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ABSTRACT: 
 
Analysing urban regions is essential for their correct monitoring and planning. This is mainly accounted for the sharp increase of 
people living in urban areas, and consequently, the need to manage them. At the same time there has been a rise in the use of spatial 

and statistical datasets, such as the Urban Atlas, which offers high-resolution urban land use maps obtained from satellite imagery, and 
the Urban Audit, which provides statistics of European cities and their surroundings. In this study, we analyse the relations between 
urban fragmentation metrics derived from Land Use and Land Cover (LULC) data from the Urban Atlas dataset, and socio-economic 
data from the Urban Audit for the reference years 2006 and 2012. We conducted the analysis on a sample of sixty-eight Functional 
Urban Areas (FUAs). One-date and two-date based fragmentation indices were computed for each FUA, land use class and date. 
Correlation tests and principal component analysis were then applied to select the most representative indices. Finally, multiple 
regression models were tested to explore the prediction of socio-economic variables, using different combinations of land use metrics 
as explanatory variables, both at a given date and in a dynamic context. The outcomes show that demography, living conditions, labour, 

and transportation variables have a clear relation with the morphology of the FUAs. This methodology allows us to compare European 
FUAs in terms of the spatial distribution of the land use classes, their complexity, and their structural changes, as well as to preview 
and model different growth patterns and socio-economic indicators. 
 

1. INTRODUCTION 
 
Currently, in Europe nearly 75% of the population lives in urban 
areas (EEA, 2013a). Urban population and urban land growth are 

ongoing processes which are expected to continue increasing in 
the years to come (Ribeiro Barranco et al., 2014). The 
urbanization process has impacts beyond city boundaries, and 
managing urban and periurban areas is therefore now essential 
(EEA, 2013a). Land use planning is a political challenge needed 
to conciliate urban land use with environmental issues, in order 
to prevent impacts on quality of life (EEA, 2013b; Kompil et al., 
2015). As European institutions and national and local authorities 

establish policies, knowing their effects in advance is becoming 
a major factor (Kompil et al., 2015). 
 
Many recent studies have analysed urban spatial development in 
European cities (Uuemaa et al., 2013). Several official 
institutions have published reports that analyse in detail the 
current situation of landscape fragmentation, soil sealing and 
urban growth in Europe, and how to measure, understand and 
mitigate it (COM, 2012; Jaeger et al., 2011). The comparison of 

cities across European countries is gaining attention in recent 
studies, which are categorising cities according to their urban 
form and sprawl (Arribas-Bel et al., 2011; Schwarz, 2010), their 
development, and their population indicators (Haase et al., 2013; 
Ribeiro Barranco et al., 2014). These authors point out that cities 
are growing faster than their populations are increasing. 
Modelling urban development, economic and demographic 
changes are additional studies that attempt to predict future 

development scenarios, and also further understanding of the 
potential growth of cities (Kompil et al., 2015; Uuemaa et al., 
2013; Wissen Hayek et al., 2015). 
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Land use fragmentation is a spatial segregation process which is 
basically derived from human and socio-economic activities. Its 
study has become essential to safeguard quality of life and 

prevent ecological impacts (Wei and Zhang, 2012). Urban 
fragmentation reflects the way in which urban areas spread 
towards rural areas (Angel et al., 2010), and its quantification 
reveals urban expansion processes. Landscape metrics and socio-
economic variables are widely used to measure urban 
configuration and growth (Arribas-Bel et al., 2011; Dewan et al., 
2012; Jiao et al., 2015; Schwarz, 2010). Accordingly, the number 
of tools to compute such metrics is diverse (MacLean and 

Congalton, 2015). Only a few of them focus on urban studies and 
work with vector datasets, and they are required for the ongoing 
development of multi-temporal databases of land use and land 
cover (LULC) data in this format (Sapena and Ruiz, 2015a). 
 
Copernicus is the European earth observation programme, which, 
by means of remote sensing techniques, provides reliable up-to-
date land information. The European Environment Agency 
(EEA) coordinates it on a local scale; its first implementation was 

the Urban Atlas (UA). UA provides two-date, detailed and 
harmonised LULC maps (scale 1:10,000) for large EU 
Functional Urban Areas (FUAs). UA data for the reference year 
2006 are available for 305 FUAs with more than 100,000 
inhabitants, while the UA 2012 consists of an update and 
extension of the former to include 697 FUAs with more than 
50,000 inhabitants. The UA 2012 has been partially validated and 
many of its data are now accessible. It is expected to be 

completed by the end of 2016 (Copernicus, 2010). On the other 
hand, the Urban Audit project represents the statistical 
counterpart of the UA cartography (Eurostat, 2015). The National 
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Statistical Institutes (NSI), the Directorate-General for Regional 

and Urban Policy (DG REGIO) and Eurostat provide the 
statistical data, on a voluntary basis, for many European cities 
and FUAs. The Urban Audit project includes a set of variables 
covering several aspects of quality of life (demography, housing, 
health, etc.) on different dates for ease of data comparison. The 
ultimate aim of this initiative is to contribute to improving the 
quality of urban life. These two multi-temporal datasets are 
considered as complementary, and are valuable instruments for 

monitoring urban planning policies across Europe. 
 
Fragmentation is considered to be a powerful instrument to 
quantify the geographical efficiency of the urban expansion 
process. It is a multidimensional term capable of revealing urban 
spatial patterns (Inostroza et al., 2013; Irwin and Bockstael, 
2007), thus enriching understanding of how and where urban 
areas are growing. 
 

In this study, our objectives are: (1) to obtain an exhaustive set of 
urban fragmentation metrics derived from LULC data in two 
dates for a set of European FUAs; (2) to evaluate the relation 
between this set of metrics and socio-economic variables at a 
given date and their evolution at two different dates; and (3) to 
explore the potential of modelling the prediction of simple and 
composite socio-economic variables through multiple regression 
analyses. To this end, we summarised a massive computing of 

fragmentation metrics and statistics and then attempted to explain 
the behaviour of demographic and socio-economic variables by 
modelling them using a reduced set of metrics. 
 
 

2. METHODOLOGY 
 

2.1 Datasets 

 
As noted above, multi-temporal databases of LULC and 
statistical data make the study of urban fragmentation and 
monitoring more attainable. UA and Urban Audit datasets deliver 
data at city and FUA spatial levels on different dates. The FUA 
consists of the city and its commuting zone. In this study, we use 

FUA level data, since the border between urban and rural areas 

is becoming ambiguous, combined with the fact that periurban 
areas are being built faster than cities (EEA, 2013a). Considering 
this level is therefore more suitable for our goals. 
 
The study was conducted for years 2006 and 2012 due to UA 
availability. In this period, some FUAs underwent boundary 
changes. For this reason, we use the UA 2006 revised version 
(from UA 2012 dataset), the boundaries of which have been 

revised and updated. However, these discrepancies need to be 
considered when matching the two datasets, since Urban Audit 
statistical data have not been updated to the new boundaries. 
Thus, depending on the data availability, a convenience survey 
was performed, since data were lacking for some countries and 
variables. Only FUAs with at least 85% of common area on both 
dates and available statistical data were considered. This survey 
was performed using the statistical unit datasets from GISCO 

Figure 1. Location of the 68 selected FUAs according to the 
area coherence restriction imposed (>85% of common area), 

and statistical data available. The countries involved are: 
Bulgaria (BG), Germany (DE), Estonia (EE), Greece (EL), 

Spain (ES), Lithuania (LT), Latvia (LV), Netherlands (NL), 
Romania (RO), Slovenia (SI), Slovakia (SK), and United 

Kingdom (UK). Data source: GISCO - Eurostat (European 
Commission). 

Figure 2. Step-by-step work flow from data collection to 
modelling. (S1) Urban Atlas and Urban Audit datasets are 

obtained from Copernicus and Eurostat databases; then (S2) an 
analysis is conducted to determine functional urban areas 

(FUA) with comparable boundaries and socio-economic data 
(URAU); (S3) using IndiFrag, metrics are computed for 2006 

(FI 2006), 2012 (FI 2012), together with their differences (FIC) 
and multi-temporal indices (MI); (S4) the most correlated 

metrics are filtered out; and (S5) the uncorrelated indices are 
extracted; (S6) URAU variables based on the amount of data 

are selected and their differences are assessed (URAUC); 
finally, (S7) uni-temporal models (URAU 2006 with FI 2006, 

and URAU 2012 with FI 2012), and bi-temporal models 
(URAUC with FIC and MI) are conducted. 
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(Geographical Information System of the Commission). 

Eventually, subject to these restrictions and limitations, the 
analysis was conducted on a sample of sixty-eight European 
FUAs from twelve different countries (Figure 1). 
 
Once the data had been downloaded, the legend was adapted. The 
initial twenty and twenty-seven land uses from UA 2006 and UA 
2012 (Meirich, 2008) were aggregated into the following nine 
classes: residential, which represents urban fabric; commercial, 

also covering industrial areas, public buildings, ports and 
airports; green areas representing urban areas of vegetation; 
leisure areas including sport facilities; roads; barren land 
meaning non-used, construction and mineral sites; and the 
remainder agricultural, forest, and water. 
 

2.2 Land use fragmentation metrics 
 
One-date and two-date urban fragmentation metrics were 

computed by the tool IndiFrag (Sapena and Ruiz, 2015a, 2015b). 
This tool calculates a variety of indices to assess urban 
fragmentation from LULC data in vector format at three 
hierarchical levels: object, class and super-object. In this case, the 
complete set of metrics was applied for each date at FUA (super-
object) and land use (class) levels. Then, the difference between 
the fragmentation indices (FI) of the two dates was obtained, 
henceforth referred to as the fragmentation index change (FIC), 

together with the set of two-date based multi-temporal indices 
(MI) included in IndiFrag, designed to highlight growth patterns. 
We thus produced two types of metrics: uni-temporal and bi-
temporal (Figure 2). 
 
The metrics collection is made up of twenty FI at FUA level, plus 
twenty more for each land use for the referenced years 2006 and 
2012, their respective FIC and, separately, twelve MI for each 

class, plus one at FUA level. We attempted to summarise the 
initial two hundred uni-temporal metrics per date and three 
hundred and nine bi-temporal metrics per each FUA. 
 

2.3 Selection of indices 
 
Two statistical methods were applied to reduce the number of 
indices and the redundant information present in the initial set: 

correlation analysis and principal component analysis. The study 
was restricted to four urban land uses or classes, namely those 
most directly related with socio-economic variables: residential, 
commercial, green areas and leisure.  
 
2.3.1 Correlation analysis: Spearman’s correlations between 
indices were analysed to detect redundant information. This 
statistical analysis has been widely used to discard highly 
correlated variables (Gong et al., 2013; Ren et al., 2013; Schwarz, 

2010). Considering their level and date, one test per group of 
metrics was performed. Metrics with strong correlations were 
examined and only one metric per group of correlated indices was 
used for further analysis. 
 
2.3.2 Principal component analysis (PCA): after the first 
screening, a PCA was applied to reduce the dimensionality of 
data. Factor analysis and PCA are widely used to reduce a 

multitude of metrics to a meaningful subset, but also to create 
new synthetic indices by interpreting each component (Gong et 
al., 2013; Plexida et al., 2014; Schwarz, 2010). This method was 
used to select not only FI, FIC and MI metrics, but also to 
interpret components as new indicators derived from the original 
data. Its interpretation is not straightforward but each component 
represents different fragmentation aspects. By analysing the 
spatial distribution of the loadings of each metric in the space 

defined by the components with eigenvalues greater than one, 
metrics were clustered according to their pairs of component 
loadings (Figure 3), then one metric per cluster was selected. 
 
After the statistical analyses, the selected indices were 

categorised into five semantic groups: area and perimeter, shape, 
aggregation, diversity, and multi-temporal (Table 1). A detailed 
description of these metrics can be found in Sapena and Ruiz 
(2015a, 2015b). 
 

 Label Description Level 

AP 

AREA Area (km2) f, lu 

TM Medium object size (m2)  f, lu 

LPF Gross leapfrog index (%) lu 

DimB Boundary dimension lu 

DU Urban density (%) f 

S 

RMPA Perimeter-area mean ratio f, lu 

IF Shape index f, lu 

DFP Area–weighted mean fractal dimension lu 

A 

Nob Number of objects lu 

GC Degree of coherence lu 

DEM 
Euclidean nearest neighbour mean 
distance (m) 

lu 

DEP Weighted standard distance (m) f 

TEM Effective mesh size (m2) f, lu 

DO Object density (Nob/km2) f,lu 

DimR Radius dimension lu 

D 

DD Density-diversity f, lu 

DSHAN Shannon diversity f 

IFFA 
Absolute functional fragmentation 
index 

f 

MI 

LUC Land use change f 

Ainf Infilling area (km2) lu 

RC 
Change rate or Urban expansion 
intensity (UEI) (%) 

lu 

MEI Mean Expansion Index lu 

Table 1. Selected fragmentation metrics categorised in groups: 
area and perimeter (AP), shape (S), aggregation (A), diversity 
(D), and multi-temporal (MI), and their level of application in 

this study: FUA (f), and land use or class (lu). Further 
description is available in Sapena and Ruiz (2015a, 2015b). 

 

Figure 3. Spatial distribution of the principal component 
loadings of the FI 2006 at FUA level, after the correlation 

analysis. 
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2.4 Socio-economic variables 

 
The socio-economic data were extracted from Urban Audit for 
the years 2006 and 2012. The number of variables collected was 
reduced to those available in at least twenty-five FUAs, in order 
to have enough observations for the statistical analysis. 
Subsequently, to eliminate redundant information, a set of 
variables were selected that were representative of the different 
dimensions covered in the Urban Audit database (Table 2). We 

refer to these variables as URAU. Differences between them 
were calculated to show changes in quality of life variables in the 
studied period, noted as URAU changes (URAUC). 

 

 Label Description 

D 

pop1 Population on the 1st of January 

popurb 
Density in terms of urban surface 

(pop1/Urban km2) 

popresi 
Density in terms of residential surface: (pop1/ 
Residential km2) 

wom Women per 100 men 

wom75 Women per 100 men - aged 75 years and over 

depen Age dependency ratio 

oldepn Old age dependency ratio (65 and over) 

M imrt Infant mortality rate (per 1000 live births) 

LC 

ndwe Number of conventional dwellings 

inc Median disposable annual household income  

pr1h Prop. of 1-person households  

prpen Prop. of lone-pensioner households  

prchild Prop. of households with children aged 0-17 

E 

dcarepop Prop. of children 0-4 in day care or school 

humcap 
Prop. of persons (aged 25-64) with ISCED 
level 5 or 6 as the highest level of education 

L 

act Economically active population 

unem Persons unemployed 

rtunem Unemployment rate 

rtact Activity rate 

T 

jwcar Share of journeys to work by car (%) 

jwpub Share of journeys to work by pub. transp. (%) 

jwfoot Share of journeys to work on foot (%) 

avtime Average time of journey to work (min) 

avlen 
Average length of journey to work by private 
car (km) 

prcar Number of registered cars per 1000 pop 

killac People killed in road accidents  per 10000 pop 

Table 2. Label and description of the final subset of socio-
economic variables (URAU), grouped as: demography (D); 

mortality (M); living conditions (LC); education (E); labour (L); 
and transport (T). Further description in (Eurostat, 2016). 

 

2.5 Modelling socio-economic variables 
 
We performed an exploratory analysis of the prediction of the 
socio-economic variables based on urban land use fragmentation 
indices. Stepwise multiple regression was applied and final 

variable selection was based on the Akaike Information Criterion 
(AIC) and implemented as a script in R statistical software (R 
Team Core, 2015). The AIC balances model complexity, in terms 
of number of predictors included in the equation, with goodness 
of fit, as measured by residual sum of squares (Akaike, 1974). 
 
The regression models based on one date were built for predicting 
socio-economic variables (URAU) from fragmentation metrics 

(FI) as predictors, and they were computed for 2006 and 2012 

independently. In bi-temporal models, differences of each socio-

economic variable on the two dates (URAUC) were used as 
response variables in the prediction models, and the two-date 
based fragmentation metrics (IFC and MI) were used as 
predictors. 
 
 

3. RESULTS 
 

3.1 Index selection 
 
A series of correlation tests were applied to the fragmentation 
metrics to determine collinearity and avoid duplication. An initial 
test was done for each group (FUA and each land use), and the 
most correlated indices were omitted (ρ > 0.9). Then, the 
complete metrics set was tested to detect the main relationships 
between different groups. This process was conducted equally in 
FI 2006, FI 2012 and FIC combined with MI, and it was applied 

as a step prior to the final subset selection. The correlation 
coefficients (ρ) showed that DU is strongly correlated with other 
density-related metrics, such as DO (ρ = 0.91), DD (ρ = 0.95) 
from commercial, and also DB (ρ = 0.96) and DD (ρ = 0.94) from 
residential land use. The same metric between different groups 
had a high correlation in some cases. For instance, residential 
AREA is correlated with commercial (ρ = 0.96), green areas (ρ 
= 0.92) and leisure (ρ = 0.92) AREA, but the highest correlation 

occurred with the DEP index at FUA level with residential (ρ = 
0.96), commercial (ρ = 0.97), green areas (ρ = 0.94) and leisure 
(ρ = 0.98) DEP. As expected, the correlation coefficients of FI 
2006 and 2012 were very close, and the same set of metrics was 
selected for the uni-temporal metrics. After the correlation tests 
sixty-four uni-temporal metrics and eighty-nine bi-temporal 
metrics remained. 
 

PCA were conducted separately on each group, and 4-6 
components per group were retained, with a total of 80% variance 
explained. Metrics were clustered according to their values on the 
component axes; by selecting one metric per cluster we obtained 
two sets of uncorrelated metrics, twenty-five uni-temporal 
metrics for 2006 and 2012, and twenty-two bi-temporal metrics 

Figure 4. Correlation coefficients among the final subset of bi-
temporal metrics after PCA selection, where the sub-index 

refers to each land use: commercial (C), green areas (G), 
leisure (L), and residential (R), and its absence means FUA 
level. Label names are as in Table 1. Metrics with prefix “d” 

correspond to FIC, and the rest to MI. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B8-1029-2016 

 
1032



 

(Figure 4). After the selection process, these indices explained 

different perspectives of urban fragmentation; they were not 
redundant, and were consequently employed as predictors of 
socio-economic variables. 
 
The interpretation of the first four principal components (PC) 
from the FUA group (Table 3) revealed a semantic clustering of 
FUAs according to their spatial configuration. They seem to 
cluster by country, with the exception of the UK (Figure 5). 

 

Cumulative 
σ2 (78%) 

PC1 PC2 PC3 PC4 

35% 21% 13% 9% 

TM* -0.38 0.29 -0.32 0.02 

RMPA* 0.01 -0.25 0.60 0.24 

IF* -0.08 -0.16 -0.37 0.76 

DEP* 0.14 0.58 0.01 -0.07 

TEM -0.30 0.21 -0.07 -0.02 

GC -0.30 -0.30 -0.20 -0.41 

IS 0.34 0.25 -0.12 -0.27 

COHE -0.42 0.23 -0.06 0.09 

DSHAN* 0.40 -0.25 -0.27 -0.09 

IFFA* -0.32 -0.42 -0.15 -0.31 

DD 0.33 -0.09 -0.49 0.07 

Table 3. Results of principal component analysis (PCA) at FUA 
level. The first four components (PC) with eigenvalues higher 

than one are shown, along with partial and cumulative variances 

(σ2) represented. Values in bold correspond to the highest 
loadings of each component. Indices with * are included in the 

final metrics subset 
 
Thus, at FUA level, PC1 mainly represents diversity and 
evenness (DSHAN), but also the size of the objects (inversely 
TM, and COHE). An increase in diversity means a more 
homogeneously distributed land use configuration and therefore 

smaller mean size of objects (a comparable amount of urban 
surface to agricultural or forest surface would significantly 
decrease its mean, due to the reduced size of urban objects). PC2 
describes the aggregation level of the FUA, but it is also 
influenced by size, since high values of DEP are found in large 

FUAs and, conversely, IFFA is lower in large FUAs with a 

greater number of objects. PC3 represents shape and size of the 
objects (RMPA), and as analysed in PC1, it is inversely related 
to diversity (DD). PC4 reveals the complexity shape of the 
objects (IF); the simplest objects are usually related to urban 
elements, while agricultural, forest, and water are more complex 
in shape. 
 
In order to ascertain whether it is feasible to interpret socio-

economic variables through fragmentation metrics, and hence to 
explore its potential, correlation analyses were conducted 
revealing their workability, as shown in Figure 6. 

 

3.2 Exploratory analysis of prediction models 
 
Several models were generated to assess further relationships 

among urban fragmentation metrics and socio-economic 
variables. Table 4 shows those with a coefficient of determination 
(R²) higher than 0.5 (in some cases the adjusted R² might be 
lower). The number of observations ranges from twenty-five to 
sixty-five, depending on the number of FUAs with available data. 
Values with around sixty observations are more robust, as they 
represent data from twelve different countries. 
 

In general, models showed that demographic variables are highly 
associated with area-dependent metrics. For example, pop1 
depends heavily (R2=0.90 and 0.94) on the number of residential 
objects and their size (Nob_R and TM_R), among others. These 
indices express the total amount of residential surface. When 
omitting them from the analysis, to avoid spurious relationships, 
other indices related to distances between objects and diversity 
are included (DEP, DSHAN), reaching an R2 of around 0.75, 

although they are still scale influenced. Population density 
variables (popurb and popresi) are not affected by size indices, 
but instead by shape and configuration indices (RMPA, DEM_C, 
IF, etc.). Fragmentation metrics are not reliable predictors of the 
increase of population by themselves, showing that there may not 
be a straightforward relationship between changes in urban areas 
and population growth. 

Figure 6. Correlation coefficients between the fragmentation 
metrics and the socio-economic variables from 2006. The sub-

index refers to each land use: commercial (C), green areas (G), 
leisure (L), residential (R), and its absence means FUA level. 

Label names are as in Table 1 and Table 2. 

Figure 5. Spatial distribution of FUAs according to the first and 
second principal components (PC1 and PC2). The abscissa axis 
divides FUAs based on diversity and uniformity features. The 

ordinate axis clusters FUAs according to their configuration and 
size. Country codes are as in Figure 1. 
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Dimension Dependent variable T Explanatory variables Ob adjusted R2 

Demography 

pop1 

t1 DSHAN2, Nob_R, TM_R1 65 0.90 
t1 DEP, DSHAN2, DEM_C 65 0.73 
t2 RMPA, DEM_C1, TM_R, Nob_R 65 0.94 
t2 DEP, DSHAN2, TM_C3, DEM_C 65 0.77 

popurb 

t1 RMPA, TM_C, DEM_C, RMPA_G2, IF_L1 65 0.79 

t2 TM, RMPA1, IFFA, TM_C1, DEM_G3 65 0.71 
t12 dDimB_C1, dDEM_G1, RC_C4, RC_R 62 0.47 

popresi 
t1 IF2, IFFA, DEM_C, TM_R 65 0.61 
t2 RMPA, IFFA1, DEM_C 65 0.56 

wom 
t1 DSHAN4, RMPA_G1, DEM_L 62 0.52 
t2 TM_G, DEM_L 65 0.52 

wom75 
t1 RMPA, DO_C3, TM_L1, DEM_L 49 0.59 
t2 DO_C1, DO_G3, DEM_L 64 0.55 
t12 RC_C1, RC_R 46 0.56 

depen t12 dDEM_G, dTEM_R4, Ainf_l4 25 0.66 

Living Conditions 

ndwe 

t1 DSHAN2, Nob_R, TM_R2 58 0.91 

t1 DEP, TM_C1, DO_C 58 0.81 

t2 RMPA3, DEP2, Nob_R, TM_R 54 0.94 

t2 DEP, DEM_C, TM_G2 54 0.77 

phou t12 dAREA_R, RC_R3, RC_G2 28 0.59 

inc 

t1 TM2, IF2, DSHAN1, TM_G3, DO_G 25 0.73 

t2 TM, DSHAN2, DO_G 27 0.71 

t12 TM_L3, RC_R 25 0.65 

pr1h 
t1 DEP2, IF_C1, IF_L3, IF_R 30 0.79 

t2 RMPA, DSHAN, TM_L3, DD_R3 33 0.62 

prpen 
t1 IF_R 28 0.63 

t2 TM_R 33 0.51 

prchild 

t1 TM1, DEM_L 30 0.79 

t2 RMPA, TM_L2, DEM_L 33 0.62 

t12 dTEM, RC_G2 27 0.85 

prnhap 
t1 IF1, DSHAN1, DD_R3 28 0.54 

t2 TM_L3, DEM_L2 27 0.47 

Education 
dcarepop t2 IFFA, IF_L2 53 0.60 

humcap t2 TM_L, TM_R2, DD_R3 29 0.63 

Labour 

act 

t1 DEP1, DEM_C, Nob_R, TM_R2 54 0.92 

t1 DEP, DEM_C 54 0.78 
t2 DSHAN2, Nob_R 31 0.95 

t2 DEP, DSHAN 31 0.85 

rtact t12 dDEM_G, dDimB_L 25 0.75 

unem 

t1 TM_C2, Nob_R 46 0.72 
t1 DEP, DEM_C1 46 0.69 
t2 TM_C1, Nob_R 48 0.82 
t2 DEP, IFFA2, DD_R 48 0.73 

rtunem t12 dDFP_G2, RC_G 30 0.53 

Transport 

jwcar 
t1 DEP2, TM_L2 25 0.55 

t2 DEP2, TM_L2 27 0.48 

jwpub 
t1 TM_L3, Nob_R2 25 0.53 

t2 TM_L3, Nob_R1 27 0.48 

jwfoot 
t1 IFFA1, RMPA_G4 25 0.62 

t2 IFFA, RMPA_G3 27 0.55 

avtime 
t1 TM_C2, IF_G1, TM_L2, Nob_R3 25 0.71 

t2 TM_L3, IS_R1 27 0.45 

avlen 
t1 RMPA_C4, DO_G3, DEM_G1, IF_L2 25 0.60 

t12 dDimB_C, dRMPA_L2, dDEP_R2, RC_C 25 0.82 

prcar 

t1 TM, IF_C 51 0.55 

t2 TM, IF_C2 33 0.69 

t12 dDEM_G, dDEP_R, RC_R 33 0.72 

killac t1 Nob_R3, DO_C2, DO_G2, DEM_L2 48 0.66 

Table 4. List of the regression models between urban fragmentation metrics (explanatory variables) and socio-economic variables 

(dependent variable). Where t1=2006, t2=2012, t12=2006-2012, Ob=number of observations, and significance codes are: 1=0.0001, 
2=0.001, 3=0.01, and 4=0.05. See Tables 1 and 2 for the label descriptions; labels beginning with “d” mean differences. 
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When interpreting living condition models, the observables are 

reduced to twenty-five FUAs in Germany, one in Belgium, one 
in Estonia, and three in Greece, with some variations, with the 
exception of ndwe. Descriptors of ndwe are almost the same as 
pop1 (their ρ = 0.99). However, when their respective differences 
are compared, a much lower correlation (ρ = 0.22) is obtained. 
This confirms the previous interpretation of inequality in urban 
area growth and population change. Otherwise, inc has few 
observables, which might be not robust, but to a certain extent it 

can be explained by the heterogeneity, medium size and density 
of green urban areas (DSHAN, TM, DO_G) in Germany. The 
relationship between median income and urban metrics, 
especially diversity and urban green objects, seems to be robust 
across periods and merits further investigation. It is particularly 
worth exploring whether this relation is due to the high presence 
of German FUAs or whether it holds more generally across 
Europe. In addition, growth of green urban areas (RC_G) seems 
to be related to the number of households with children (prchild). 

 
Labour variable rates are more interesting than absolute values, 
considering than the latter are highly dependent on size and their 
changes are not reflected by fragmentation changes. While the 
models for unemployment do not have an obvious interpretation, 
it is interesting to note that activity seems positively related with 
urban diversity. A similar trend is found with median household 
income, signalling a relationship between urban diversity and 

standards of living. On the other hand, rate changes (rtact and 
rtunem) reveal a positive relationship with green areas and leisure 
facilities. 
 
In relation to transport variables, models are quite robust across 
time, and urban morphology clearly bears some relation with 
commuting transport modes. While public and private transport 
depend, as expected, on object size (TM), distances from the city 

centre (DEP) and residential land (Nob), journeys to work on foot 
clearly depend on urban fragmentation. The relation between 
urban metrics and commuting to work should be further explored 
in future research. Furthermore, avlen tend to change with 
residential and commercial distance from the city centre and 
change in expansion intensity (dDEP_R, RC_C), similar to the 
case of the number of cars (prcar). 
 

Some socio-economic variables had no significant correlation 
with fragmentation indices, and thus they were not analysed; 
examples include mortality and fertility rates, and level of 
education. In addition, some variables are not yet available, but 
they will soon appear in the Urban Audit database, such as basic 
amenity indicators or poverty related variables. This will make it 
more feasible to study standard composite socio-economic 
variables, related to quality of life and human development, using 
different combinations of land use metrics as explanatory 

variables. 
 
 

4. CONCLUSION 
 
The present paper is based on a methodology that allows us to 
compare European FUAs in terms of the spatial distribution of 
the land use classes, their complexity and structural changes, as 

well as to preview and model different growth patterns and socio-
economic indicators. This study may help policymakers with 
sustainable development policies at city level, since urban areas 
expand according to demographic demands and economic 
growth, and this research has revealed their relationship. 
 
A massive computing of one-date and two-date based 
fragmentation metrics in sixty-eight European FUAs was 

summarised into an uncorrelated set by statistical methods. These 

methods were applied intra-group and inter-group, since high 
correlation of the same index between different land uses was 
detected. The PCA was employed as a variable selection method, 
but also to interpret each component, which may be seen as a 
potential method for clustering urban areas. Then, stepwise 
regression models were assessed, providing further explanation 
for the linear relationship between urban land use fragmentation 
metrics and socio-economic variables. Our results show that 

demography, living conditions, labour and transportation 
variables have a straightforward relationship with the 
morphology of FUAs, and also with their evolution at two 
different dates, even in a reduced period of time. When 
comparing absolute values, they might be influenced by size-
related indices. This paper reveals the notable relation between 
morphology and FUA statistics. However, some aspects should 
be further analysed, such as median household income, or 
journeys to work, since there are still many missing values in the 

Urban Audit database. 
 
This study also highlights the potential of remote sensing for 
LULC mapping, and their fragmentation metrics derived for 
modelling socio-economic variables. Thus, the interrelation of 
the Urban Atlas and Urban Audit datasets has been proved to 
have great potential to monitor urban areas across Europe. Future 
research may attempt to improve these models, and create 

standard composite variables related to quality of life and human 
development. 
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