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 This paper derives a production inventory model over infinite planning horizon with flexible but 
unreliable manufacturing process and the stochastic repair time. Demand is stock dependent and 
during the period of sale it depends on reduction on selling price. Production rate is a function of 
demand and reliability of the production equipment is assumed to be exponentially decreasing 
function of time. Repair time is estimated using uniform probability density function.   The 
objective of the study is to determine the optimal policy for production system, which maximizes 
the total profit subject to some constraints under consideration. The results are discussed with a 
numerical example to illustrate the theory. 
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1. Introduction  

 
Classical economic production inventory model assumes that manufacturing systems are perfectly 
reliable. This assumption, however, does not hold for many real systems. Even the best and the most 
modern production systems face the situation of sudden machine breakdown, and the time taken in the 
repair of machine also sometimes depend on the type of injury occurred.  Reliability of the production 
equipment is a crucial factor for keeping the synchronization in the production system, and may harm 
the organization if the existing uncertainty of the production equipment is not taken into account and is 
planned, accordingly. In this study, the production system is taken as flexible to produce as per the 
demand but is not reliable. The production equipment may breakdown at any random time and the 
repair time is also assumed to be stochastic in nature. During a production run, it may shift from in-
control state to out-of control state, and the production process may have to be stopped at any random 
time. The objective of this study is to determine the expected optimal production run time with a view 
to maximizing the expected profit per unit time. 
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2. Literature Review  
 
The classical production inventory model assumes that manufacturing system is perfectly reliable. Such 
an assumption appears impractical in real system. Researchers, therefore, have been attracted towards 
machine breakdown effects on production inventory problem. The effects of machine breakdown and 
corrective maintenance were studied by Groenevelt et al. (1992). They studied two production control 
policies to deal with stochastic machine breakdowns. The first one assumes that the production of the 
interrupted lot is not resumed after a breakdown. While the second policy considers that the production 
of the interrupted lot will be immediately resumed after the breakdown if the current on-hand inventory 
level is below a certain threshold level. Incorporated preventive maintenance to production inventory 
model was done by Cheung and Hausman (1997). They developed a mathematical model with random 
machine breakdowns and considered preventive maintenance and safety stock. Wang (2004) developed 
an EPQ mathematical model where production shifts from an in-control state to an out-of control state 
with a general shift distribution.   
 
Giri et al. (2005) developed EMQ model with machine failure and general repair time. They proposed a 
model to determine the production rate and production lot size to minimize the expected total cost. Giri 
and Dohi (2005) developed EMQ model with random variables, corrective and preventive repair. They 
proposed solution procedure and computational algorithms to find the optimal production rate and lot 
size. Lin and Gong (2006) developed EPQ model deteriorating inventory model with machine 
breakdown and fix repair time. Chiu et al. (2007) derived an economic production quantity (EPQ) 
model with scrap, rework, and stochastic machine breakdowns, assuming some portion of the defective 
items to be scrapped and the other part to be repairable. Leung (2007) derived a generalized geometric 
programming solution to an EPQ model with flexibility and reliability considerations.  Chakraborty et 
a,. (2008) developed an EPQ model considering production system that may shift from in-control state 
to out-of control state or may breakdown at any random time during a production period. Ferik (2008) 
developed an EPQ model for unreliable manufacturing facility. Similar research for EPQ model with 
imperfect process has been done by Liao et al. (2009). Singh and Singh (2010) worked on supply chain 
model with stochastic lead time under imprecise partially backlogging for expiring items. Widyadana 
and Wee (2011) developed production inventory model with random machine breakdown and 
stochastic repair time. They proved that stochastic repair model tends to have larger optimal cost than 
fixed repair time model.  
 
An increase in the shelf space can influence more customers. In this connection, the observations made 
by Levin et al. (1972) and Silver and Peterson (1985) was worth noting, that the presence of greater 
quantity of the same item tends to attract more customers. The reason behind this fact is a typical 
psychology of the customers. They may have the feeling of obtaining a wide range for selection when a 
large amount is stored/displayed. Gupta and Vrat (1986) developed models for stock dependent 
consumption rate. Mandal and Phaujdar (1989) developed an inventory model for deteriorating items 
and stock dependent consumption rate. Schweitzer and Seidmann (1991) established optimizing 
processing rate for flexible manufacturing systems. Giri and Chaudhuri (1998) developed deterministic 
model of perishable inventory with stock-dependent demand rate and nonlinear holding cost and 
proved that the nonlinear holding cost affected the total average cost. Sana et al. (2006) established a 
production-inventory model for a deteriorating item with trended demand and shortages. Teng and 
Chang (2005) proposed economic production model for deteriorating item with price and stock 
dependent demand. Singh and Jain (2009) worked on reserve money for an EOQ model in an 
inflationary environment under supplier credits. Singh (2010) gave an inventory model for deteriorating 
items with shortages and stock-dependent demand under inflation for two-shops under one 
management. Yadav et al. (2012) developed an inventory model of deteriorating items with stock 
dependent demand using genetic algorithm in fuzzy environment. Dem and Singh (2012) investigated 
an EPQ model for damageable items with multivariate demand and flexible manufacturing. Dem and 
Singh (2013) developed a production model for imperfect production process under volume flexibility. 
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Goyal et al. (2013) explored an inventory system with variable demand as well as production under 
partially backordered shortages. 
 
3.  Assumptions and Notations 
 
The following assumptions and notations are used throughout the model. 
 
3.1. Assumptions 
 
 1. The production rate is a function of demand   , 1P D q    

2. The demand rate   D q   is a function of on hand inventory level in the interval (0, )  and is 

given by   , 0 1, 0D q q q        where   denotes the shape parameter and is a 
measure of responsiveness of the demand to changes in the level of on hand inventory and    
denotes the scale parameter. 

3. After t , the sale starts and demands rate       , 0 1    rD q q ab r  is taken as 
function of stock displayed and reduction on the selling price.  

4. The time horizon of the inventory system is infinite. Only a typical planning schedule of 
expected length ( )E T  is considered, all remaining cycles are identical. 

5. Machine repair time is independent of machine breakdown. 
 

3.2 Notations 
 ( )q t    :  On hand inventory level of products. 
 ( )D q   :  Demand rate,  
           P    :  Production rate   P  D q  where   is a scale parameter,     ,P D q 1  
          K       :  Set up cost 
           S       :  Selling price per item  
            r       :  Reduction (in %) of selling price of products 
           h       : Holding cost per unit of item per unit time  
           1T       : Time when production stops 
           pT      : Time when machine breakdown occurs 
                  :  Time when sale of products starts 
           2T      :  Time when inventory of products vanishes and shortages start to accumulate which 

causes lost sales 
        ( )E T      :   Expected Duration of a production cycle 
       ( )E PC    :  Expected production cost   
       ( )E HC    :  Expected holding cost in the production cycle 
       ( )E SR     :  Expected sales revenues from items in the production cycle 
       ( )E LSC  :  Expected lost sales cost 
       ( )E TAP  :   Expected total profit per unit time from the production cycle 
 
4.  Formulation of model 
 
We consider a system in which the manufacturing process is flexible as long as machine is working 
efficiently and hence can produce as per the demand rate. Generally, reliability of the machine is 
assumed to be an exponentially decreasing function of time and therefore the probability density 
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function for machine breakdown is assumed as   pT
pf T e   . The demand function for the products is 

assumed as stock dependent, which is  D q q       where  denotes the shape parameter and is a 
measure of responsiveness of the demand to changes in the level of on hand inventory and   is the 
deterministic factor.  Many of the organizations decide to sell their goods at reduced prices after 
predestined time, which is normally known as sale period. The demand function during the sale period 
is assumed as function of stock displayed as well as discounted price for items and so  the demand 
function during sale period is assumed as   rq ab ,   0, 1a b  , 0 1,r   where r   is the 
reduction in the selling price, Geometrical description is shown in Fig. 1. 
 

 
 
q(t) 

0 Tp   T2 0 T1   T2 

Fig. 1.  Production system with lost sales.  
                                             
The production cycle begins with zero inventory and starts at 0t  . As time advances, if the machine 
does not breakdown in the production period  10,T   inventory level of products pile up even after 
meeting market demand in the interval 10 t T  , as shown by Eq. (1). Feasibility of this assumption 
implies 1  must be greater than zero. Production is stopped at time 1t T  and the 

inventory level of products decreases due to demand in the interval  1,T    as depicted by Eq (2). The 
sale period starts at t   and the inventory of products further decreases due to demand and reaches 
zero at time 2t T  as shown by Eq.(3). Since the machine has a possibility of breakdown, the machine 
may not work the whole 1T   period. When the machine breakdown occurs, the production period stops 
at pt T  and machine requires repair time. As repair time is also stochastic, production may not always 
be possible and lost sales may occur. 
 
Case I:  When   is less than the cycle length 
dq P D(q)
dt

   ,        (0) 0q  ,                           10 t T   
(1) 

 dq q ,
dt

         1 1 ,q T q T                    1T t    
(2) 

  rdq q ab ,
dt

        2 0,q T                   2t T    (3) 

 
Solving Eq. (1), Eq. (2) and Eq. (3) using appropriate boundary conditions, the inventory levels in 
various intervals are calculated as below 
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 
  1 te 1

q t ,




 




                      10 t T   
(1s) 

    1T tq t e 1 ,


   1T t    (2s) 

    r
2ab T tq t e 1 ,


                      2t T    (3s) 

To find the relation between the variables using the Taylor series expansion of solutions and using 

continuity condition, we have 
 r

1
2 r

ab 1 T
T

ab
  




. 

For the feasibility of practical situation assumed in case I, 2T  must be greater than   which in turn 
implies 1 0T   . Total Inventory in the complete production cycle is calculated as below 
 

        
1 2

r
1 2

1

T T
1 t T t ab T t

0 T

e 1 dt e 1 dt e 1 dt


  



  
  

           

 
 

 
   

 
  11

rTr1 T
1

rr

ab 1 T1 ab e 1e 1
1 abab

  
  

      
 

 

 


         

(4) 

 
If machine breakdown occurs at pt T , then (4) is formulated as below 

 

 
   

 
 

 

 
   

 
 

p
p

11

Tr r1 T
p

p 1rr

Tr r1 T
1

p 1rr

1 ab e 1 ab 1 Te 1 ......If ......T T
1 abab

E(I)

1 ab e 1 ab 1 Te 1 .......If ......T T
1 abab

 

 


  


  





         
  

  
 
 
         

    













 

 Using the machine breakdown probability density function of pT ,   pT
pf T e   , 0pT  , the expected 

inventory is calculated as: 
 

 
p 1

p

p

T T
T

p
T 0

E I e dT






   p

p 1

T
p

T T

E I e dT






   

 

 
   

 
   

pp 1 p
p p

p p 1

TT T r r1 T
p T T

p prr
T 0 T T

1 ab e 1 ab 1 Te 1 e dT E I e dT
1 abab

 
 

 
  

  
 

 

       
 
 

 
 



   
        

    
   

1 1
1 1

1 T TrT T

r r

e 1 1 ab e ee 1 e 1
11 1 ab ab

      
        

                 

 

  
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  
 

1 1 1
Tr T T

1
r 2r

ab 1 e 1 T e 1 e
abab

  

 

          
 



 

 
    

 
 1

1
1

Tr r1 T
1 T

rr

1 ab e 1 ab 1 Te 1 e
1 abab

 



  




       
 
 


 


 

               
 Expected holding cost in complete Production cycle, E (HC) 
 

  

      
   

   
 
   

11
Tr r1 T

2 r r 2

1 ab e 1 ab eeh
1 ( 1 )1 ab ab

       
          

     
   

     

  

   
         

 
 
   

1
r T

2 r r r

ab 11 1 1 e
1 ab ab ab

  
  

                




 

(5) 

Lost sales occur when repair time exceeds 2T . Assuming that machine repair time t is a random variable 
and is uniformly distributed over the interval  0,c .The probability density function f (t) for the repair 

time is given by   
1 , 0

0,

t c
f t c

otherwise

   


      

For feasibility of the practical situation considered in the model, 2T  must be less than c, otherwise there 
will be no lost sales interval as lost sales occur when repair time exceeds 2T . Substituting the uniform 
probability density function of repair time and machine breakdown probability density function, 
expected lost sales cost is obtained as below 
Expected Lost sales cost,  

E (LSC)  
1

p

p 2

T c
T

2 p
T 0 t T

S t T e dtdT
c

  

 

  
 1

p

2rT
p T

pr
0

ab 1 TS c e dT
2c ab

  
  
  
 
 



 

 

 

where
 r

r

ab 1
A c

ab
 

   
(6) 

Next, we calculate production cost as below  
 

1

0

T

pC Pdt =
1

0

( )
T

pC lD q dt =
1( 1) 1

( 1)

l T

p
eC l

l






 
  

 
(7) 

 
When machine breakdown occurs at pt T , then Eq. (7) can be formulated as 

PC= 
1

( 1)

1

( 1)

1

1 .....
( 1)

1 .....
( 1)

pl T

p p

l T

p p

eC l If T T
l

eC l If T T
l















  
     


     

 

 
 

 1 11 1 1 1
T T2 T T T T22

1 1 1
2 2 3 r 2r

A 1 e 2 1 eT e 2T e T eS 2A 1 e
2c abab

     
     

                       

 
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Using the above formulation, expected production cost can be obtained as 
 

( )E PC  =  
1 1

1

( 1) ( 1)

0

1 1
( 1) ( 1)

p pP
p p

p p

T T Tl T l T
T T

p p p p
T T T

e eC l e dT C l e dT
l l

 
    

 

  
 

 

    
       

    

=
1(( 1) ) 1

( 1)

l T

p
eC l

l

 


 

  
   

 
(8) 

 
The expected total inventory cost consists of set up cost, expected holding cost, expected lost sales cost 
and expected production cost. 
 
Expected total cost, ( ) ( ) ( ) ( )   E TC K E HC E LSC E PC                                   (9) 

 
Next we calculate sales revenue in the complete production cycle,  

      
1 2

10

(1 )
T T

r

T

S q dt q dt S r q ab dt




     
   

              
   = 

 

 

  1
11 11

1

TT r eeS
 


 

  
 
 





 

 
If machine break down occurs at pt T , then sales revenues are formulated as  

             

 
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  

 
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Using the probability density function of machine breakdown time pT , the expected sales revenues of 
complete production cycle are obtained as 
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(10) 

 
The expected total replenishment time is the sum of expected production up time period, non 
production period and expected repair time after 2t T . Therefore, Expected total time, E(T) =  2E T   
Expected Repair time 
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Substituting all the values from Eqs. (5-11), the expected total profit, ( ) ( ) ( )E TP E SR E TC   is 
calculated as follows, 
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  Using renewal reward theorem, Expected total average profit, ( )E TAP  

( )E TAP = ( )
( )

E TP
E T

= ( ) ( )
( )

E SR E TC
E T
  (15) 

 
5.   Optimal solution procedure: 
 
Our objective is to determine the expected optimal value of 1T  so that ( )E TAP  is maximized. The 

necessary condition for ( )E TAP  to be maximized is 
1

( ( )) 0d E TAP
dT

  and 
2

2
1

( )d E TAP
dT

<0.  The expected 

total profit per unit time is concave where 20 T c  ,  (see Appendix A, Appendix B and Appendix C 
for detailed calculations). 
  
The optimal value of 1T  has been obtained numerically using Newton Raphson Method. 
 The following solution procedure is used to derive the optimal values of 1T  
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 We find the root of the equation 
1

( ( )) 0d E TAP
dT

  using  C   program of Newton Raphson Method 

using the algorithm as below 

Step 1:     Define  1
1

( ( ))( ) d E TAPf T
dT

    

             Define    
2

'
1 2

1

( ( ))( ) d E TAPf T
dT

  

Step 2:   Choose initial value of  1 0T t  and set values for other parameters. 
Step 3:   Apply do-while loop 

             Find   0
'

0

( )
( )

f tp
f t

   

             Store in 0 0t t p   
              If 0.0002p  , then declare 0t  to be the required root else repeat Step 3. 

                                                                                                                                                                                                                                            
Case II :  When   is greater than the cycle length  
 
When   is greater than the cycle length then there is no sale period and demand remains stock 
dependent, the governing equations take the form:  
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As 1T , a  1 and r 0, in case I, we can have the expected total profit in Case II as ( )E TP  =

( ) ( )E SR E TC  
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Expected total time, E(T) =  2E T    Expected Repair time 
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The expected total profit per unit time is concave where 20 T c  , 
   
6. Numerical example 
 
In this part, we have presented computational results obtained by using C++ program of Newton 
Raphson Method which gives insight about the behavior of expected production cycle time ( )E T  , 
expected optimal run size E(Q) and the expected  total average profit ( )E TAP . The parametric values 
in the models are taken as  
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0.4, 2, 200, 0.2, 25, 10, 20, 5, 3, 0.5, 2ph K C S c a b               
 
Table 1  
Effect of pC  on optimal values of  ( ), ( )E Q E T  and ( )E TAP  

 =1.8 
Cp 9 10 11 12 
T1 2.652 2,444 2.2103 1.931 
E(Q) 53.72 50.262 46.64 42.653 
E(T) 4.679 4.3379 3.9373 3.4305 
E(HC) 281.131 232.846 185.957 139.670 
E(LSC) 305.612 305.375 305.267 303.678 
E(PC) 1706.826 1849.723 1978.426 2087.1456 
E(SR) 3522.820 3514.2084 3496.94 3467.3443 
E(TAP) 241.34 236.581 235.514 243.944 
  
 As pC   increases, the production cost also increases. To balance the high production cost, 

production run time decreases. Consequently, inventory level also decreases and which leads to 
decrease in holding cost.   

  Higher values of pC  leads to lower inventory level. As the demand rate is based on the inventory 
level and sales revenues are based on the demand, therefore, decrease in inventory level decreases 
the sales revenues, which also causes fall in the expected total profit. 

 As pC   increases, expected cycle length, which includes repair time also decreases. It is reasonable 
that decrease in repair time decreases the lost sales cost also. 

 
Table 2   
Effect of h  on optimal values of  ( ), ( )E Q E T  and ( )E TAP  

h  2.5 2 1.5 1 
Cp 1.8142 2.3023 2.5263 2.782 
T1 47.505 57.748 63.161 69.963 

E(T) 3.6193 4.602 5.023 5.485 
E(HC) 223.097 305.534 285.737 240.78 
E(LSC) 277.071 277.992 278.863 282.302 
E(PC) 1321.98 1457.541 1524.323 1604.305 
E(SR) 2597.82 2666.54 2684.62 2692.99 

E(TAP) 214.315 135.83 118.595 103.119 
 
 As h   decreases, the productions run time increases. Rise in production run time raises the 

production cost.   
  Lower values of h  leads to higher production run time. Consequently, there is a rise in the 

inventory level. As the demand rate is based on the inventory level and sales revenues are based on 
the demand, therefore, increase in inventory level increases the sales revenues. Although there is 
rise in the sales revenues but total average profit falls in view of rise in some other costs. 

 As h   decreases, expected cycle length, which includes repair time also increases. It is reasonable 
that increase in repair time increases the lost sales cost also.  

 
Table 3     
Effect of   on optimal values of  ,Q T  and ( )E TAP  

  1.6 1.8 2 
T1 2.609 2.444 2.3023 

E(Q) 43.005 50.262 57.748 
E(T) 4.0601 4.3379 4.602 

E(TAP) 826.639 236.581 135.8304 
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 As   increases, the production runtime decrease, which is very genuine result to expect. Although 
in view of the increase in production rate there is increase in the inventory level. 

 As production rate increases, there is increase in the cycle length. 
 Higher values of    leads to lower expected total average profit. 
 Higher production run time and lower production rate give higher profit. 

 
7.  Conclusion 
 
The model developed above addressed some expected realistic features that usually arose while 
working on the optimal production policy for stochastic models that maximized the expected profit. It 
was very important to take the production system as unreliable as uncertainty was very expected feature 
of a real system. If machine broke down, it was always not certain that it could be repaired in a fixed 
time period. Normally, in the supermarkets the demand was influenced by the stock displayed on their 
shelves. In view of the highly competitive situation in the real business, the production system could 
not afford to be inflexible. Keeping in view all the issues raised, we took the production system 
unreliable and flexible, taking production rate as a function of demand. In addition, we took a machine 
repair time stochastic and derived an optimal production policy for the stochastic model which could 
maximize the expected profit. It was observed that increase in the production rate decreased the 
production run time and decrease in the production rate increased the production run time. Further, it 
was observed that longer production up time and lower production rates provided higher expected 
profits as compared to shorter production uptime and higher production rates in stochastic model. It 
was also observed that the higher production cost per unit decreased the expected profit. Further 
research on the problem could be extended to consider more realistic assumptions into the proposed 
model, for example, imperfect quality of products, reverse manufacturing, trade credit, etc.  
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Appendix A: 

Derivative analysis of expected time function:  
 
For feasibility of the practical situation considered in the model  2T  must be less than c, otherwise there 
will be no lost sales interval as lost sales occur when repair time exceeds 2T . So we consider the 
behavior of   E T  in interval 20 T c        

 
   
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2 2
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Set 1T 0  ,  we have    
2

2 r
1
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dT ab c


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(A1) 

( )E T  is concave  w.r.t. 1T , where 
 r

1

A ab
0 T 


,where A= 

   r r
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              Also 
 r

1

A ab
0 T 


     20 T c   

  Therefore, ( )E T  is concave when 20 T c    
Appendix B:  
 

To prove, 
2

2
1

( )d E TAP
dT

< 0 if 
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2
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<0 where 20 T c    
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Also E(T )>0, E(TP )>0,  

Therefore, in the interval 20 T c  , 
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(B1) 

Appendix C: 

To prove 
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<0 
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