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ABSTRACT: 

 

Image matching lies at the heart of photogrammetry and computer vision. For poor textural images, the matching result is affected by 

low contrast, repetitive patterns, discontinuity or occlusion, few or homogeneous textures. Recently, graph matching became popular 

for its integration of geometric and radiometric information. Focused on poor textural image matching problem, it is proposed an edge-

weight strategy to improve graph matching algorithm. A series of experiments have been conducted including 4 typical landscapes: 

Forest, desert, farmland, and urban areas. And it is experimentally found that our new algorithm achieves better performance. Compared 

to SIFT, doubled corresponding points were acquired, and the overall recall rate reached up to 68%, which verifies the feasibility and 

effectiveness of the algorithm. 

 

 

1. INTRODUCTION 

Poor textural image matching is a challenging task in computer 

vision, digital photogrammetry and remote sensing field 

(Hartmann, 2015). Conventional radiometry-based algorithms 

are effective and robust when encountered with rich textural 

images. However, the matching result is commonly less than 

satisfactory when dealing with poor textural images, which 

requires manual intervention and hinders systematic automation. 

 

Image matching algorithms can be divided into two types. One 

is based on radiometric information. For instance, normalized 

cross correlation (NCC) (Gonzalez, 1992), scale invariant 

feature transformation (SIFT) (Lowe, 2004), distinctive order 

based self-similarity (DOBSS) (Sedaghat, 2015) are typical 

radiometry-based. These approach will fail in the presence of 

ambiguities such as repeated patterns, textures, or non-

discriminative local appearance (Krystian, 2005). Modern 

algorithms now tend to utilize geometric information to guide 

the search for correspondence, such as semi-global matching 

(SGM) (Heiko, 2008), patch-based multi-view stereos (PMVS) 

(Furukawa, 2007), multiphoto geometrically constrained 

matching (MPGC) (Li, 2006) etc. In these kind of algorithms 

interest points are matched under the constraints of geometric 

relations, their essenc is dual decomposition (Komodakis, 2007), 

to break down the main problem into smaller problems. Through 

iterative process all small problems converged to the same or 

similar solutions. However, focus on poor textural images 

matching ， few research were conducted. Wu (Wu, 2012) 

obtained the dense matching point cloud by the combination of 

point and line features, under the premise of the known image 

orientation elements. Zickler (Zickler, 2007) took the advantage 

of PCA-SIFT (Ke, 2004) in highly deformable scene to guide 

object recognition. 

 

Texture homogeneity always appears as low local contrast. The 
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intensity-based algorithms are vulnerable to noise interference; 

therefore, the matching success rate is low. When using feature-

based algorithm, not enough feature point can be obtained as 

well. For texture repeatability, both intensity-based and feature-

based algorithm are prone to cause erroneous matches. Also, the 

texture discontinuity and occlusion leads to distortion of image, 

even for genuine corresponding points, their feature descriptors 

often differ greatly. Generally, the homogeneity and 

repeatability can have severe impact on matching result. In this 

instance, we draw on graph theory (Chung, 1997;  Livi, 2013) 

for making the match results global optimized in geometry and 

radiometry, by integrating geometry and radiometry information 

in a high order tensor (Abraham,  2012)  and reach the best 

assignment matrix via power iteration algorithm (De, 2000). 

 

Image matching problem can be well defined as graph matching 

problem. Given a set of feature points, the points can be 

represented by graph node and graph edges encode the 

relationships between two points. And the problem transforms 

into finding the correspondences of nodes between two graphs. 

At present, graph matching mainly have 3 kinds of geometric 

constraints: unitary constraint，pairwise constraint and triplet 

constraint. First-order methods only use unitary constraint, like 

SIFT only consider similarities based on local appearance. 

Second-order methods, for instance SGM (spectral graph 

matching) (Leordeanu, 2005), GA (graduated assignment) (Gold, 

1996), PGM (probabilistic graph matching) (Zass, 2008), BGM 

(balanced graph matching) (Schölkopf, 2006), consider pairwise 

relationship such as distance between feature points. However, 

second-order methods are distance invariant but not for scale 

invariant. To overcome the limitation of second-order method, 

higher order graph matching was invented. HOGM (high order 

graph matching) (Duchenne, 2009) is a typical representative. It 

uses the similarity of the angles belong to the triangles formed 
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by each triple nodes between two graph. And by using triplet 

constraint, the description can be affine invariant. But, when raw 

data contains numerous gross errors, the methods mentioned 

above perform poorly. For this purpose, it is proposed an edge-

weight strategy to improve graph matching algorithm to obtain 

well distributed and highly reliable matching points. 

 

2. METHODOLOGY AND WORKFLOW 

In this paper, an improved graph matching algorithm is proposed. 

In order to reducing the ambiguities and improve matching 

reliability, both radiometric and geometric information are 

synthetically utilized by an edge-weight strategy. The approach 

proceeds as follows: first, a feature point set P is computed using 

the UR-SIFT (Sedaghat, 2011) algorithm (uniform robust scale 

invariant feature transform), which extracts the uniformly 

distributed feature points in the source image, and the SIFT 

feature points are obtained by a lower contrast threshold in target 

image. Then the ANN (Indyk, 1998) (approximate nearest 

neighbor) algorithm is adopted to estimate k tie points in target 

image corresponding to every single feature point in source 

image, obtaining a potential tie points set (denoted as Q). Next, 

graph 
PG and QG are constructed by P and Q respectively, 

and the edge weighted high order affinity tensor A of the two 

graphs can be built simultaneously. At last, the Power iteration 

algorithm is applied to find the tensor’s leading vector, which is 

also the nodes assignment matrix Z of the two graphs, thereby 

the correspondences of the feature points can be constructed.

 

 

 

 

 

 

 

 

 

 

 

Figure 1 The workflow of graph based image matching 

 

As can be seen from the Figure 1，the key steps of the running 

process are : UR-SIFT and SIFT features extraction, affinity 

tensor A construction, soft assignment matrix Z acquisition, and 

the discretization of Z to obtain hard assignment matrix Z*. In 

this section, it focuses on the Construction of feature point sets 

and edge weighted HOGM algorithm. 

 

2.1 Construction of feature point sets 

For using geometric constraints in matching, well-distributed 

feature points are needed. As shown in Figure 2, the proposed 

algorithm employs interior angles of triangle as the geometric 

constraint. It can be expressed concisely as follows. Suppose that 

feature point pairs )',(),',(),',( kkjjii are corresponding 

points, then the two triangles (denote by 
P

kjiT ,, and
Q

kjiT ',',' ), 

constructed by the feature points extracted in source image and 

target image respectively, are approximate similar triangles (also 

been called matched triangles). But if any two vertices of 
P

kjiT ,,

are too close, slight distance variations would change the interior 

angles of the triangle violently. In this situation, the matched 

triangles may not be similar triangles. Besides, the triangle 

constraint become valid in a small region, because two central 

projection image patches take at different locations with the 

same scene are local similarity transformation, so the distance 

between any two vertices of the triangle should not be too long. 

In addition, in many applications such as aerial triangulation and 

remote sensing imagery registration, only small amount of tie 

points are needed, which would better be uniformly distributed. 

To obtain well-distributed, stable and quantity controllable 

features, UR-SIFT algorithm is adopted in source image, 

meanwhile, SIFT with lower contrast threshold is adopted in 

target image to guarantee feature repeatability.
 

Suppose the feature point set P contains Pn feature points, then 

every single feature point in P can find k (k should be greater 

than 2) potential correspondences in target image, all these 

potential correspondences form the feature point set Q, which 

contains Qn feature points. Until now, the point set P and Q are 

constructed. 

Source image 

Feature points set P constructed by 

UR_SIFT 

Target image 

Feature points set Q constructed by SIFT and 

ANN 

GP GQ 

 

High order affinity tensor A 

Soft assignment matrix Z obtained by Power iteration algorithm 

Hard assignment matrix Z* obtained by Discretization of Z 

Point correspondences of the two feature point sets 
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Figure 2 Geometry constraint based on similar triangles 

 

2.2 Edge weighted HOGM 

The essence of image matching is mapping two feature sets. 

Graphs(donated as PG and QG ) can be constructed by given 

point set P&Q. Graph nodes represent the attributes of the 

feature points such as gray level and locations, while the graph 

edges encode their spatial relations such as distances, angles and 

so on.  So the mapping can be cast as the correspondences of 

the nodes of two graphs, this is the very solution of graph 

matching. However, the graph matching result is vulnerable to 

outliers. In this paper, it introduces an edge weighted high order 

graph matching algorithm to improve matching results when 

confronted with vast scale of false candidates (outliers). For 

simplicity, the order of the tensor is restricted to 3. 

 

The 3-oder tensor is given by 

2
' ' ' 2

( / )

' ' ' 3 ' ' '( , , )
ijk i j k

ii jj kk ii jj kka c c c e
 

  
f f

 (1) 

Where   ' ' 'i i j j k ka
 

= an element of a 3-order tensor 

)(3   = triplet similarity measure 

',iic    = candidate matched nodes 

2
    = the 2 norm of a vector 

      = the Gaussian kernel bandwidth 

ijkf , ''' kjif = the two descriptors of triangles 

i , 'i   =the index of the node iV  and 'iV   

 

As illustrated in Figure 1, the triangle descriptor is constructed 

by the interior angles of the triangle, this is,

),,( kjiijk f , ),,( '''''' kjikji f . 

 

The 3-order graph matching problem is to find the optimal 

solution of formula (2) 

11Z11Z

ZZZZAZ
z

*






T

*
123

,..

}1,0{),(maxarg

ts

QP nn

                    (2)

Where      
QPQPQP nnnnnn

IR


A = a 3-order 

t  = tensor product symbol 

QP nn
IR


Z = soft assignment matrix  

QP nn 
 }1,0{*

Z = hard assignment matrix 

 

A  encodes the relationships and attributes of feature points, 
*

Z  expresses the correspondences of the graph nodes. It is 

noteworthy that 1-order, 2-order and 3-oder graph matching can 

interconvert to each other in some trivial cases (more details 

please refer to (8)). 

 

If  there exists nodes QqPp VV GG  , ， and 

  
i j

jqpi zz 0,0 *
,

*
, (that is to say, neither node pV in

PG nor node qV in QG has corresponding node ), then pV

and
 

qV are outliers, otherwise they are inliers. A major 

challenge in real-world graph matching problems is to tolerance 

the numerous outliers arising in typical visual tasks such as 

image matching and object recognition, sometimes the outliers 

are more than inliers and that is hard to distinguish inliers from 

outliers due to clutters. This lead graph matching to local optima 

and erroneous image matching results. To tackle real-world 

image matching tasks, it is proposed an edge weighted high order 

tensor graph matching algorithm. 

 

In formula (1), if numerous outliers present in both feature point 

sets, then the 3-order affinity tensor may contain irrelevant 

information produced by outliers, so the 3-order affinity tensor 

A equals to a correct affinity tensor A
~

, which produced by point 

sets have no outliers, plus a turbulent tensor AΔ created by point 

sets have no inliers and noise 

AAA Δ
~

               (3) 

Noise is neglected because it has less impact on graph matching 

than outliers. The main idea of reining the outliers is increasing 

A
~

 while decreasing AΔ .  

i

k

j

'k

'i

'j

QGPG

'i

'k

'j

i

j
k
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Power iteration of 3-order tensor is the solution to (2) 


KJ

KJI ZZKJIZI
,

3 ),,(,    (4) 

Where KJI ,, = the shorthand of index pairs

)',(),',(),',( kkjjii .  

 

Formula (4) is a typical iteration step in power iteration of 3-

order tensor. In general, the elements of initial assignment matrix

Z in (4) are set to 0.5 in the beginning of power iteration, and 

(4) also can be illustrated as Figure 3 

 

Figure 3 sketch of power iteration in the perspective of nodes, the pink circles are outliers 

 

As can be seen in Figure 3, the relationship(whether they are 

matched pair or not) of 1V  in PG  and '1V  in QG is 

determined by the triangles which have one common vertex in 

each graph(For example, the value of soft assignment matrix 

element '1,1Z is partial determined by the sum of similarity of 

triangles
PT 3,2,1 and

QT ,3',2'1' ,
PT1,4,5 and 

QT ,5',4'1' ,
PT1,3,7 and 

QT ,3'7'1'  etc.), i.e. the assignment relationship is determined by 

the opposite sides of the common vertex. So in graph matching, 

the critical factor is edges in graph. Formula (4) also can be 

modified into another form 


K

KJI ZKJIZZJI ),,(,, 3      (5) 

As can be seen in  formula (5)，the relationship of edges are 

determined by graph nodes, and it is more straightforward in 

Figure 4

 

Figure 4 sketch of power iteration in the perspective of edges, the pink circles are outliers 

 

As shown in Figure 4, similarly to node perspective, the 

assignment relationship of two edges are determined by triangles 

which have one common edge in each graph (for example, the 

assignment relationship of
PE1,2 and

QE ,2'1' are partial determined 

by the sum of node similarity 3V and '3V , 4V and '4V  etc.). If 

there is no prior information of the nodes affinity, then the nodes 

from two graphs are half-matched, that is to say every element 

in Z is set to 0.5. So the edge similarity can be defined as 


K

KJIJI cccs ),,(5.0 3,       (6) 

Formula (6) can be justified by qualitative analysis. If the edge
P

jiE ,
 and edge

P

ji'E ',
 are markedly different, then the 

probability that kjiT ,, and ',',' kjiT are similar triangles is very 

low, on the other hand, if kjiT ,, and ',',' kjiT are similar 

triangles, then the edge
P

jiE ,
 and edge

P

ji'E ',
 are much the 

same. So the edge similarity can be treated as a weighted factor 

when constructing 3-oder tensors 

4

7

6 2

3

5

PG
QG

1

PG
QG

3

4

6

5

7

2

1
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})5.0(exp{),( 2

, nsJIw JIe     (7) 

Where   ),( JIwe = the weighted factor 

n = the counter which equals to

)2()2(  QP nn  

 
So formula (1) can be modified to (8): 
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                      (8) 

fw is the balanced weighted factor of unitary similarity measure 

and triplet similarity measure: 

2

1

3

1

1

1

/

/

2

1

ndof

ndof

w
n

i

i

n

i

i

f







                (9) 

Where    
1
id o f  = unitary similarity measure  

3
idof =the triplet similarity 

 

Given that two edges from different graphs are matched, then 

triangles include the two edges have high probability of 

similarity, thus the tensor elements related to the edges should be 

increased, otherwise they should be decreased because triangles 

contain outliers may have smaller similarity. By using of edge 

weighted strategy, A
~

 is increased indirectly, and thus robust to 

outliers. The elements of tensor A can be constructed by (8), then 

(2) can be solved by HOGM (more details please refer to 

(Duchenne, 2009)), and the hard assignment matrix Z* of PG

and QG can be obtained by greedy algorithm, so as to the 

matched result of feature point sets P and Q. 

 

3. EXPERIMENTS RESULTS 

This section presents evaluation on the proposed EW-HOGM 

algorithm, three typical poor textural images are used to verify 

the robustness of the method. Figure 5 illustrates the matching 

results: 

 
(a) Woodsy aerial image matching result  

 

 
(b) Dessert aerial image matching result  

 

 
(c) Urban aerial image matching result 

 
Figure 5 Typical poor textural image matching with EW-

HOGM (the circles represent the outliers) 

 

In these experiments, UR-SIFT and SIFT are adopted in source 

image and target image respectively. To tolerate scale and 

rotation differences, only unary similarity (Euclidean distance of 

SIFT descriptors) and triplet similarity (Euclidean distance of 

triangle descriptors) are considered. In order to improve the 

precision and sparsity of the 3-order affinity tensor, certain 

elements of the tensor are set to zeros if the unary or triplet 

similarity is greater than an empirical threshold (for the 

normalized SIFT and triangle descriptors, the thresholds are set 

to 0.5 and 10-2 respectively).  In control experiments we use 

SIFT algorithm, firstly extracts UR-SIFT features in source 

image and SIFT features in target image (more details please 

refer to section 2.1), then uses ANN and 2 nearest neighbors 

constraint to search corresponding points, and rejects matches 

that the distance ratio (the distance ratio of the closest neighbor 

to that of the second-closest neighbor) is greater than 0.8. Table 

1 lists the quantitative comparison of SIFT and EW-HOGM in 

typical poor textural image matching, these stereo images are 

captured from forest, desert and urban areas in which showed 

low contrast, repetitive patterns, discontinuity or occlusion, few 

or homogeneous textures are abundant. 
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Image ID (a) (b) (c) 

Image size /pixels 256×256 400×400 400×400 

Algorithms SIFT 
EW-

HOGM 
SIFT 

EW-

HOGM 
SIFT EW-HOGM 

Matched point pairs 11 34 9 19 6 68 

Recall* / (%) 22.0 68.0 30.0 63.3 6.0 68.0 

Table 1 Comparisons of SIFT and EW-HOGM (* %100
#

#


spondencestotalCorre

chescorrectMat
recall ) 

 

The experimental results demonstrate that EW-HOGM performs 

better than SIFT in poor textural image matching, especially in 

matching recall rate. EW-HOGM can obtain much more 

matching points than SIFT.  In woodsy aerial images and desert 

aerial images, the matched point numbers of EW-HOGM are two 

times greater than SIFT, and in urban aerial images it is ten times 

more. Although the recall rates of SIFT in rich textural images 

are better, however, as can be seen from table 1, the recall rate of 

SIFT in poor textural image matching is less than 30.0%, the 

EW-HOGM reach to about 70% mainly owes to both geometric 

and radiometric information are integrated utilized via affinity 3-

order tensor. Meanwhile, the distribution of the matched points 

is better than SIFT.  

 

4. CONCLUSIONS 

It is proposed a graph based algorithm that integrates both 

geometry and radiometry together to address the poor textural 

image matching problems. In the algorithm, an edge weighted 

high order graph matching method are applied, and it improves 

the matched points number and recall rate. The experiments of 

typical poor textural image matching results shows that the 

proposed algorithm performs better than SIFT. Because of the 

tolerance of outliers, this algorithm can also be employed in 

shape matching and 3D clouds registration where outliers are 

massive, besides, this framework can also be applied in gross 

error detection if it is proper modified. 
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