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Abstract 8 

The number of samples used in the calibration dataset affects the quality of the generated predictive models using visible, near 9 

and shortwave infrared (VIS-NIR-SWIR) spectroscopy for soil attributes. Recently, convolutional neural network (CNN) is 10 

regarded as a highly accurate model for predicting soil properties on a large database, however it has not been ascertained yet 11 

how large the sample size should be for CNN model to be effective. This paper aims at providing an estimate of how much 12 

calibration samples are needed to improve the model performance of soil properties predictions with CNN. It is hypothesized 13 

that the larger the amount of data, the more accurate is the CNN model. The performances of two commonly used machine 14 

learning models (Partial least squares regression (PLSR) and Cubist) are compared against the CNN model. A VIS-NIR-SWIR 15 

spectral library from Brazil containing 4251 unique sites, with averages of 2-3 samples per depth (a total of 12,044 samples), 16 

was divided into calibration (3188 sites) and validation (1063 sites) sets. A subset of the calibration dataset was then created 17 

to represent smaller calibration dataset ranging from 125, 300, 500, 1000, 1500, 2000, 2500 and 2700 unique sites, or 18 

equivalent to sample size approximately 350, 840, 1400, 2800, 4200, 5600, 7000, and 7650. All three models (PLSR, Cubist, 19 

and CNN models) were generated for each sample size of the unique sites for the prediction of five different soil properties, 20 

i.e. cation exchange capacity, organic matter, sand, silt and clay content. These calibration subset sampling processes and 21 

modelling were repeated ten times to provide a better representation of the model performances. Similar results were observed 22 

when the performances of both PLSR and Cubist model were compared to the CNN model where the performance of CNN 23 

outweighed the PLSR and Cubist model at sample size of 1500 and 1800 respectively. It can be recommended that deep 24 

learning is most efficient for spectral modelling for sample size above 2000. The accuracy of the PLSR and Cubist model 25 

seemed to reach a plateau above sample size of 4200 and 5000 respectively. A sensitivity analysis was performed on the CNN 26 

model to determine important wavelengths region that affected the predictions of various soil attributes.  27 
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1. Introduction 30 

There has been an increasing demand for a rapid and cost-effective method as an alternative for conventional laboratory soil 31 

analysis. Visible, near and shortwave infrared (VIS-NIR-SWIR) spectroscopy has been proposed to be used as an alternative 32 

tool for soil analysis for the last few decades (Bendor and Banin, 1995;Shepherd and Walsh, 2002;Stenberg et al., 2010). This 33 

method enables simultaneous prediction of various properties and has non-destructive characteristics. 34 

Various machine learning models, such as Partial Least Squares Regression (PLSR), Cubist, random forest and support vector 35 

machines had been utilized to model spectroscopy data. However, the performances of these regression models are dependent 36 

on the pre-processing methods (Rinnan et al., 2009), as well as the size of calibration dataset and its representativeness (Kuang 37 

and Mouazen, 2012;Ng et al., 2018). Different orders and combinations of the pre-processing methods, which are developed 38 

to remove artefact in the spectral signal, will result in different model performances. Furthermore, the pre-processing 39 

techniques developed for a particular dataset might not work for different dataset. Better generalization can be made by training 40 

the model in a larger dataset. However, reduced or plateau performance on the machine learning model was found as the 41 

sample size increased to several thousands (Ng et al., 2018).  42 

Advances in the artificial intelligence, such as deep learning enable the possibility of extracting features from data without 43 

hand-engineered features (LeCun et al., 2015), such as pre-processing. Various deep CNN model (AlexNet, VGGnet, 44 

GoogLeNet, ResNet) had been developed and trained on large volumes of data, which included over 10 million image data 45 

(Krizhevsky et al., 2012;Simonyan and Zisserman, 2014;Szegedy et al., 2015;He et al., 2016). 46 

Although CNN often deals with images as input data, it has recently been successfully applied to vibrational spectroscopy. 47 

Acquarelli et al. (2017) found that the CNN based model outperformed other models (Partial Least Square – Least Discriminant 48 

Analysis, logistic regression and k-nearest neighbour) for the classification of various vibrational spectroscopy data. CNN also 49 

has recently been successfully utilized for regression modelling using spectroscopy data (Cui and Fearn, 2018;Liu et al., 50 

2018;Ng et al., 2019;Padarian et al., 2019a, b). In particular, recent studies (Ng et al., 2019;Padarian et al., 2019a) had shown 51 

that CNN model had the capability to outperform PLSR and Cubist model. However, the CNN model usually requires a large 52 

number of calibration samples. 53 

The question of how much samples are needed for the CNN model to perform better than the machine learning model using 54 

the spectroscopy data has yet to be determined. It is commonly depicted and hypothesized that as more data are available, 55 

CNN will perform better compared to traditional machine learning models which will reach a plateau with an increasing 56 

amount of data (Mahapatra, 2018) (see Figure 1). 57 

Thus, the purpose of this study is to assess the amount of calibration data needed for the CNN model to perform better than 58 

machine learning models. PLSR and Cubist are chosen as the representatives of the regression and machine learning models 59 

which has been commonly used to develop predictive models based on soil spectra data. In addition, to be able to predict soil 60 

properties accurately, we need to understand and interpret how a CNN model can predict soil properties from spectra. The 61 

sensitivity analysis of the VIS-NIR-SWIR region used in the CNN model is performed to uncover the CNN black box. 62 
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2. Materials and Methods 63 

2.1. Dataset and chemical analysis 64 

This dataset comprises of 12,044 soil samples from 4,251 unique sites. The soil samples, collected from several regions of 65 

Brazil, i.e., states of Sao Paulo, Minas Gerais, Goias, and Mato Grosso do Sul. This dataset is part of The Brazilian Soil Spectral 66 

Library and extracted from Terra et al. (2018) and Bellinaso et al. (2010). The soils were derived mostly from basalt (volcanic 67 

rock) and sedimentary ones (sandstone). Each site has up to seven samples measurements from the surface up to 1 m depth. 68 

The measured properties include soil texture (sand, silt, and clay), organic matter (OM) content and cation exchange capacity 69 

(CEC). The soil particle size was quantified by the pipette method as described in Donagema et al. (2011). The method consists 70 

on using a 0.1 M NaOH solution as dispersing agent under high-speed mechanical stirring during 10 min. Then, the sand 71 

fraction was separated by sieving and the clay portion by sedimentation. The silt was quantified based on pre- and post-72 

difference.  Organic carbon (OC) was determined by the Walkley and Black method (Walkley and Black, 1934), in which OC 73 

was oxidised using K2Cr2O7 in a wet environment and then measured by titration with 0.1 M ammonium iron sulphate. After 74 

that, the organic matter (OM) was calculated by multiplying the OC quantified per the Van Bemmelen factor of 1.724. As 75 

described in Donagemma et al. (2011), a 1 M KCl solution was used to extracted aluminium, exchangeable calcium and 76 

magnesium. The atomic absorption spectrophotometry was used to quantify Ca and Mg concentrations. Aluminium 77 

concentration was determined by titrating with 0.025 M NaOH. Potassium and phosphorus contents were extracted using 78 

Mehlich-1 (0.05 M HCl with 0.0125 M H2SO4) solution. The concentration of P was quantified by colorimetry and the K 79 

concentration by flame photometry. Afterwards, CEC was determined as the sum of exchangeable cations. The descriptive 80 

statistics of the soil properties measured are included in Table 1. 81 

2.2. Spectral measurements 82 

The VIS-NIR-SWIR spectra of the soil samples were obtained with FieldSpec3 spectroradiometer (Analytical Spectral 83 

Devices, Boulder, Colorado) with a spectral range of visible to shortwave infrared (350 – 2500 nm) and spectral resolution of 84 

1 nm from 350 to 700 nm, 3 nm from 700 to 1400 nm, and 10 nm from 1400 to 2500 nm. The sensor scanned an area of 85 

approximately 2 cm2, and a light source was provided by two external 50-W halogen lamps. These lamps were positioned at a 86 

distance of 35 cm from the sample (non-collimated rays and a zenithal angle of 30°) with an angle of 90° between them. A 87 

Spectralon (Labsphere Inc., North Sutton, NH) standard white plate was scanned every 20 min during calibration. The samples 88 

were oven dried at 45°C for 48 hours before being ground and sieved ≤ 2 mm. The sample was distributed homogeneously in 89 

petri dishes for spectra measurement. Three replicates (involving a 180° turn of the Petri dish) were obtained for each sample. 90 

Each spectrum was averaged from 100 readings over 10 s.  91 

2.3. Training and validation 92 
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To better represent the soil distribution, we split and subset the data based on sites. The dataset is first randomly split into 75% 93 

calibration (3188 sites) and 25% validation (1063 sites) based on the unique sites. 94 

From the calibration dataset, we created smaller sample sizes ranging from 125, 300, 500, 1000, 1500, 2000, 2500 and 2700 95 

unique sites, which is equivalent to sample size of approximately 350, 840, 1400, 2800, 4200, 5600, 7000, and 7650. Better 96 

representations of model performances were provided by ten replicates of these sizes. Each sampling for the same number of 97 

sites could generate a slightly different number of samples since the number of measurements varied from one site to another. 98 

However, the model performance was evaluated on the common validation dataset using a total of 1063 sites (sample size N 99 

= 3017).  100 

3. Chemometrics model  101 

Prior to the development of machine learning models (PLSR and Cubist), the spectra data were subjected to some pre-102 

processing methods: (i) conversion to absorbance followed by (ii) Savitzky - Golay smoothing filter with window size of 11 103 

and second order polynomial (Savitzky and Golay, 1964), (iii) spectral trimming to discard region that has low signal to noise 104 

ratio (<500 nm and between 2450 – 2500 nm)  and (iv) standard-normal-variate (SNV) transformation (Barnes et al., 1989).  105 

For the deep learning model, the spectra were only normalized with SNV prior to being fed into the model. 106 

3.1. PLSR model 107 

PLSR is one of the most commonly used models with the spectroscopy data. It is a linear chemometric regression model that 108 

projects spectra data into latent variables that explain the variances within the spectra data and the response variables(Wold et 109 

al., 1983). The optimal number of latent variables used in the PLSR regression that resulted in the smallest root mean square 110 

error (RMSE) using the cross-validation approach was used to create the models.  111 

3.2. Cubist model 112 

Cubist is a rule-based data mining model, which is an extension of the M5 model tree by Quinlan (1993). The model creates 113 

one or more rules, in which if the rules are met, a certain linear model can be utilized to predict the target task.  114 

These machine learning models were implemented in the R statistical software (R Core Team, 2019)  using the “pls” package 115 

(Mevik et al., 2018) and "Cubist" package (Kuhn and Quinlan, 2018) for PLSR and Cubist modelling respectively. 116 

3.3. CNN model 117 

The CNN model is composed of three types of layers: convolutional, pooling and fully-connected layer. The convolutional 118 

layer extracts feature from the inputs, the pooling layer reduces the dimensionality of the input feature, and the fully connected 119 

layer connects the outputs from previous layers to the desired target outputs.  120 
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The CNN model utilized in this study is derived from our previous study (Ng et al., 2019), where the spectra data were fed 121 

into the model as a one-dimensional data. The architecture of the CNN model is included in Table 2 and Figure 2 . Some of 122 

the layers within the network are shared to enable simultaneous output predictions. The CNN model was trained with an initial 123 

learning rate of 0.001 and Adam optimizer. The network was trained a batch size of 50, and a maximum epoch of 200. For 124 

model optimization purposes, the calibration data is further divided into 75% train and 25% test set. Dropout, early stopping 125 

and reduced learning rates are used as a regularization technique to prevent network overfitting. Details of the CNN model is 126 

given in Ng et al. (2019) and will not be repeated here. 127 

 128 

The CNN was implemented in Python (v3.5.1; Python Software Foundation, 2017) using Keras library (v2.1.2; Chollet, 2015) 129 

and Tensorflow (v1.4.1; Abadi et al., 2015) backend. 130 

All the model performances are compared in terms of coefficient of determination (R2), and the root mean square error (RMSE) 131 

values based on the validation dataset. 132 

4. Results 133 

4.1. Visualization of the CNN 134 

An attempt to take a look at what the CNN model actually learns is conducted. The reflectance spectrum data was fed into the 135 

first convolutional layer. The filter in the first layer encodes various pre-processing of the input spectra data.  Some of the 136 

filters shown in the first convolution layer looks like the input spectra pattern (filter #3, 4 and 10), and some of them looks like 137 

transformation pattern: absorbance (filter #1, 5, 6, 7, 9, 13 and 16) and derivatives (filter # 2, 8, 11, 12, 14 and 15). The 138 

spectrum becomes smoother when they passed through the second convolutional layer, where some filters only accentuate 139 

certain peaks (Figure 3). Thus, the ability of the convolutional layers to represent various transformation of the spectra make 140 

CNN a robust model that does not require any spectra pre-processing. 141 

4.2. Model performance comparison 142 

The model performances for the validation dataset using the full calibration data (nsite= 3188, N=9027) with all the models are 143 

first presented in Table 3. Among all the properties predicted, the sand and clay content showed the best performance with R2 144 

values greater than 0.75 regardless of the types of model used. This finding is in agreement with the ones from Demattê et al. 145 

(2016), who observed good predictions for sand and clay content.  146 

 147 

Demattê et al. (2016) reported R2 values ranging from 0.51 and 0.86 for sand (0.86), silt (0.51, clay (0.85), organic matter 148 

(0.63) and CEC (0.66) using PLSR model with 4790 out of 7185 samples as calibration samples. The performances of our 149 

PLSR and Cubist model are lower than those reported by Demattê et al. (2016) could probably due to the larger variation of 150 
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the dataset used here. Furthermore, representative sampling using conditioned Latin hypercube sampling was used in selecting 151 

the calibration samples prior to the model development. Nonetheless, the overall CNN model used here still performs better. 152 

4.3. Effect of sample training size: sub-setting the calibration data 153 

A total of eight subset models based on the unique sample sizes were generated. The performance comparison of CNN and 154 

Cubist model based on average R2 values is illustrated in Figure 4. The reported R2 values are the average performance 155 

prediction for all five properties of all ten replicates. The value for sample size 9027 is from a single data random split for 156 

validation of the data. 157 

In general, the PLSR and Cubist model tend to perform better when the sample size is relatively small (<2000). When the 158 

sample size is approximately 1800, there is not much difference in the performances for all models. However, when the sample 159 

size is further increased (>2000), the CNN model starts to show better performance in comparison to both PLSR and Cubist 160 

model. The performance of PLSR and Cubist model reaches plateau at approximately 4000 and 5500 samples respectively, 161 

while the performance of CNN is still increasing, as depicted in the theoretical curve (Figure 1). The slight drop in Cubist’s 162 

performance for sample size 9027 is because there is only one realization of data split (75% of the data).  163 

We further compared the average model performance based on the RMSE ratios of machine learning models against the CNN 164 

model (Figure 5). This comparison was developed using the model performance for each unique property, and the variances 165 

presented was based on ten simulations. If the machine learning model performs better than the CNN model, the RMSE ratios 166 

of a particular machine learning model to CNN model should be less than one.  167 

Based on the RMSE ratios of PLSR against the CNN model, we can observe that PLSR perform better than CNN when the 168 

sample is less than 1400 (Figure 5). Similar performance is achieved when the sample size is approximately 1415. In terms of 169 

RMSE ratios, overall CNN model seems to perform better in comparison to the Cubist model regardless of sample size. 170 

Nonetheless, the model performance for a smaller sample size seems to vary a lot (longer whisker). When the sample size is 171 

approximately 850, both models seem to perform similarly. A portion of the model performs better, while the remaining 172 

perform worse. As the calibration sample size increases, the CNN model performs better in comparison to the Cubist model. 173 

Thus, It can be recommended that deep learning is most efficient for spectral modelling for sample size above 2000. 174 

4.4. Sensitivity analysis: evaluating important wavelengths 175 

To uncover how CNN predicts different soil properties, a sensitivity analysis was conducted to assess the importance of each 176 

wavelength in contributing to predictions. Evaluating the sensitivity of the model can be done in several ways, for example, 177 

Cui and Fearn (2018) calculated the sensitivity of a CNN model for NIR by taking a numerical partial derivative of the output 178 

with respect to each wavelength. For wavelength i, the sensitivity S was calculated as: 179 

𝑆𝑆𝑖𝑖 =
𝑓𝑓(𝑿𝑿1, … ,𝑿𝑿𝑖𝑖 + 𝜀𝜀, … ,𝑿𝑿𝑛𝑛) − 𝑓𝑓(𝑿𝑿) 

𝜀𝜀
 (Eq. 1) 
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where 𝑿𝑿 is the reflectance spectra, and 𝑓𝑓(𝑿𝑿) is the CNN prediction using the spectra, 𝜀𝜀 is a small number. The idea is that if 180 

wavelength i has an important contribution to the prediction, a small perturbation to the reflectance value will create a large 181 

change in the prediction. 182 

In previous study (Ng et al., 2019), we calculated the sensitivity as a function of the variance of the model for each window of 183 

spectra. Here we calculate the sensitivity based on the variance principle as an alternative approach: 184 

𝑆𝑆𝑖𝑖 =
𝑉𝑉𝑉𝑉𝑉𝑉 (𝑓𝑓(𝑿𝑿1, … ,𝑿𝑿𝑖𝑖, … ,𝑿𝑿𝑛𝑛)− 𝑓𝑓(𝑿𝑿�)) 

𝑉𝑉𝑉𝑉𝑉𝑉 (𝒀𝒀)
 (Eq. 2) 

Where 𝑉𝑉𝑉𝑉𝑉𝑉 is the variation calculation, 𝑓𝑓(𝑿𝑿1, … ,𝑿𝑿𝑖𝑖 , … ,𝑿𝑿𝑛𝑛) is the prediction of spectra due to variation in wavelength 𝑖𝑖 with 185 

other wavelengths held constant at their mean values, and 𝑓𝑓(𝑿𝑿�) is the prediction value using the mean values of the spectra 186 

and 𝒀𝒀 is the observed values of the target variable. In essence, we calculated how the model varied in comparison to the 187 

observations as a function of wavelength. 188 

The current sensitivity analysis (Eq. 2) considers the actual variance of the data for a better approximation of wavelengths 189 

sensitivity. To calculate the variance sensitivity, two new data frames were created. The first data frame contains data which 190 

is the average of all the validation spectra data (𝑿𝑿�) and the second contains modified average spectra data ( 𝑿𝑿�𝑖𝑖), in which some 191 

of the average measurements were replaced with the actual spectral reflectance at a wavelength width of 5 nm.   192 

The illustrations of the process of deriving new data frames are included in Figure 6. Both data frames were then fed into the 193 

pre-trained CNN model (𝑓𝑓()). The variance between the average and modified average spectra were then compared to the 194 

actual variance of the target properties as a measure of the model sensitivity (Eq. 2).  195 

The sensitivity analysis of the CNN model in predicting each property is illustrated in Figure 7. Only certain parts of the spectra 196 

are used by the CNN model for prediction, which corresponds to the soil properties and composition. The important 197 

wavelengths for the prediction of CEC are between the regions of 1600 – 2000 nm. This result is similar to the observations 198 

made by Lee et al. (2009) on the surface horizon dataset where 1772 and 1805 nm are important in predicting the CEC. The 199 

presence of high CEC is often linked to the presence of organic matter (OM) and clay content. It is interesting that the same 200 

region is important in predicting organic matter but not clay content.  Aside from the same region used by CEC, wavelengths’ 201 

region between 1100 – 1200 nm are also deemed important by the CNN model for the prediction of OM content. This finding 202 

is slightly different to those reported by Lee et al. (2009) in which the important wavelengths reported are at 1772, 1871, 2069, 203 

2246, 2351 and 2483 nm for the profile dataset and 1871, 2072 and 2177 nm for the surface horizon dataset. It is also worth 204 

noting that the model does not use the visible part of the spectra for prediction. In comparison to the sensitivity of MIR spectra 205 

data  on previous study (Ng et al., 2019), the NIR model’s sensitivity index is much broader, which reflects NIR’s characteristic 206 

broad peak. 207 

Similar wavelength regions are deemed to be important in predicting the soil texture although the importance slightly varied 208 

among the type of texture of interest (sand, silt and clay) at wavelengths between 500 and 1800 nm. The important wavelengths 209 

for the prediction of sand and clay content share a higher similarity in comparison to that of silt content prediction. The most 210 

important wavelength identified is around 850 nm for the prediction of sand and clay content, and around 1100 nm for the 211 
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prediction of silt content. These observations are also different from those reported by Demattê (2002) and Lee et al. (2009) 212 

where the important wavelengths for the prediction of soil texture are at 1800 – 2400 nm. In particular, the soil texture 213 

prediction found in the CNN model is strongly related to hematite and/or goethite, -OH and Al-OH groups from kaolinite 214 

(Viscarra Rossel and Behrens, 2010;Pinheiro et al., 2017;Fang et al., 2018). 215 
 216 

We also compare important wavelengths from the machine learning models against the one from the deep learning model for 217 

the prediction of OM as an example. Common wavelengths found to be related to the organic matter predictions are 1100, 218 

1600, 1700 -1800, 2000, 2200 – 2400 nm (Dalal and Henry, 1986;Stenberg et al., 2010). 219 

The important wavelengths utilized in the PLSR model was derived based on the absolute value of the regression coefficients. 220 

The height of the line indicates the importance of a particular wavelength for determination of organic matter content in the 221 

soil. Important wavelengths identified for the prediction of organic matter were 500 – 700, 1400 and 1715 nm. 222 

The wavelengths used in the Cubist were derived based on model usage (Figure 8). The blue and pink lines represent which 223 

wavelengths are used as predictors and conditions within the Cubist model, respectively. Some of the wavelengths used in the 224 

Cubist model are similar to those observed in the PLSR model, in particular the visible (500 – 700 nm), and shortwave infrared 225 

regions (1400 and 1900 nm). 226 

Important wavelengths derived from the sensitivity analysis based on the CNN model look slightly different to those of PLSR 227 

and Cubist models. Wavelengths around the 1700 nm region is deemed to be the most important, followed by those between 228 

the 1150 nm region. Nonetheless, some of the important regions overlapped. 229 

Although all three methods used different ways to derive important wavelengths, PLSR model tends to use most parts of the 230 

spectra. When irrelevant wavelengths are included in model development, it may reduce the model performance. The Cubist 231 

model seems more selective in terms of wavelengths used, however this example showed that it also used most parts of the 232 

VIS-NIR-SWIR spectra. CNN model used wavelengths between 800-2000 nm, with particular emphasize around 1100 and 233 

1700 nm. 234 

5. Conclusion 235 

In this paper, we assess the effective sample size and identify important wavelengths in predicting various soil properties using 236 

Cubist and CNN model. In general, the CNN method can perform better than the Cubist when the sample size is relatively 237 

large. The number of calibration samples is also affected by the structure of the CNN model. The number of samples reported 238 

in this study might not apply to other CNN models but can serve as a guide on the number of samples needed to create a better 239 

deep learning model. Here, we found that CNN is more accurate than a machine learning model when the number of samples 240 

is above 2000. The more complex and deeper network of a deep learning model, the most likely it will need a larger number 241 

of samples for training. PLSR and Cubist models performed less accurate than the CNN model as sample size increases, and 242 

it seems like they reached a plateau after a sample size of 4000-5000. Meanwhile, the performance of CNN still increases until 243 
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the maximum number of data used in this study (N = 9000). Future studies should explore larger dataset to see the 244 

generalization of the accuracy vs sample size and to explore if the deep learning model ever reached a plateau in accuracy. 245 
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 330 

 331 
Figure 1. Model performance of deep learning vs other machine learning algorithms as a function of number of samples. 332 
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 334 
Figure 2. Architecture of the one-dimensional Convolutional Neural Network (CNN) model. 335 
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 337 

 338 
Figure 3. Visualization of the filters within the convolutional layers within Convolutional Neural Network (CNN) with the visible, 339 
near, and shortwave infrared (VIS-NIR-SWIR) spectra data. 340 
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 342 
Figure 4. Model performances (in terms of average R2 for five soil properties) as a function of sample size using Partial Least Squares 343 
Regression (PLSR), Cubist and Convolutional Neural Network (CNN) model based on ten simulations. The values for the largest 344 
sample size (n=9027) is a single realization 75% of the data. 345 
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 346 
Figure 5. Model performances (in terms of root mean square error (RMSE) ratios of (A) Cubist over Convolutional Neural Network 347 
(CNN) model and (B) Partial Least Squares Regression (PLSR) over CNN as an average of five soil properties) based on various 348 
sample size using ten simulations. The red – dotted line represents a 1:1 RMSE ratio. 349 
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Figure 6. Illustration of sensitivity analysis process: (A) represents the validation spectra data, (B) represents the overall average of 351 
the validation spectra data and (C) represents the modified average of the validation spectra data. 352 

A 
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 353 
Figure 7: Sensitivity analysis of the visible, near and shortwave infrared (VIS-NIR-SWIR) spectra in predicting various soil 354 
properties using the Convolutional Neural Network (CNN) model. The graph depicts sensitivity index (calculated from(Eq. 2)) for 355 
different soil properties as a function of wavelength. 356 

357 

https://doi.org/10.5194/soil-2019-48
Preprint. Discussion started: 17 September 2019
c© Author(s) 2019. CC BY 4.0 License.



18 
 

 358 
Figure 8: Important wavelengths for the prediction of organic matter (OM) content using Partial Least Squares Regression (PLSR), 359 

Cubist and Convolutional Neural Network (CNN) model. 360 
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 362 
 363 
Table 1: Descriptive statistics of the soil properties measurements. 364 

 Sand Silt Clay OM CEC 

 g kg-1 mmolc kg-1 

Minimum 50.0 0.0 5.0 2.0 3.4 

1st Quartile 644.0 31.0 112.0 6.0 22.9 

Median 757.0 57.0 174.7 9.4 32.7 

Mean 703.8 69.7 226.5 11.2 37.7 

3rd Quartile 839.0 93.5 283.3 14.3 46.3 

Maximum 969.0 562.0 840.0 69.0 375.7 

 365 
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Table 2: Architecture of the convolutional neural network. 367 

Type Shared Filter size # Filters Activation 

Convolutional Yes 20 32 ReLU 

Max-pooling Yes 2 - - 

Convolutional Yes 20 64 ReLU 

Max-pooling Yes 5 - - 

Convolutional Yes 20 128 ReLU 

Max-pooling Yes 5 - - 

Convolutional Yes 20 256 ReLU 

Max-pooling Yes 5 - - 

Dropout (0.4) Yes - - - 

Flatten Yes - - - 

Fully-connected No - 100 ReLU 

Dropout (0.2) No - - - 

Fully-connected No - 1 Linear 

*ReLU: rectified linear units 

 368 
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Table 3: Results of model validation for the prediction of various soil attributes using the full calibration dataset. 370 

Model Properties Unit R2 RMSE bias RPIQ 

PLSR  

Sand 

g kg-1 

0.79 91.47 2.74 1.29 
Silt 0.47 41.58 -1.78 0.67 
Clay 0.80 73.01 -0.65 0.87 
OM 0.48 4.98 0.04 0.70 

CEC mmolc kg-1 0.52 16.77 -0.17 0.57 

Cubist 

Sand 

g kg-1 

0.78 89.66 1.28 1.19 
Silt 0.45 38.68 -2.06 0.67 
Clay 0.81 69.65 -0.23 0.92 
OM 0.54 4.83 -0.22 0.70 

CEC mmolc kg-1 0.52 17.03 -0.93 0.59 

CNN 

Sand 

g kg-1 

0.85 77.28 -0.16 1.52 
Silt 0.58 37.09 -1.74 0.75 
Clay 0.86 60.78 -0.53 1.05 
OM 0.69 3.83 -0.11 0.91 

CEC mmolc kg-1 0.68 13.73 -0.76 0.69 
OM = organic matter; CEC = cation exchange capacity 

 371 
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