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ABSTRACT: 

 

In this study, a land cover classification method based on multi-class Support Vector Machines (SVM) is presented to predict the 

types of land cover in Miyun area. The obtained backscattered full-waveforms were processed following a workflow of waveform 

pre-processing, waveform decomposition and feature extraction. The extracted features, which consist of distance, intensity, Full 

Width at Half Maximum (FWHM) and back scattering cross-section, were corrected and used as attributes for training data to 

generate the SVM prediction model. The SVM prediction model was applied to predict the types of land cover in Miyun area as 

ground, trees, buildings and farmland.  The classification results of these four types of land covers were obtained based on the 

ground truth information according to the CCD image data of Miyun area. It showed that the proposed classification algorithm 

achieved an overall classification accuracy of 90.63%. In order to better explain the SVM classification results, the classification 

results of SVM method were compared with that of Artificial Neural Networks (ANNs) method and it showed that SVM method 

could achieve better classification results. 
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1. INTRODUCTION  

In the last decade, Light Detection And Ranging (LiDAR) has 

become an important source for acquisition of the 3D 

information of targets. It has been widely applied in many fields 

of remote sensing, such as, environment monitoring, disaster 

assessment, land cover classification. According to land cover 

classification, the traditional LiDAR usually uses 3D 

coordinates information of targets since it can only records 

several echoes and obtain limited information about the targets. 

Compared to the traditional LiDAR system, full-waveform 

LiDAR systems can record the entire backscattered waveform of 

the targets. The waveform features reflecting the properties of 

targets can be retrieved from the waveforms and are now 

extensively used for a large variety of land cover classification 

(Mallet and Bretar, 2009; Heinzel and Koch, 2011). This paper 

aims to study the land cover classification using full-waveform 

LiDAR data. 

Some scholars have studied land cover classification based on 

full-waveform features. In 2008, Straub et al. presented a 

processing procedure for automated delineation and 

classification of forest and non-forest vegetation which was 

solely using full waveform laser scanner data as input. An 

overall accuracy of 97.73% was reached. However, only forest 

and non-forest vegetation were classified (Straub et al., 2008). 

In 2008, Reitberger et al. described an unsupervised species 

classification method based on features that were derived by 

waveform decomposition of full waveform LiDAR data. The 

classification grouped the data into two clusters (deciduous, 

coniferous), which leaded to an overall accuracy of 80 % in a 

leaf-on situation. The presented results clearly showed the 

potential of full waveform data for the comprehensive analysis 

of tree structures (Reitberger et al., 2008). In 2010, various 

statistical waveforms parameters, such as standard deviation, 

skewness, kurtosis and amplitude were used as inputs to an 

unsupervised classification method, Kohonen's Self-Organizing 

Map (SOM), to separate vegetation (trees and grass) and non-

vegetation (pavement and roof) surfaces. However, there was no 

quantitative evaluation of the classification results (Zaletnyik et 

al., 2010). These studies were based on the unsupervised 

classification methods, but the supervised classifiers were 

preferred since they offer a higher flexibility. In remote sensing 

field, Support vector machines (SVM), which is a supervised 

classifier, has been used for classification under different 

applications, multispectral measurements, DEM Generation 

from Aerial LiDAR Data, Synthetic Aperture Radar (SAR) 

images. Thus it has played a major role in classification 

problems (Yang and Lunetta, 2012). Some scholars have 

investigated the potential of full-waveform data for land cover 

classification using the SVM classification method. In 2009, 

Bretar showed that LiDAR amplitude and width contained 

enough discriminative information on bad lands to be classified 

in land, road, rock and vegetation. A 3-D land cover 

classification was performed by using a SVM classifier. 

However, the classification accuracy was only 79.1% when the 

amplitude, width and Digital Terrain Model (DTM) information 

were combined (Bretar et al., 2009). In 2011, Mallet et al. used 

a SVM classifier to label the point cloud according to various 

scenarios based on the rank of the features. The results showed 

that echo amplitude, cross section and backscatter coefficient 

significantly contributed to the high classification accuracies 

(around 95%). However, only three land cover types (building, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B3-447-2016

 
447



 

ground and vegetation) were classified. And adding redundant 

features in a same set prevented from concluding on the 

contribution of each feature (Mallet et al., 2011). In 2015, 

Tseng et al. combined LiDAR waveform data, orthoimage data 

and the spatial features of waveform data with SVM to classify 

the land cover point clouds. However, only by using fused 

waveform and orthoimage information, the highest overall 

accuracy could be achieved in land cover point clouds 

classification (Tseng et al., 2015). 

In this paper, a classification method based on multi-class SVM 

using full waveform features, i.e. distance, intensity, FWHM 

and back scattering cross section was presented to predict the 

types of land cover in Miyun area as ground, trees, buildings 

and farmland, and the method was compared to ANNs. The 

remainder of this paper was organized as follows: In section 2, 

waveform processing methodology, including waveform 

decomposition, features extraction was introduced. Then multi-

class SVM classifier theory was presented. In section 3, the 

workflow of SVM classification method was introduced.  Four 

land cover types in Miyun area were classified based on SVM 

and the results were compared to the ANNs in this part. The 

conclusions were given in section 4.  

 

2. THEORY 

2.1 Waveform processing methodology 

Full-waveform LiDAR system records the entire backscattered 

waveform signal from targets, which is actually a sum of partial 

scattering response signals convolved with the scanner's system 

waveform. Thus it not only provides 3D point clouds, but also 

obtains abundant information of the targets. In the workflow of 

processing full waveform data, waveform decomposition is the 

most important step.  

 

2.1.1 Waveform decomposition 

The waveform decomposition includes these parts: pre-

processing of waveform data, waveform decomposition, and 

components detection.  

Before waveform decomposition, the noise of the waveforms 

needs to be removed. The widely used filtering methods include 

Wiener filter and Gaussian smoothing. However, the Wiener 

filter is very sensitive to noise (Jutzi and Stilla, 2006). For the 

Gaussian smoothing, it is difficult to select an appropriate 

kernel width for each echo pulse reflected from the complex 

terrain. By analysing the characteristics of the waveform 

intensity, Median Absolute Deviation (MAD) method was used 

for waveform filtering and had great effect on original 

waveform (Persson and Mallet, 2005). Figure 1 shows the raw 

waveform of an echo and the waveform filtered by MAD. It can 

be seen that MAD method has certain smooth effect on the raw 

echo waveform. 

Since the transmitted laser pulse is modulated as Gaussian pulse, 

and the scattering of laser pulse for most targets can be 

approximated by a Gaussian reflection, so the backscattered 

waveform component can be modeled as a Gaussian function. 

Indeed, most waveforms can be very similar to an ideal 

Gaussian function whereas other laser impulse responses are 

slightly asymmetric. Consequently, it may not be an accurate 

representation that using a sum of Gaussians to approximate the 

waveforms which depends on the targets. Therefore, generalized 

Gaussian function was used for waveform modeling in this 

paper which could better represent the backscattered patterns 

from different targets. In this way, fitting of asymmetric, peaked 

or flattened echoes located both in different areas could be 

improved (Chauve et al., 2007). 
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Where, ( )f t  is a waveform, ( )jf t  is the individual components 

of the waveform, N is the components number, 
j  is the 

component position,
j is the pulse width of individual 

components, 
j  is the component shape factor. During the 

waveform decomposition procedure, the loss of components 

severely constrains the performance of subsequent targets 

information extraction. Focusing on the problem above, an 

enhanced component detection algorithm, which combines 

Finite Mixed Method (FMM), Levenberg-Marquardt (LM ) 

algorithm and Penalized Minimum Matching Distance (PMMD) 

has been proposed (Zhou et al., 2013). 

 
(a) Raw waveform 

 
(b) MAD filtered waveform 

Figure 1. Raw waveform and the filtered waveform 

  

2.1.2 Waveform features extraction 

The waveform features can be determined through the 

component parameters. In this paper, the extracted waveform 

features include distance, intensity, FWHM and back scattering 

cross section. The distance indicates the distance from laser 

transmitter to the target, which is determined by estimating the 

positin of the waveform component. Ideally the peak position is 

considered as component position and the time lag is used to 

calculate the distance (Mallet and Bretar, 2009). Intensity is a 

combination of emitted energy, distance, atmosphere 

attenuation and reflective capability of illuminated targets. In 

practice, the echo amplitude is most commonly regarded as 

intensity (Wagner et al., 2008). The FWHM denotes the 

extension of waveform in the incident direction, which is shown 

in Figure 2. It is closely related to the geometry of targets, 

terrain slope and targets material (Wagner et al., 2006).  The 

backscattering cross section delineates the backscattering ability 

of the targets and is a comprehensive indicator of distance, 

intensity and FWHM (Wagner, 2010). 

Some factors, such as angle of incidence, atmospheric, range, 

surface characteristics, etc., have influence on the waveform 
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features. Therefore, these features can hardly be used without 

radiometric calibration (Lehnera and Briesea, 2010). To reduce 

such influence and further improve the effectiveness of 

waveform features for land cover classification, this work has 

made a comprehensive correction over the extracted waveform 

features. The detailed methodology was introduced in published 

article (Zhou et al., 2015). 

 

Figure 2. The diagram of intensity and FWHM 

 

2.1.3 Classification capability analyse of waveform 

features 

Then classification capability of the extracted waveform 

features for different land cover types was analyzed. The CCD 

image and pseudo color maps illustrating the values of extracted 

features, shown as Figure 3, were given and clearly illustrated 

the certain ability of each feature to distinguish different kinds 

of land cover types. Figure 3 (a) is the CCD image of the 

corresponding region. Figure 3 (b) representing distance, which 

directly indicate the relative elevation of full-waveform 

component, is generally applied to distinguish targets with 

different elevation, such as buildings and ground, farmland and 

trees. As illustrated in Figure 3 (c), the intensity implies the 

backscattering ability of targets on the laser pulse and is 

generally applied to distinguish targets with different reflectivity, 

such as farmland and ground, trees and buildings etc. Figure 3 

(d) delineates FWHM signifying the extension on laser pulse in 

the incident direction for the targets is generally applied to 

distinguish targets with different surface morphology, such as 

ground and farmland. Figure 3 (e) is the backscattering cross 

section, which denotes the interception ability of the laser pulse 

for different targets, is the comprehensive reflection of 

component distance, intensity and FWHM. It has certain 

distinguish ability for targets with different height, reflectivity, 

and surface morphology. It can be concluded that the four 

waveform features have certain ability for classifying different 

land cover types. 

 
(a) CCD image 

 
(b) Distance 

 
(c) Intensity 

 
(d) FWHM 

 
(e) Back scattering cross section 

Figure 3. The CCD image and pseudo color maps according to 

the values of waveform features 

   

2.2 Multi-class SVM Classifier 

SVM is a supervised classifier. For supervised classification 

algorithm, classification usually involves separating data into 

two sets that are training and testing sets, respectively. Every 

instance in the training set comprises one "target value" (i.e. the 

class labels) and several "attributes" (i.e. the features or 
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observed variables). In this paper, the attributes are the 

extracted waveform features including distance, intensity, 

FWHM of the waveform and back scattering cross section, as 

described in Section 2.1.2. Based on the training data, the goal 

of SVM is to produce a model that predicts the target values 

(class labels) of the test data given only the test data attributes. 

In our experiments, the model was used to discriminate the four 

classes of interest: buildings, trees, farmland and ground. 

For SVM based binary-class classification, given a training set 

of instance-label pairs ( ix  , iy ), i=1, 2…l, where n

ix R   is a 

feature array, n is the dimension of feature, {1, 1}  l

iy ,  l  is 

the number of instances, SVM requires the solution of the 

following optimization problem (Chang and Lin, 2013): 
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Here training vector 
ix   are mapped into a higher dimensional 

space by the function  . SVM searches a linear separating 

hyperplane in the higher dimensional space. C>0 can be 

regarded as the penalty parameter of the error term. Due to the 

possible high dimensionality of the vector variable w , usually 

we solve the following dual problem:  
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Where  1, ,1
T

e   is a vector of all ones,  Q  is a l  by   

l positive-semidefinite matrix,  ,ij i j i jQ y y K x x . The dual 

yields the values i  which are binary indicators of the 

instances and become support vectors. Also, in the dual 

formulation, an explicit knowledge of the function  is not 

necessary and the kernel K  may be applied instead, which is 

not possible in the primal problem.  Here the kernel function 

used is a Radial Basis Function 

(RBF),    2, exp | | | |i j i jK x x x x   , 0  .
There are 

two parameters C and γ
 
for SVM using RBF kernel. In order to 

find the best C and γ for a given problem, parameter searching 

is required. A grid-search using cross validation is applied here. 

In x-fold cross-validation, the training set is divided into x 

subsets which have the same size. Sequentially x-1 data subset 

is used to train the model which can test the remaining one data 

subsets. Various pairs of (C, γ) values growing exponentially 

(grid-search) are tried and the one with the best cross-validation 

accuracy is selected to be the model.  

SVMs are designed to solve binary problems. When having n 

≥3 classes of interest, various approaches are possible to 

address the problem, usually combining a set of binary 

classifiers. In this paper, we use the "one-against-one" approach, 

in which classification a voting strategy, is used to determine 

the multi-classes: For each instance, k (k-1)/2 binary classifiers 

are invoked (k: number of classes), each classifier votes for one 

class, and the final label is taken to be the class with most 

votes(Hsu and Lin, 2002). In case that several classes have 

identical votes, though it was not a good strategy, we simply 

select the one with the smallest index. 

 

3. EXPERIMENT AND ANALYSIS 

3.1 Experiment data 

The captured data of Miyun area, in Beijing, was used in this 

paper. The full-waveform LiDAR data was acquired by the 

LiteMapper 5600 airborne LiDAR system and CCD images 

were acquired by DigiCAM-H/22 Hasselblad. The experimental 

area of Miyun data set was about 14 km2, the flying height was 

about 700m, the average density of the point clouds was 

4points/m2, and typical land covers were buildings, trees, 

farmland, ground, etc. In this paper, a piece of experimental 

area was selected to study the SVM classification using 

extracted waveform features. The size of the selected area was 

about 330m x 390m, containing about 338174 points. The CCD 

image of the selected area was shown in Figure 3 (a).  

 

3.2 Experiment procedure  

The flow chart of the experiment is shown in Figure 4. Firstly, 

the returned waveforms were filtered by MAD as mentioned 

above. Then waveforms were decomposed using the enhanced 

component detection algorithm. Features including distance, 

intensity, FWHM and back scattering cross section were 

extracted and corrected. These features would be the attributes 

of instance for denoting the waveform reflected from a type of 

land cover. 

Secondly, multi-class SVM model was generated to classify the 

land cover types. Then the received waveforms reflected from 

typical land cover were divided into ground, trees, buildings 

and farmland. In this paper, 1000 features vectors for each 

typical land cover type were selected as the training data to 

generate SVM model according to the CCD image of the 

experiment region. Based on the SVM procedure mentioned in 

section 2.2, the selected data were trained for ten times, and the 

SVM model with highest cross-validation accuracy would be 

selected as the model to predict the land cover types of Miyun 

area. Finally, the pseudo color classification image depicting the 

values of land cover types of Miyun area was generated and the 

results were evaluated.  

Waveform filtering by MAD 

SVM model training using waveform  

features 

Classification using SVM model

Pseudo color maps generation for 

classification results

Waveform decomposition  by the enhanced 

component detection algorithm 

Waveform features extraction and correction

 
Figure 4. Flow chart for land cover classification of Miyun area 

based on full-waveform LiDAR data  
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3.3 Experiment results  

The classification result of Miyun area using corrected features 

based on the SVM method is given in Figure 5. The 

corresponding CCD image was shown in Figure 3 (a). The 

brown area, the yellow area, the red area and the green area 

respectively represent farmland, ground, building and trees. It 

can be seen that by using full-waveform features we can 

effectively distinguish different types of land cover. 5248 

instances of these four land cover types, except the training data, 

were selected to calculate the classification accuracy, as shown 

in Table 1. The ground truth information was acquired manually 

according to CCD image data of the experiment region. The 

confusion matrix for the classification results of these four land 

cover types of Miyun area was obtained and shown in Table 1. 

The overall classification accuracy using corrected features 

reached 90.63% and the classification Kappa was 0.8741.  

 

Figure 5. Land cover classification results of Miyun area based 

on SVM method 

Truth 

C Classification 
Buildings Ground Trees Farmland Total 

Buildings 1106 0 28 0 1134 

Ground 10 1437 78 153 1678 

Trees 94 12 937 0 1043 

Farmland 33 36 48 1276 1393 

Total 1243 1485 1091 1429 5248 

Table 1. Confusion matrix of the classification results based on 

SVM method 

In this paper, SVM classification method was used.  In order to 

better interpret the SVM classification results, nonlinear 

Artificial Neural Networks (ANNs) was also applied to classify 

the land cover types in Miyun area, and the classification results 

of these two methods were compared. ANNs imitate the brain‟s 

model of an interconnected system of neurons, enabling 

computers to detect patterns and to learn complex relationships 

within data (Anderson, 1995). Usually, ANNs basically provide 

a „black box‟ model. ANNs used in this paper consisted of a 

single hidden layer and was trained for 500 cycles by back 

propagation with a learning rate of 0.2. The classification result 

is shown in Figure 6, the brown area, the yellow area, the red 

area and the green area respectively represent farmland, ground, 

buildings and trees. The confusion matrix for the classification 

results was obtained and shown in Table 2. The overall 

classification accuracy reached 87.69% and the classification 

Kappa was 0.8349.   

 

Figure 6. Land cover classification results of Miyun area based 

on ANNs method 

Truth 

C Classification 
Buildings Ground Trees Farmland Total 

Buildings 1097 0 22 0 1119 

Ground 0 1242 5 92 1339 

Trees 135 1 926 0 1062 

Farmland 11 242 138 1337 1728 

Total 1243 1485 1091 1429 5248 

Table 2. Confusion matrix of the classification results based on 

ANNs method 

 

3.4 Analysis  

The overall classification accuracy using SVM method was 

90.63%, while it was 87.69% by using ANNs. It can be seen 

that SVM classification method can indeed produce higher 

accuracy. From Figure 5 and Figure 6, we can see that some 

area on the left side of the Figure was “ground” in fact; however 

it was classified to be “farmland” by ANNs, as the black ellipse 

shows. Some areas on the right side of the Figure were 

“ground” in fact; however it was also classified to be 

“farmland” by ANNs, as the blue ellipses show. Additionally, 

the most confusion in prediction by SVM method was between 

“building” and “tree”, “farmland” and “ground”, as shown in 

the fourth row and the second column, and the third row and the 

fifth column in Table 1. This was possibly resulted from the 

similar distance of “building” and “tree”, “farmland” and 

“ground”. Prediction errors were also generated from “tree” and 

“farmland”, as shown in the fifth row and the fourth column in 

Table 1, which was because “tree” and “farmland” had similar 

properties.  

 

4. CONCLUSIONS 

In this paper, the returned waveforms were filtered by MAD and 

waveform decomposition was implemented using the enhanced 

component detection algorithm. Then waveform features 

including distance, intensity, FWHM and back scattering cross 

section were extracted and corrected. The classification ability 

of corrected features was also clearly analysed. Multi-class 

SVM model was generated to classify the types of land cover in 

Miyun area as ground, trees, buildings and farmland. 

Classification results showed that the classification accuracy 

reached 90.63% and the classification Kappa was 0.8741. 

Furthermore, the SVM classification was compared to classical 

ANNs, and it showed that SVM method could achieve better 

classification results.  
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In future work, the further improvement in land cover 

classification may be achieved by using more waveform features. 

The weight of the features will be studied. 
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