensitive to georeferencing issues, as georeferenc-
ing typically drifts in a way such that relative positioning errors
are negligible within the short timespan of a few consecutive tiles.
This last property is actually very important as the PCA is very
sensitive to slight misalignments of lidar point clouds due for in-
stance to repeated scans of the same street.

2.3 Tree classification

Point classification (single core) Given the dimensionality fea-
tures linearity, planarity and scatter, points sampling trees are al-
ready computed, a point-based classification is then embarrass-
ingly parallel. Based on a manually selected training set with
tree and non-tree classes, a random-forest based prediction is
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Figure 2. Spark processing steps

performedindependently on each point, adding a boolean tree
attribute.

Point classification using Spark Apache Spark has been the
most popular cluster computing framework attracting lots of at-
tention from both the industry and academia, (Apache Spark,
2016). Besides the nature of scalability, Spark also supports fault
tolerance and in-memory computing which significantly enhances
its performance. This method addresses the point classification
problem in a big data context. Apache Spark is employed to fulfill
the parallelization of our method in the cloud. As the primary ab-
straction in Apache Spark, the resilient distributed dataset (RDD)
plays a key role to organize data and achieve parallel computa-
tion. Our implementation can be summarized as a series of ma-
nipulations of RDDs including creating new RDDs, transforming
existing RDDs, and performing operations on RDDs to generate
results as shown in Figure 2.

The input data is a point cloud with seven attributes, linearity,
planarity, scattering, omnivariance, anisotropy, eigenentropy, and
change of curvature, (Demantke et al., 2011). The output is point
cloud data where each point got a class Id, indicating whether it
is classified as belonging to the class ‘tree‘ or the class ‘non-tree‘.

The first RDD, RDD 1, is initialized from a list of file name
strings through the operationparallelize. RDD 1 is parti-
tioned and is distributed over cluster nodes. Point cloud data is
loaded as RDD 2 by applyingflatmap on RDD 1. RDD 2 can
be regarded as a list of point elements and each element is a 3D
vector representing the point coordinate. Features for learning
are computed from RDD 2 and saved as RDD 3, and then pre-
dicted results are generated by applying a pre-trained model on
RDD 3. The classification results are outputted to the file system
by performinggroupByKey andforeach on RDD 5 which is a
combination of RDD2 and RDD4. Details are described in (Liu
and B̈ohm, 2015).

2.4 Tree individualization

Given 3D points from a point cloud labeled as trees, the goal
of tree individualization is to separate those tree points into seg-
ments corresponding to individual trees. This goal may be easier
or more complicated to be reached by both a human operator and
an automated algorithm depending on e.g. the distance between
neighboring trees, the variety in the tree dimensions and shapes,
the distance of the trees to the LIDAR sensor or incompleteness
of the data due to obstructions in the line of sight. Within the IQ-
mulus framework two different tree individualization algorithms
have been implemented which are shortly described below. Ex-
tracting individual trees may be a final goal on itself or an in-
termediate step towards individual tree parameter estimation like
diameter at breast height (DBH), compare e.g. (Lindenbergh et
al., 2015).

Tree separation based on local 2D point densities.The first
algorithm for tree individualization implemented in IQmulus starts
by generating a 2D raster covering the tile considered. For each
2D raster cell the number of 3D points are counted whose xy
locations belong to it. The resulting raster is expected to show
high values on the tree trunk locations, that is, tree trunk loca-
tions are expected to correspond to local maxima that are simply
extracted by a moving window. Next, the original 3D tree points
are assigned to that tree trunk that is on minimal horizontal dis-
tance. To avoid false commissions from for example isolated tree
like points from small vegetation on balconies the 3D distances
between points assigned to one tree are checked for outlying val-
ues.

The revised version of the algorithm considers the 3D locations
of the points. The algorithm clusters 3D points by applying an
newly designed unsupervised classification method that considers
the 3D Euclidean distance from a point to its closest neighbors.
The new algorithm is computationally more expensive, however
it allocates less memory than the 2D raster approach. The lat-
ter approach suffered from crashes when the allocated raster ap-
peared too big. After the individual trees are separated by this
clustering approach, a bounding box is used to identify the tree
points which might be mislabeled as non-tree earlier, because
their dimensionality value of e.g. planarity was bigger than scat-
ter. Examples of such points can be found on tree trunks. Finally,
the location of the highest point of the tree points in a bound-
ing box corresponding to one tree is taken to determine the tree
xy-location. Some results are shown in Figure 3.

Tree separation using the VoxTree algorithm. The VoxTree
algorithm is an alternative way of separating clusters of tree points
into individual trees. As a starting point, the bounding box of a
given data tile is subdivided into voxels of a preset size, of, say,
15 cm. Only voxels containing tree points are considered next.
Processing a limited number of voxels rather than a huge number
of individual points is yet another strategy to speed up process-
ing. First, tree voxels are clustered and voxels standing out at
the top of a cluster are initiated as seed voxels. If more than one
sufficiently prominent seed voxel is found in a cluster, each seed
is used to grow a tree by traversing the different horizontal voxel
layers in the cluster and deciding for each voxel to which tree it
should belong according to a local adjacency analysis.

As, depending on the local sampling geometry and tree proper-
ties, seed initialization may be more feasible from below, the al-
gorithm is repeated in the opposite vertical direction whenever
a tree is identified which is considered to have suspicious sizes.
Finally, all 3D points in the voxels of the identified trees are pro-
vided with a unique tree label and a quality flag indicating if tree
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Figure 3. Left: input point cloud. Middle: points whose scatter surpasses theirlinearity and planarity; Right: individual tree separation
results.

individualization was considered successful by the algorithm. A
result of the processing of a small part of the Toulouse data is
shown in Figure 4. At the time of this writing, the full description
of this method is under review.

2.5 Interactive visualization

Large point clouds like the processed results of the presented
workflow may be visualized interactively using one of two visual-
ization clients connected to the IQmulus infrastructure: the Thin
Client, which utilizes modern web-based technologies to display
processing results directly in a web browser, or the Fat Client,
which is a desktop application exploiting OpenGL for rendering
with access to the latest features of current graphics hardware.
However, visualizing large point data interactively is difficult due
to limited client-side resources (CPU memory, graphics / GPU
memory, harddisk space, and local compute power). Therefore
the visualization clients require additional information on, and
preprocessing of, the raw data sets in order to be able to effi-
ciently identify the visible subset of the data as well as retrieving
the data at different precisions (levels of detail) to provide high
information resolution near the current viewing position and pos-
sibly decreased resolution in more distant areas.

Data preparation for visualization Both visualization clients
use a similar approach to data preparation of point clouds. They
utilize and additive octree which is generated from the raw data
set by utilizing the Potree converter, (Schuetz, 2014). This con-
verter has been extended to support the point cloud attributes re-
quired by the workflow. The conversion itself is wrapped into
a post-processing service running on the IQmulus infrastructure
and the output data is stored in the HDFS. The data access to the
post-processed data is different for the Thin and Fat Client and
outlined below.

Figure 4. tree separation by the VoxTree algorithm (Image: Jinhu
Wang)

Data access of the Thin Client The entry point for the Thin
Client visualization is a JSON file available through the HTML-
based IQmulus Data Access Service. The request is routed to the
webVis/instant3Dhub platform, (Behr et al., 2015), which uses
out-of-core rendering, making it possible to visualize very large
data-sets. The web client sets appropriate memory limits both on
CPU and GPU, and streams data from the server as necessary to
generate an image from a given viewpoint. If the amount of data
surpasses the available memory, it will iteratively refine the ren-
dered image. In such cases, the web application is still responsive
at all times. The user may move around the data set, in which case
the available data is rendered and the refinement will restart when
the navigation stops. The webVis framework provides a solution
for embedding 3D visualization of structured data in web applica-
tions with minimal effort. Based on JavaScript, it runs on modern
web browsers without the need for external plug-ins. The webVis
API offers all the functionality needed for accessing, visualizing
and manipulating data originating from the instant3Dhub infras-
tructure.

Data access of the Fat Client In order to access the data pro-
vided by the processing services of the IQmulus infrastructure,
we developed a data access module for the IQmulus Fat Client.
The module utilizes Qt 5 for user authentication and data access
via the web-based interface to the HDFS of the IQmulus infras-
tructure. More specifically, we developed a connection manager
to establish secure communication with the IQmulus Data Ac-
cess Service (DAS) and adapted the Webkit-based HTML engine
provided by Qt (QWebView) to download and visualize data sets
from the HDFS. The main components involved in HDFS data
access in the IQmulus Fat Client are shown in Figure 5.

In the following we provide a short overview of the functionality
of the components of the data access module:

DASConnector The DASConnector is responsible for configu-
ring a secure connection to the IQmulus Data Access Service.
This requires the initialization of SSL parameters (we currently
use TLS1/SSL3), loading the certificate of the IQmulus Data Ac-
cess Service, and setting up security / functionality related prop-
erties of Qts HTML engine (e.g. configuration of JavaScript ca-
pabilities, WebGL, etc.). The connection relevant settings are
subsumed in a Qt class termed QNetworkAccessManager. A
relevant property of this class is the internal handling of cook-
ies, which are required during the authentication process of the
IQmulus Data Access Service and must remain accessible for
each connection request after authentication. The configured Net-
workAccessManager is provided to the other components for se-
cure access to the IQmulus Data Access Service.
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Figure 5. Components of the Fat Client involved in accessing data in the IQmulusinfrastructure.

IQmulusWebbrowser The IQmulusWebbrowser is an exten-
sion of the HTML engine provided by Qt (QWebView). It is the
front end the user utilizes to submit authentication information to
the IQmulus Data Access Service, browse the HDFS and initiate
the download and visualization of a data set.

3. RESULTS

3.1 Data description

The workflow has been applied to a 10km-long mobile mapping
dataset acquired by IGN’s stereopolis vehicle, (Paparoditis et al.,
2021) acquired within an hour of operation in downtown Toulouse,
France using a multi-return Riegl VQ-250 lidar scanner. Once
georeferenced with all attributes this lidar dataset is constituted
of 1 012 160 278 lidar points and 83GB.

Figure 9. The workflow editor in the IQmulus main user interface
canbe used to edit processing workflows in a Domain-Specific
Language (DSL)

3.2 The workflow in the IQmulus user interface

In the main user interface developed in the IQmulus project users
can edit processing workflows using a Domain-Specific Language
(DSL). A DSL is a lean programming language that is targeted to
a specific application domain or use case. We have developed a
method to specify the grammar and syntax of such a DSL so that
it is readable and understandable by domain experts. The method
encompasses a domain analysis step to make sure the DSL uses
the vocabulary and terminology known to the domain experts, cf.
(Krämer, 2014). Figure 9 shows a screenshot of the workflow ed-
itor from the IQmulus main user interface. The screenshot shows
the DSL script for the workflow described in this paper.

3.3 Results, tree extraction

A main result of the processing of the workflow is shown in Fig-
ure 7. The figure shows over 4000 tree locations identified around
the trajectory of the Stereopolis mapping system. Although this
figure gives a good overview of the challenge addressed by the
use case, it doesn’t allow the user to assess the final correctness
of the assignment of one of the billion points to an individual tree.
For this purpose the IQmulus visualization is used.

3.4 Visualization results.

For the purpose of visualization of the resulting data set using
the Fat Client, we developed a category viewer which performs
a distinct color mapping of the points of different trees. Trees
may be highlighted based on their ID and colors as well as point
rendering parameters may be manually specified (see Figure 10).

The visualization of the Toulouse data set allows for interactive
navigation through the data. Due to the incremental refinement of
the visualization (asynchronous download of additional data and
subsequent rendering using an adjustable maximum number of
rendered points) and the different constraints imposed by client-
side hardware as well as network connection properties, it is hard
to come up with general performance data. The performance of
rendering the Toulouse data set using the Fat Client from local
harddisk with different upper boundaries for rendered points is
shown in Table 1. The test machine was a medium range desktop
PC (Intel Core i5-6400 CPU @ 2.70 GHz, 8 GB Ram, Geforce
GTX 960).

Figure 6 shows two example views on the data set for 2 million
points used for rendering (left) and 5 million points (right). The
color coding visualizes the scattering attribute of the points. The
asynchronous refinement procedure is illustrated in Figure 8. The
right side of the image already shows a higher point density since
the required octree cells were already loaded, while additional
detail for the left side of the image is asynchronously fetched and
not yet available for rendering.

Figure 10. Individual tree visualization using the Fat Client.
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Figure 6. Toulouse trees visualized using a rendering budget of 2 million points(left) and 5 million points (right).

Figure 7. 4000+ tree locations automatically identified by the IQmulus US2 workflow overlaid as KML layer on Google Earth imagery
of Toulouse.

Figure 8. View on the Toulouse data set during asynchronous refinement. Note the difference in point density between the left and
right parts of the image.
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Max. rendered points Rendering time
2 million 3 sec.
6 million 8 sec.
10 million 15 sec.

Table 1. Time for completing the rendering of one view using
different budgets of points. As can be seen, the time for com-
pleting the rendering for a single view is in the order of seconds.
Please note that the user is free to navigate during this time since
the refinement process is asynchronous.

3.5 Next steps

At the current state of affairs, the full use case is implemented
and running in the IQmulus infrastructure. A next step is to actu-
ally exploit the IQmulus visualization possibilities to analyze the
geometric quality of the results in an interactive way. Simultane-
ously the computational performance of the workflow as a whole
for different settings is under study using the implemented auto-
mated scalability testing framework. To verify the portability of
the platform, the use case will also be evaluated on different mo-
bile mapping data sets obtained by different systems in different
road environments.

4. CONCLUSIONS

In this paper we have presented results from the FP7 IQmulus
project. The general infrastructure for storing, processing and vi-
sualizing big spatial data has been described and demonstrated
on the so-called urban showcase. This showcase considers the
efficient processing of a huge lidar mobile mapping data set con-
sisting of 1 billion points sampling 10 km of urban streets in
Toulouse. IQmulus is able to efficiently extract and visualize all
points sampling the 4000+ individual trees sampled by the point
cloud. More information on and results from the IQmulus project
can be found on the IQmulus website, http://www.iqmulus.eu.
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