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ABSTRACT:

One viewpoint of current and future IT systems holds that there is an increase in the scale and velocity at which data are acquired and
analysed from heterogeneous, dynamic sources. In the earth observation and geoinformatics domains, this process is driven by the
increase in number and types of devices that report location and the proliferation of assorted sensors, from satellite constellations to
oceanic buoy arrays. Much of these data will be encountered as self-contained messages on data streams - continuous, infinite flows
of data. Spatial analytics over data streams concerns the search for spatial and spatio-temporal relationships within and amongst data
“on the move”. In spatial databases, queries can assess a store of data to unpack spatial relationships; this is not the case on streams,
where spatial relationships need to be established with the incomplete data available. Methods for spatially-based indexing, filtering,
joining and transforming of streaming data need to be established and implemented in software components. This article describes
the usage patterns and performance metrics of a number of well known FOSS4G Python software libraries within the data stream
processing paradigm. In particular, we consider the RTree library for spatial indexing, the Shapely library for geometric processing
and transformation and the PyProj library for projection and geodesic calculations over streams of geospatial data. We introduce a
message oriented  Python-based  geospatial  data  streaming framework  called  Swordfish,  which  provides  data  stream processing
primitives,  functions,  transports and a common data model for describing messages,  based on the Open Geospatial  Consortium
Observations and Measurements (O&M) and Unidata Common Data Model  (CDM) standards.  We illustrate how the geospatial
software components are integrated with the Swordfish framework. Furthermore, we describe the tight temporal constraints under
which geospatial functionality can be invoked when processing high velocity, potentially infinite geospatial data streams. The article
discusses the performance of these libraries under simulated streaming loads (size, complexity and volume of messages) and how
they can be deployed and utilised with Swordfish under real load scenarios, illustrated by a set of Vessel Automatic Identification
System (AIS) use cases. We conclude that the described software libraries are able to perform adequately under geospatial data
stream processing scenarios - many real application use cases will be handled sufficiently by the software.

1. INTRODUCTION

This  paper  concerns  the  description  of  a  Python-based  data
streaming framework called Swordfish that  is  designed to  be
used  in  the  transport  and  processing  of  streams of  data  that
contain a geospatial or locational component.

We offer a brief introduction to the data streaming paradigm and
provide some descriptive examples of data streaming software
frameworks, before discussing the nature of geospatial data on
streams.  We then  introduce  the  Swordfish  framework  –  its
architecture,  approach  to  processing  and  implementation
specifics  –  leading  to  a  discussion  on  geospatial  processing
functionality  and  the  Free  and  Open  Source  Software  for
Geospatial  components  that  enable  this  functionality.  Early
performance  insights  are  discussed.  Finally,  some  usage
scenarios are provided.

1.1 General Data Streaming Background

The  concept  of  data  streaming  systems  has  long  been
recognised.  In  the  (Babcock,  et.  al.,   2002)  synthesis  and  in
(Lescovec et.  al.,  2014),  a  class  of  systems is  identified that
processes  data  arriving  in  “multiple,  continuous,  rapid,  time-
varying  data  streams”  rather  than  data  in  sets  of  persistent
relations. These data streams may be infinite or ephemeral and
are often unpredictable (Kaisler, et.al., 2013). 

The need for these kinds of systems results from the burgeoning
of data arising from numerous sources including (Lescovec et.
al.,  2014),  (Pokorný,  2006),   (Kaisler,  et.al.,  2013),
(Stonebraker, et. al.,  2005):

 arrays of sensor networks or earth observing satellites
continuously  and  variably  transmitting  multiple
measurements of environmental parameters 

 packets of data generated by network traffic
 social media
 science experiments and model outputs
 monitoring systems (cameras, electronic tolling)
 positions  of  moving  objects  (vehicles  on  roads,

vessels at sea, parcels or cargo in delivery process)
 market  trading  systems,  which  can  peak  at  several

million  messages per  second,  as  illustrated  by (FIF,
2013)

These data sources can produce very large volumes of data at
rapid rates, in a variety of forms and complexities. It is difficult
or infeasible to store all these data and analyse post-acquisition
(Kaisler, et.al., 2013).  Data streaming systems exist to process
and extract value from such data as it is 'in-motion' with low
latency.
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Significant computational challenges arise as a result  of these
data  stream  characteristics,  necessitating  methods  for  ETL
(extract,  translate  and  load)  of  data,  sampling  strategies,
aggregation  and  stream  joining  techniques,  windowing
approaches,  stream  indexing,  anomaly  detection,  clustering,
summarising  of  streams  and  many  others  as  described  by
(Lescovec, et. al., 2014) and (Agarwal, 2007). 

In  (Stonebraker,  et.  al.,  2005),  it  is  argued  that  stream
processing systems must exhibit eight properties:

1. Data  should  be  kept  moving  –  there  should  be  no
need to store data before processing and data should
preferably  be  pushed  rather  than  pulled  to  the
processing components.

2. Support  for  a  high-level  processing  language
equipped  with  stream-oriented  primitives  and
operators such as windows.

3. Resilience to imperfections of streams, such as partial
data,  out-of-sequence data, delayed or missing data
and corrupted data.

4. Outputs should be predictable and repeatable (though
as  described  above,  techniques  exist  to  sample and
summarise streams of data,  perhaps leading to a third
quality statement around statistical significance).

5. Ability to store, access and modify state information
and utilise such state in combination with live data,
without compromising on low latency goals.

6. Mechanisms  to  support  high  availability  and  data
integrity, for example through failover systems

7. Ability  to  scale  or  distribute  processing  across
threads,  processors  and  machines,  preferably
automatically and transparently.

8. Near  instantaneous  processing  and  response  –
provision  of  a  highly  optimised  execution
environment  that  minimises  computations  and
communication overheads.

These properties provide guidance on the architecture and likely
the goals of a data streaming system.

1.2 Geospatial Data Streaming Background

A significant amount of the data originating from the sources
described previously, such as sensor networks, moving objects
and social media has an explicit or implicit location or spatial
context that can be utilised as data is processed.

This  has  some  implications  for  data  streaming  software
frameworks.  Firstly,  frameworks  need  to  be  capable  of
processing  the  extra  volume  of  data  necessary  to  describe
location  or  spatial  relationships.  Second,  it  is  important  that
data  streaming  components  recognize  geospatial  data  in  the
different forms it manifests in, so that the data can be accessed
as efficiently as possible in pursuit of low latency. Thirdly, there
needs to be a recognition that a significant number of the offline
algorithms  and  processes  that  characterise  geospatial
computation (i.e. algorithms that have full knowledge of their
input  data)  are  not  appropriate  for  the  continuous,  possibly
infinite and often incomplete online nature of data streams, as
noted by (Zhong, et. al., 2015). Algorithms and processes here
need to deal with data as it arrives and may never have sight of
the data again, since the complete data stream is unlikely to be
captured in local computer memory. 

This  last  issue  hints  at  a  need  for  a  deeper  discussion  of
classification of geospatial computation functions for streaming
data.  This is not dealt with here; for the purposes of this article
it  is enough to observe that  different geospatial  computations
will  be more adaptable  to  a  streaming paradigm than  others.

This  is  driven  by  the  complexity  of  the  calculation  and  the
amount of state or information completeness that is required by
the calculation. 

In concrete terms, a process that simply filters data by feature
name or ID will be well suited to a streaming paradigm since it
exhibits low complexity and no state requirement. A process to
transform the spatial reference system of features is also easily
fitted  to  a  data  stream,  even  though  the  process  is  more
complex, since there is no state requirement to handle. 

A process  to  join  together  two  datasets  based  on  a  spatial
relationship  such  as  feature  containment  is  more  difficult  or
even intractable to implement in a streaming system. The state
of both streams needs to be known, since each feature on one
stream needs to be compared with every feature on the other
stream;  furthermore,  the  individual  calculations  could  be
expensive,  depending  on  the  complexity  of  the  streamed
features.  This  type of  geospatial  computation  exemplifies  the
notion  of  an  offline  algorithm.  However,  a  geospatial  data
streaming  system  arguably  should  offer  this  kind  of
functionality.   Stream  windowing  functions  like  time-based
windows  (features  for  the  last  10  minutes)  or  count-based
windows (the last 100 features) offer a way to manage a limited
amount  of  state.  A spatial  join  could  be  performed  on  the
features in small windows of the data streams, such that only
features within the windows are compared to each other. This
spatial  join  process  also  highlights  the  importance  of  spatial
indexes on streams: in  order to  reduce latency and keep data
moving,  as  per  the  eight  properties  of  stream processing,  a
spatial index on the features in one window may help to reduce
the number of containment calculations executed.

The geospatial stream processing approach may be deployed in
answering a wide variety of geocomputation query types. Two
classes  of  geospatial  analysis  are  illustrative.  (Xiong,  et.
al.,2004)  provides some examples of queries  that  analyse the
spatial relationships between features that change location over
time:

 moving queries on stationary objects – petrol stations
within a given distance of a moving car

 stationary  queries  on  moving  objects  -   counts  of
vessels  inside  a  harbour,  aeroplanes  inside  an
airspace, cars on a road section

 moving queries on moving objects – the position of
icebergs in relation to ship positions

(Zhong, et. al., 2015) demonstrate spatial statistical calculations
over streams to generate spatial grids (for use in fire behaviour
models) from point location data from sensor networks. 

In broad terms, a geospatial data streaming framework should
provide  functionality  for  efficient  structuring,  filtering,
aggregating, joining, transforming and analysing of the spatial
component of  data 'in motion'.  

1.3 Data Streaming Implementations 

A  number  of  proprietary  and  open-source  data  streaming
frameworks and query languages have existed in the last fifteen
years.  This  paper  does  not  intend  to  enumerate  them,  a  task
undertaken by (Jain et. al., 2008). Instead, we present here some
modern,  open  source examples of data streaming frameworks
that  have influenced  this  work  or  are  illustrative  of  the  data
stream processing domain. The frameworks briefly considered
here are Storm, Samza, Kafka Streams and Spark Streaming.

In this viewpoint, we briefly describe, for each implementation:
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1. Implementation  origin – developers  and driving use
case of the implementation;

2. Data form – the atom of streaming, usually a tuple of
values or a message consisting of key-value pairs;

3. Streaming  transport  –  the  underlying  infrastructure
used to move streaming data around;

4. Deployment and Execution infrastructure – the layers
of  software  upon  which  framework  resides  and
processing logic can be run;

5. Processing approach -  batch/ mini-batch processing
or per-atom processing;

6. Processing API – the kinds of functionality that are
provided for processing data streams;

7. Domain-specific data model – the nature of a domain
specific streaming data model , if present;

8. State Model and fault tolerance – many operations on
streams require maintenance (and recovery) of state;
streaming systems must  be  resilient  to  node  failure
and minimise or prevent message loss.

These  tables  should  be  viewed  in  terms  of  the  eight  stream
processing system properties identified above.

Storm – http://storm.apache.org/

Origin Twitter  Corporation  –  stream  processing,
continuous computation and distributed RPC.

Data form Tuples. Represented as a named list of values of
primitive or  user-constructed types.  The nature
of the tuple is declared by the outputting node (a
Bolt or  Spout). Uses Kryo serialisation or Java
serialisation internally. JSON is the interchange
format when working in multiple languages

Transport Storm  has  a  message-oriented  push-based
approach,  allowing  it  to  abstract  multiple
message  systems  (such  as  AMQP,  Twitter,
Kestrel,  JMS,  Amazon  Kinesis  and  Apache
Kafka) and databases as Spouts. 

Execution Requires  a  Storm  Cluster  for  managing
(resource  allocation,  distribution  and  fault
tolerance)  computational  topologies,  using
Zookeeper as the cluster manager; Java Virtual
Machine  with  ability  to  write  processes  in
multiple languages.

Processing Per message processing – data are processed as
received;  functionality  exists  for  batching,
provided as a separate software layer

API Computational  topology/  graph  oriented.   An
application  is  a topology deployed to  a Storm
Cluster.  Object-Oriented.  Streams are  created
from Spouts and are processed by  Bolts, which
are  containers  for  arbitrary  code.  Windowing
functionality  can  be  added  to  Bolts.  Also
provides  a  basic  SQL API.  Provides  a  higher
level API called Trident for micro-batching and
harnessing  the  MapReduce  style  for  gaining
functionality  for  mapping,  grouping,  joining,
aggregating  and  filtering  data  streams  and
persisting state in a number of databases/ caches

Data model N/A – general purpose

State  model
and
resilience

Local state storage relies on memory and HDFS.
Trident allows persistence to external stores and
provides  an  API  for  managing  state  and
achieving fault tolerance.

Table 1: Streaming Frameworks - Storm

Samza - https://samza.apache.org/

Origin LinkedIn Corporation – used to process tracking
and service log data and handle data ingest.

Data form Kafka  binary  message  format  –  header  and
variable  length payload  with  gzip,  snappy and
lz4 compression. Serialisation format agnostic.

Transport Uses  Apache  Kafka  push-based  messaging
system,  models  message  flow as  a  distributed
commit  log.  Possible  to  use  other  transports;
intention is Kafka, for its durability properties.

Execution By  default,  Apache  Hadoop  YARN  cluster
manager for resource allocation, distribution and
fault tolerance; Java Virtual Machine.

Processing Per message processing – data are processed as
received; functionality exists for batching but is
not default.

API Job-oriented  MapReduce  style  API,  Object-
Oriented.  SamzaContainers hold  processing
units  called  StreamTasks or  WindowableTasks
that  process  Streams (partitioned  message
streams).

Data model N/A

State  model
and
resilience

Local  state  storage  per  task  into  key-value
database  or  transaction  log,  in  memory or  on
disk.  Allows  a  stream  to  be  replayed,  if
necessary.  Resilience  achieved  through  cluster
manager and underlying message transports.

Table 2: Streaming Frameworks – Samza

Kafka Streams - http://docs.confluent.io/2.1.0-
alpha1/streams/index.html#kafka-streams

Origin Part  of  the  Confluent  platform  for  real-time
streaming ETL

Data form Data record in the form of a key-value pair

Transport Apache Kafka push based messaging

Execution Applications are built  using the Kafka Streams
Java library, but require the existence of a Kafka
cluster of message brokers.

Processing Per message processing – data are processed as
received. Streams are represented as changelogs
of a table and a table as a snapshot of a stream.
Processing is partitioned on the topic of the data
record, if necessary.

API Computational  Topology/  Graph  oriented.  A
Processor Topology allows Stream and Tables to
be processed by  Stream Processors.  There is a
Domain  Specific  Language  called  Kafka
Streams DSL that supplies these constructs and
also  facilities  for  windowing,  joining,  and
aggregating streamed data

Data model N/A – general purpose

State  model
and
resilience

State can be stored in memory or in a process-
local  key-value  datastore  or  other  caches.
Resilience cascades from the fault tolerance and
scalability of the underlying Kafka software.

Table 3: Streaming Frameworks - Kafka Streams
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Spark Streaming - http://spark.apache.org/streaming/

Origin University of California.

Data form Spark Resilient Distributed Dataset (RDD) with
Spark  binary  serialisation  format  or  Kryo
serialisation. 

Transport TCP  sockets,  files,  Apache  Kafka,  ZeroMQ,
MQTT,  Amazon  Kinesis,  Twitter,  Flume  and
Hadoop Distributed File System (HDFS) are the
transports provided by Spark Streaming, but it is
possible to use other transports.

Execution Can run  standalone  on  a  Spark  cluster  or  the
Amazon Elastic Compute Cloud, but usually run
in  production  using Apache Hadoop  YARN or
Mesos  Hadoop  cluster  manager  for  resource
allocation, distribution and fault tolerance; Java
Virtual  Machine,  with  wrappers  for  other
languages.

Processing Mini-batch processing – primarily data are read
from a stream and batched for use by functions
of the Spark Engine. Claims that this improves
the  ability  of  Spark  Streaming  to  handle  the
imperfections of streams.

API Provides  a  MapReduce  style  API,  functional
style.  API  provides  a  set  of  streaming  related
Transformations  over  D-Streams  (Discrete
Streams)   including  sliding  windows,  joins
(stream-to-stream  and  stream-to-dataset),  map,
filter,  reduce,  union,  count  and  transform
(allowing  any  Spark  function  to  be  applied).
Also  provides  an  SQL  and  Dataframes  API,
which converts streams to tables and processes
them using SQL operations

Data model N/A – general purpose

State  model
and
resilience

Local metadata and data state storage to memory
by  default  and  to  HDFS  if  checkpointing  is
enabled.  Allows  a  stream  to  be  replayed,  if
necessary.

Table 4: Streaming Frameworks - Spark Streaming (Zaharia, et.
al., 2012)

This short  discussion of some of the features of various data
streaming systems illustrates that there exist many approaches to
constructing and deploying such a system, with varying levels
of complexity and processing styles. It should be noted here that
these  ecosystems  and  frameworks  primarily  target  the  Java
Virtual Machine. 

1.4 Geospatial Data Streaming Implementations 

Similarly to stream processing frameworks, there have been a
number  of  implementations  of  geospatial  data  streaming
frameworks over  the last  two decades.  This  section  does  not
enumerate  the  various  efforts,  rather  it  highlights  a  few
interesting exemplars.

PLACE  (Mokbel,  et.  al.,  2005)  is  one  of  the  earliest
implementations of a such a system. It was used to unearth and
solve some of the fundamental issue of working with location in
a streaming,  specifically a  continuous  query context.  PLACE
introduced  a  number  of   pipelined  spatio-temporal  operators
(e.g. a continuous query to ascertain whether a one feature was

spatially inside another  feature) and predicate-based windows
(i.e. data only enters/  exits a query window if it  satisfies/ no
longer satisfies a predicate, such as a falling within a geographic
area).

ESRI GeoEvent Extension for ArcGIS Server (ESRI, 2016) is
ESRI's view on bringing streams of data to its large array of
geospatial processing capability. This approach utilises ArcGIS
Server  and  spatial  analysis  components  of  ESRI  to  act  as  a
stream processing (described  as  an  event  processing)  engine.
Various streams of data such as sensor network output,  social
media feeds, etc. pass messages to this engine via an assortment
of  provided  or  custom  developed  Input Connectors.  The
messages get structured as GeoEvents, are acted upon and then
streamed out via Output Connectors. This extension is aimed at
spatial ETL, pushing of data to web applications, status updates
in dashboard applications and real-time notification applications
such as geofencing applications. The primary primitive supplied
by this software is a  Filter.  Custom stream processors can be
built  to  exploit  the  wide  variety  of  processing  capability
available on the ESRI platform. ESRI provides what effectively
amounts to a streaming data management  platform, as it allows
streams  to  be  declared,  controlled  and  accessed  as  a  set  of
Stream Layers, Containers and Services.

IBM  InfoSphere  is  used  by  (Zhong,  et.  al.,  2015)  as  an
infrastructure  for  supporting  the  deployment  of  a  framework
called  RISER.  RISER  utilises  stream processing  for  ETL of
spatio-temporal data and as a spatial analysis engine performing
spatial  functions  (such  as  interpolation)  over  sensor  network
data. 
 

2. SWORDFISH SOFTWARE FRAMEWORK

2.1 Design Goals and Architecture

Swordfish  is  intended  to  provide  a  non-clustered  stream
processing  software  framework  for  the  Python  programming
environment.  Stream  processing  topologies,  along  which
messages  are  passed,  provide  the  main  Swordfish  structure.
Nodes (processing units, sources and sinks) and edges (streams)
can be distributed across machines, but do not have to be. The
implication  of  a  non-clustered  architecture,  e.g.. no  default
reliance  on  a  Hadoop  cluster,  is  that  Swordfish  stream
processing  topologies  can  be  executed  anywhere  that  Python
can be installed; from a sensor gateway to a Desktop,  from a
single computer to a network of computers running in a cluster
or cloud environment.   

Python provides rich functionality for geospatial work, ranging
from data translation libraries to machine learning and statistical
analysis libraries.  Furthermore, Python is a dynamically typed,
general  purpose  programming  language,  providing  great
flexibility.  Thus,  Swordfish  can  utilise  a  functional  style  of
programming,  common  to  many  of  the  streaming  systems
described,  yet  provide  utilities  from object-oriented  software
libraries.  Swordfish  processing  topologies   are  dynamic,
meaning  that  new  nodes  and  edges  can  be  established  at
runtime, rather than compiled into the topology. 

The  primary  goal  is  to  support  the  performance  of  spatio-
temporal access, transformation and analysis against geospatial
data streams from the kinds of systems illustrated previously,
such  as  Automated  Identification  System  (AIS)  positional
information  from  vessels,  sensor  networks  monitoring
phenomena  like  radiation  levels,  to  monitoring  networks  for
water and electricity usage, near real-time remote sensing data
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product  feeds  and  social  media  feeds.  Swordfish  has  been
optimised in a number of places (data structures and streaming
function  primitives)  to  enhance  performance,  primarily  by
producing Cython code.

1.1.1 Common Data Model: Since Swordfish is primarily
concerned  with  geospatial  data,  we  have  developed  a  data
model  based  on  a  combination  of  ISO/  Open  Geospatial
Consortium  (OGC)  Observations  and  Measurements  (O&M)
(ISO,  2011),   a conceptual  schema principally  for  describing
location  aware  sensor-based  observations  and  the  Unidata
Common Data Model (CDM) (Unidata, 2014) that can be used
and understood by all components of the framework. In general,
Swordfish tries to translate data to this common data model as
rapidly  as  possible  after  receiving  it  from a  source,  thereby
enabling components to work seamlessly with the data, as soon
as they get sight of it. Messages are moved through the system
in  a  special  high  performance  data  structure,  known  as  an
AttributeDictionary,  which  aids  processors  in  searching,
indexing, extending and serialising the message payloads they
receive.  AttributeDictionaries  are  serialised  to  MsgPack
structures by default when moved along streams and between
processes. Other serialisation formats such as JSON and Google
Protocol Buffers can also be used. Figure 1 shows a data item
representing  a  single  message,  in  JSON form, that  would  be
passed through Swordfish:

“{'type': 'CF_SimpleObservation', 
'phenomenonTime': '2015­09­
14T11:58:58.649575', 'result': 
{'variables': {'pulse_value': {'units': 
'litres', 'dimensions': ['int']}, 'time': 
{'units': 'isoTime', 'dimensions': 
['time']}}, 'data': {'pulse_value': [500, 
500, 500, 0, 500], 'time': ['2015­09­
14T11:58:01.305564', '2015­09­
14T11:47:06.808586', '2015­09­
14T11:54:55.782008', '2015­09­
14T11:43:58.603956', '2015­09­
14T11:50:58.623827']}, 'dimensions': 
{'time': 5}}, 'featureOfInterest': 
{'geometry': {'type': 'Point', 
'coordinates': [­25.753, 28.28]}, 'type': 
'Feature', 'properties': {'id': 'Top 
Reservoir'}}, 'observedProperty': {'type': 
'TimeSeries'}, 'parameter': {'id': 49999}, 
'procedure': {'type': 'sensor', 'id': 
'45030171', 'description': 'Sensus HRI­Mei 
linked to meter 14787486'}}“

Figure 1: Swordfish Common Data Model example

This message is used in the testing process, representing the size
and  complexity  of  a  typical  message  payload.  Note  the
featureOfInterest  property;  it  is  in  a  structure  known  as
GeoJSON (Butler, et. al., 2008), a de-facto community standard
format that is well understood by numerous geospatial software
packages.

2.1.1 Transport: To date, Swordfish is capable of read/write
streaming of data over a wide and growing range of message
transports,  including  Advanced  Message  Queueing  Protocol
(AMQP),  ZeroMQ, MQTT, Redis, websockets and several in-
memory structures.  Adapters  have been developed  to harness
social media streaming platforms like Twitter.

2.1.2 Execution:  Swordfish  has  no  requirements  for  a
processing  cluster  to  be  present;  it  can  run  on  a  Desktop
computer  as part  of a normal Python application.  As such,  it
should be considered as a set of software libraries, implemented
according to application needs. Swordfish can be executed in a
distributed  fashion  using  the  Python  code  remoting  platform
called  RpyC  (RpyC,  2013),  but  this  is  not  as  transparently
managed compared to the clustered systems. Inherently, as with
most  message passing  systems such  as  Swordfish,  a  level  of
distribution  is  naturally  possible  through  the  use  of  message
broker  protocols  that  provide  part  of several  of the transport
implementations.  By  default,  Swordfish  uses  in-memory
transports,  but  in  practice,  data  are  usually  received  from
transport mechanisms such as distributed message queues, e.g.
MQTT. Software bindings/  adapters  to  such queuing  systems
need to be present for Swordfish to utilise them.

2.1.3 Processing:  Swordfish  is  a  message-oriented  system
with per-message processing semantics – data are processed as
soon as received; no facility exists yet for batching of messages.

2.1.4 Application  Programming  Interface:  Swordfish
supplies  stream processing utility via a  set  of  primitives for
describing nodes and edges in a stream topology and a set of
primitives for adding actual processing functionality. Nodes are
abstract  StreamProcessors and  would  include  Sources (e.g.  a
subscription to an MQTT topic, a file, a database), Sinks (places
outside of the system where data can be passed to (e.g. database,
web  service  endpoint,  websocket,  message  broker),  and
concrete  StreamProcessors (generic  functionality  executors).
These nodes are connected by different types of Streams, which
are components that abstract the underlying message transport
protocol  and  provide  a  callback  mechanism  for  1...n
StreamProcessors to receive messages off the stream, i.e. each
StreamProcessor registers  a  callback  with  a  Stream.
StreamProcessors usually  accept  a  function  that  will  provide
application  logic.  Swordfish  implements  optimised
StreamProcessors that allow a MapReduce style of  application
composition:  Maps,  Folds,  Reduces,  Joins,  Filters.  Maps are
generally used to transform or analyse each message and return
an  output  (e.g.  reproject  the  spatial  data  in  each  message).
Folds are  a  specialised  Map that  allows  a  message  to  be
compared to  some representation of state that is passed in at the
same time as  the message ,  often the  output  of the  previous
message (e.g. a check to see if each message is further east in
heading than the previous message).   Reduce is  a component
that  aggregates  or  summarises  data  and  outputs  a  result,
continuously or at certain time interval, count interval or other
delta  in  the  data  (e.g.  union  the  geometries  of  the  last  100
messages).  Joins allow one stream of  data  to  be joined  with
another, following SQL style semantics of inner joins and left/
right outer joins (e.g. merging data from two streams based on
feature ID or spatial location).  Filters utilise some function to
exclude data that does not meet some requirement from being
output downstream (e.g. discard features that are not within a
specific  area-of-interest).  A number  of  these  operators  will
operate  in  sliding  or  tumbling  fashion  over  a  count  or  time
window of the data on each stream; as described previously, it is
nigh  on  intractable  for  a  process  such  as  a  spatial  join  to
maintain the state of all the messages it has ever had sight of.
At the time of writing, Swordfish maintains state only via in-
memory structures – no serialised state is managed.

2.2 Geospatial Functionality and Components

Geospatial  utility  is  provided  to  Swordfish  via  a  package  of
programming functions that can be invoked and passed through
to  Swordfish  primitives  like  Maps,  Folds,  Filters etc.  as
arguments. These programming functions are provided by a set
of   well  known  Free  and  Open  Source  geospatial  software
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libraries, wrapped with code to specialise them for use in the
Swordfish  streaming   environment.  All  these  programming
functions  understand  and  can  transform,  query  and  populate
AttributeDictionaries of the common data model.

Swordfish  spatial  functionality  is  currently  under  active
development. At the time of writing, Swordfish provides:

 Functionality for indexing spatial data and comparing
messages to indexes (e.g. bounding box relationship
tests an k-nearest tests) This functionality is provided
by  the  Rtree  (Rtree,  2016)  Python  wrapper  of  the
libspatialindex software.

 Computational  geometry  functions  for  binary
predicate  tests,  specifically  whether  feature
geometries on streams cross,  intersect or  fall  within
other  geometries  (provided  on  the  same  stream,  a
different  stream  or  via  some  other  source).  This
functionality  is  provided  via  the  Shapely  (Shapely,
2016)  Python  wrapper  of  the  GEOS computational
geometry engine. 

 Cartographic  transformations  (e.g.  projections),
provided by the Pyproj (Pyproj, 2016) wrapper of the
Proj.4 library

 Forward,  inverse and distance geodetic calculations
(e.g. bearing, distance) also provided by Pyproj.

Some examples of how these functions could be deployed in
Swordfish  may  be  useful.  We have  deployed  Swordfish  to
process AIS vessel data (hundreds of messages per second) and
data  from  sensor  networks  monitoring  water  and  electricity
usage  for  large  commercial  sites,  as  well  as  radiation
concentrations  around  industrial  facilities.  Specific  examples
include:

 Using  Swordfish  Filters with  spatial  indexes  and
binary predicate  tests  to  ascertain  whether  or  not  a
moving feature, such as a fishing vessel is present in
an area-of-interest such as a Marine Protected Area.

 Using  Swordfish  Fold to  split  up  a  data  stream of
vessels from an AIS feed into individual  streams of
vessel  positions,  and  performing  a  fix  on  the
timestamp information in each positional message so
that trajectories can be calculated

 Using Swordfish  Map to transform Google Protocol
Buffer  structured  data  from  radiation  monitoring
sensors  into  the  common  data  model,  so  that
interactive,  real-time  map  visualisations  could  be
created and interpolations performed.

2.3 Swordfish Performance

This  section  gives  an  quick  indication  of  the  kinds  of
throughputs  that  have  been  observed  of  Swordfish  when
processed on a 24 CPU computer with 32 gigabytes of RAM,
running Ubuntu Linux version 14.04 and Python 2.7. Results
are from tests that utilise a payload as described in the Common
Data  model  section  above.  The  message  payload  is  a  string
approximately  1  Kb  in  size,  represented  as  an
AttributeDictionary,  with  each  test  repeated  for  50  000
messages. In repeated tests, a portion of which are illustrated in
Table  5,  Swordfish  demonstrates  some  performance
characteristics as follows:

Test Throughput (average
messages per second)

Raw throughput of messages via
a StreamProcessor

> 660 000

In-memory streams > 300 000

Simple Filter, in-memory stream ~ 240 000

Simple Map, in-memory stream ~ 66 000

Simple Fold, in-memory stream ~ 16 500

Simple  Reduce,  in-memory
stream

~ 13 000

Simple Join, in-memory stream ~ 11 000

Distributed  Map,  6  processes  ,
in-memory streams, elapsed time
~ 10 seconds)

~ 6 350 per process
~ 30 000 for whole batch

Rtree  bounding-box  intersection
test Filter, in-memory stream

~ 7000

Format  AIS  messages  to
Common Data Model, Swordfish
Map, MQTT stream transport

> 5000

Table 5: Indicative performance results

These are early results, but show that Swordfish can stream and
process high velocity data streams. The payload here is quite
large; numbers improve drastically for a small, non-spatial, no-
common data model message (e.g. a key-value pair of an integer
and a short string). Streaming systems often claim throughputs
of > 1 000 000 messages per second, but we feel the numbers
we  illustrate  are  more  likely  to  be  found  in  practice  when
dealing  with  geospatial  data  streams.  It  is  notable  that
throughput slows when geospatial functionality is applied; these
results nevertheless show Swordfish as capable of throughput of
an order of magnitude greater than our highest velocity streams
(merged Satellite and Terrestrial AIS receivers). The distributed/
multiprocessing  capability  of  Swordfish  may  reduce  any
throughput bottlenecks when it is necessary to scale the system. 

3. SUMMARY AND FURTHER WORKS

In this article we discuss geospatial data stream processing and
introduce  the  Swordfish  stream  processing  framework,
highlighting  some of  its  spatial  capabilities.  We indicate  that
Swordfish  offers  sufficient  throughput  capability  to  allow
application developers using Python to build online geospatial
systems for a number of potential use cases. A significant effort
is needed to expand the geospatial functionality (particularly to
move  beyond  computational  geometry  and  indexing
functionality) and perhaps optimise it as necessary. Effort needs
to  be  undertaken  to  ensure  that  Swordfish  is  stable  for  long
running applications, though its early deployment in particular
use cases suggest it is reasonably stable. Swordfish is currently
limited  to  holding  state  in  memory;  further  work  may  be
necessary to develop mechanisms to serialise state, especially in
use cases where recovery of the streaming topology state may
be necessary. A long term view of Swordfish development is the
provision  of  a  streaming  data  management  platform,  (as  is
provided  by  ESRI  GeoEvent  Extension,  and  the  Confluent
platform).  We are investigating the process for open-sourcing
Swordfish;  organisational  policies  enforce  a  technology
evaluation process before open-source licenses can be applied
to software and code placed under an open-source management
model.  
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