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In multi-unit auctions for a single item, the Vickrey–Clarke–Groves mechanism (VCG) attains 
allocative efficiency but suffers from its computational complexity. Takahashi and Shigeno thus pro-
posed a greedy based approximation algorithm (GBA). In a subject experiment there was truly a dif-
ference in efficiency rate but no significant difference in seller’s revenue between GBA and VCG. It is 
not clear in theory whether each bidder will submit his or her true unit valuations in GBA. We show, 
however, that in a subject experiment there was no significant difference in the number of bids that 
obey “almost” truth-telling between GBA and VCG. As for individual bidding behavior, GBA and 
VCG show a sharp contrast when a human bidder competes against machine bidders; underbidding was 
observed in GBA, while overbidding was observed in VCG. Some results in a numerical experiment 
are also provided prior to reporting those observations.  
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1. Introduction 

In multi-unit auctions for a single item, the Vickrey–Clarke–Groves mechanism 
(VCG) attains allocative efficiency but suffers from its computational complexity. In 
fact, the item allocation problem is known to be NP-hard, and thus it is necessary to 
apply some approximation algorithm to that problem. Kothari et al. [8] considered the item 

 _________________________  
1Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, 

Tokyo, Japan, e-mail address: stakahashi@uec.ac.jp 
2Faculty of Business Sciences, University of Tsukuba, Otsuka Bunkyo, Tokyo, Japan, e-mail address: 

izunaga@gssm.otsuka.tsukuba.ac.jp 
3Graduate School of Business Administration, Keio University, 4-1-1 Hiyoshi Kohoku, Yokohama, 

Kanagawa 223-8526, Japan, e-mail address: naoki50@keio.jp 



 S. TAKAHASHI et al. 96

allocation problem in reverse auctions as a generalized knapsack problem and proposed 
a greedy based 2-approximation algorithm with 2( )O   time, where   is the total sum 
of numbers of bidders’ anchor values. As far as non-reverse auctions are concerned, 
however, their algorithm does not necessarily return a solution the approximation ratio 
of which is not bounded by two. (We can provide such an example upon request.) 
Takahashi and Shigeno [9] thus proposed another greedy based 2-approximation algo-
rithm (GBA) with 2

max( (log ))O n l  time, where maxl  is the maximum number of an-
chor values among those of bidders.4 

In GBA, the highest unit bidder is tentatively given the unit and the other unit bids 
of the tentative winner are updated in the process for determining the final item alloca-
tion. The results of this paper are as follows. In a subject experiment there was truly 
a difference in efficiency rate but no significant difference in seller’s revenue between 
GBA and VCG. It is not clear in theory whether each bidder has an incentive to submit 
his or her true unit valuations5 in GBA. In the subject experiment there was no signifi-
cant difference in the number of bids that obey “almost” truth-telling between GBA and 
VCG. As for individual bidding behaviour, GBA and VCG show a sharp contrast when 
a human bidder competes against machine bidders; underbidding was observed in GBA, 
while overbidding was observed in VCG. Some results in a numerical experiment are 
also provided prior to reporting our main observations. 

In the numerical and subject experiments, it is assumed that for all bidders, each 
unit valuation is drawn independently of the other unit valuations, i.e., in the random 
order. We might alternatively assume that unit valuations are given to each bidder in 
monotone non-increasing order. In a preliminary experiment for VCG conducted prior 
to our main sessions, however, the standard deviation of seller’s revenue observed in 
monotone non-increasing order of unit valuations is much larger than the one observed 
in the random order of those. We thus conducted the experiments with unit valuations 
that were drawn in the random order. 

The rest of this paper is organized as follows. Section 2 introduces the model of 
multi-unit auctions for a single item and describes how GBA and VCG derive alloca-
tions of the item. Section 3 displays the results of a numerical experiment on computa-
tion time and efficiency rate under the assumption of truth-telling bidding. Section 4 
shows our main observations in a subject experiment. Section 5 notes some remarks, 
referring to a preliminary experiment for VCG and other papers related to our results. 

 _________________________  

4Takahashi and Shigeno [9] also developed another 2-approximation algorithm, which is based on 
Dyer’s linear time algorithm [4], and they showed in a numerical experiment that the GBA computed faster 
and approximated better than that alternative algorithm. 

5The unit valuation is called unit-price by Kothari et al. [8]. 
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2. Model 

2.1. The Vickrey–Clarke–Groves (VCG) mechanism  

Consider a multi-unit auction for a single item, where a seller wishes to sell units M 
of a single item and solicits bids from n buyers. Let  1, ...,N n  be the finite set of 
buyers (bidders). In this model, each bidder divides a closed interval [0, ]M  into dis-
continuous ranges, where the discontinuity points of these ranges are called anchor val-
ues. For each bidder ,i N  denote the total number of his or her anchor values by i  and 
his or her anchor values by  | 0, ..., ,k

i id k    where 1k k
i id d   for all k with 1 .ik  

Further, for each bidder ,i N  denote his or her unit bids by  | 1, ..., ,k
i ib k    where k

ib  

is a buyer price in half-open range 1( , ]k k
i id d  for 1, ..., .ik    It is assumed that 0 0id   

and .i
id M  Let .i

i N
   Define bidder i ’s bid function :iB    by  

 
1

0

( , 1, ..., )
( )

0 ( , )

k k k
i i i i

i k
i i

b y d y d k
B y

y d y d

    
 


  (1) 

Figure 1 illustrates an example of the bid function.  

 
Fig. 1. A bid function. The unit bids represent  

the gradients of the bid function 
 and the anchor values stand for its discontinuity points 

For each bidder ,i N  denote the unit valuations of the item by  | 1, ..., .k
i iv k    

Define bidder i ’s valuation function :iV    by 
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1

0

( , 1, ..., )
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0 ( , )

k k k
i i i i

i k
i i

v y d y d k
V y

y d y d

    
 


 (2) 

A vector 1 2( , , , )nx x x x
   that satisfies i

i N
x M



  and 0ix   for any i N  is 

called an allocation, where ix  is the unit of the item assigned to bidder i N  in the 
allocation. This model may be applied to allocation problems also for a divisible good. 
In what follows, however, we confine our attention to the case of an indivisible good. 
Thus, 1 2( , , ..., )nx x xx  is a vector of non-negative integers. An item allocation prob-
lem ( )BAP  is to find allocations that maximize the total amount of bids, which is for-
mulated by 

 

max ( )

( ) s.t.

0 ( )

i i
i N

B i
i N

i

B x

AP x M

x i N







 


  (3) 

Another problem ( )VAP  is formulated in the same way by  

 

max ( )

( ) s.t.

0 ( )

i i
i N

V i
i N

i

V x

AP x M

x i N







 


  (4) 

in order to find efficient allocations that maximize the total amount of valuations. 
The payment scheme is as follows. Denote by *x  an optimal solution of ( )BAP . Let 

jx  be an optimal solution of the following restricted item allocation problem ( ) j
BAP   

with the set of bidders  \ .jN N j   

 

max ( )
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  (5) 
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In the VCG, bidder j ’s payment jp  is determined by  

    *

j j

j
j i i i i

i N i N

p B x B x
 



 

    (6) 

Under this payment scheme, it is the dominant strategy for each bidder to truthfully 
tell his or her unit valuations by bidding. Thus, the optimal solutions of ( )BAP  maxim-
ize the total amount of valuations in ( ) .VAP  We have to, however, compute as many as 
O( n ) times in ( )BAP  to find an optimal solution. It becomes more difficult to compute 
an allocation and payments in realistic time, as the number of either bidders or units of 
the item is larger. We thus need to find faster approximation algorithms to solve the 
item allocation problem. 

2.2. A greedy based approximation algorithm (GBA) 

The GBA proposed by Takahashi and Shigeno [9] uses the slope function 6 
:k

ip   , for any i N  and all k  with 0 ik   . Denote by ( )k
ip y  the gradient 

of bid function iB  between a unit of y  and each anchor value k
id , i.e.,  

 ( ( ) ( ))( )
( )

k
k i i i
i k

i

B d B yp y
d y





 (7) 

 The GBA takes the following process of four steps. 
Step 1. Set 0ix   for any .i N  

Step 2. Find a pair * *( , )i k  such as  *

* *( ) max ( ) | , .k k k
i i i ii i

p x p x i N x d    

If 
*

* *( ) 0,k
i i

p x   then return ,x  otherwise, update 
*

* * .k
i i

x d  

Step 3. If ,i
i N

x M


  go to Step 2. 

Step 4. Make two solutions x̂  and x  by 

*

*

*

( )
ˆ

( )
i

i
jj i

x i i
M x i i



     x  and 
*

*

*

0 ( )
( )i

i

i i
x i i

   
x  

If ˆ( ) ( ),i i i i
i N i N

B x B x
 

    then return ˆ ,x  otherwise, return x . 

 _________________________  
6Since the slope function values only particular anchor values which satisfies ,k

iy d this function 
never has a value of 0/0. 
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The process is initialized in Step 1. In Step 2, GBA finds a pair * *( , )i k  which max-
imizes the slope function. This algorithm employs a priority queue to find such a pair 
in case of ties; the pair with smaller indices is given priority to others. If GBA stops in 
Step 2, i.e., 

*

* *( ) 0,k
i i

p x   no solution can improve the objective value from the current 

solution. The returned solution is thus optimal. GBA iterates Step 2 until .i
i N

x M


  In 

Step 4, GBA makes two solutions x̂  and .x  The residual units 
*

j
j i

M x


  is allocated 

to bidder *i  in ˆ ,x  while no unit is allocated to any bidder
*ij N   in .x  GBA compares 

the objective values of these two solutions and returns the larger one. 
The Ausubel auction [1] also has a similar process of updating the other unit bids 

of the tentative winners, although the updates are made in dynamic ascending-bid auc-
tions. The GBA makes the updates in static auctions, as shown above. This feature of 
GBA reduces computation time when the number of bidders or the total sum of numbers 
of bidders’ anchor values. The GBA finds an approximate solution of ( ) ,BAP  and the 
objective value obtained by the approximate solution is at least a half of the optimal 
objective value in ( ) .BAP  These are formally stated as the following theorem. 

Theorem 1. GBA finds a 2-approximation solution of ( )BAP  in 2
max( (log ))O n l  

time, where max max ii N
l


   [9]. 

The intuition of Theorem 1 on computation time is explained as follows. The num-
ber of iteration in GBA is clearly at most .  If we store  max ( ) |k k

i i i ip x x d  for all 
i N  in a heap, Step 2 can be performed in O( log n ). After Step 2, we need to compute 

 * * * *max ( ) |k k
i i i i

p x x d  for updated * ,i
x  which runs in 2( ).O   The total running time 

of Step 2 is thus bounded by max(log ).O n l  Therefore, the total running time is 
bounded by 2

max( (log )).n lO   
The payment scheme is as follows. Denote by x  an allocation determined by GBA. 

Let jx be an allocation determined by GBA when the set of bidders is restricted to 
 \ .jN N j   In GBA, bidder j ’s payment jp  is determined by  

 ( ) ( )
j j

j
j i i i i

i N i N

p B x B x
 



 

      (8) 

Under this payment scheme, it is not clear in theory whether each bidder will truth-
fully submit his or her unit valuations by bidding in GBA. It is, however, shown later 
that in a subject experiment there was no significant difference in the number of bids 
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that obey “almost” truth-telling between GBA and VCG. The definition of the almost 
truth-telling bidding is noted later in Section 4. 

In this section, we did not explain the intuition of Theorem 1 on approximation 
ratio. Instead, the approximation ratio of GBA against VCG can be confirmed as well 
as the computation time in a numerical experiment, the results of which are shown in 
the next section. 

3. Numerical experiment 

This section displays the results of a numerical experiment which functions as 
a control group against part of the observations in the corresponding subject experiment, 
where bidders are all truth-telling machine bidders. All computations were conducted 
on a personal computer with Core i7 CPU (3.4 GHz) and 16GB memory, and the code 
was written with Python 2.6.5. (The code is available upon request.) We fix n or M for 
instances, varying the values of the other variables. 

For each bidder ,i N  the number of his or her anchor values, ,i  was inde-
pendently drawn from the set of 15 integers  1, ..., 15  with equal probability. Then, for 
any bidder ,i N  anchor values, the number of which is i , were drawn independently 
from the set of integers  1, ..., M  with equal probability, arranged in ascending order, 

and indexed from 0 to i , to construct  | 0, ...,k
i id k  

7
. As is mentioned in Sec-

tion 1, for any bidder ,i N  each unit valuation k
iv  is independently drawn from the set 

of 100 integers  1, ..., 100  with equal probability. Both in GBA and in VCG, truth-
telling bidders were assumed. 

We conducted this numerical experiment by using dynamic programming. Consider 
an arbitrary ordering on n bidders. For the first k  bidders and m  units with 0 ,m M   
define  

 
1 1

[ , ] : max ( ) | , 0, (1 ) , ( , 0 )
k k

j j j j
j j

T k m V x x m x j k k N m M
 

 
        

 
   (9) 

The following recurrence relation describes how to solve problem (9) with dynamic 
programming. 

 _________________________  
7There was no case of a tie observed in this numerical experiment. The description of a tie-break rule 

has been thus omitted. 
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Table 1. Averages of computation time  
and approximation ratio in GBA against VCG 

Instance 
Computation time [s] Approximation 

 ratio 

GBA EXACT GBA/EXACT 
(50, 50) 0.00227 0.10300 0.727 

(50, 100) 0.00201 0.38864 0.736 
(50, 150) 0.00190 0.83885 0.623 
(50, 200) 0.00217 1.52568 0.723 
(50, 250) 0.00202 2.36149 0.633 
(50, 300) 0.00222 3.40518 0.775 
(50, 350) 0.00215 4.70473 0.815 
(50, 400) 0.00203 5.91917 0.874 

Each instance is represented by the numbers of bidders and units, i.e., (n, M), where n = 50. VCG is noted 
as EXACT. As the number of units of the item increases, the computation time in VCG increases, whereas 
GBA suppresses the increase in computation time. The expected value of the upper bound of computation 
time in GBA, 2

max( (log )),O n l  is kept intact, because n, the expected value of i
i N

   and the 

expected value of maxl  are not changed. 

Table 2. Averages of computation time  
and approximation ratio in GBA against VCG 

Instance 
Computation time [s] Approximation ratio 

GBA EXACT GBA/EXACT 
(10, 200) 0.00119 0.70154 0.915 
(50, 200) 0.00409 3.44612 0.804 
(100, 200) 0.00768 6.81375 0.837 
(200, 200) 0.01440 13.54417 0.700 
(400, 200) 0.02869 27.49757 0.715 
(800, 200) 0.05754 55.84550 0.760 

(1000, 200) 0.06933 69.44206 0.760 
(5000, 200) 0.34113 348.4999 0.753 
(10000, 200) 0.72498 698.56540 0.622 

Each instance is represented by the numbers of bidders and units, i.e., ( , ),n M where M = 200. VCG 
is noted as EXACT. As the number of bidders, n, increases, the upper bound of computation time, 

2
max( (log )),O n l  is expected to go up in GBA, because the expected value of i

i N

   increases, 

although lmax is always equal to or lower than 15. Even in that case, however, GBA completes the compu-
tation much faster than VCG. 
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 [0, ] 0, (0 )T m m M    (10) 

  
1

[ 1, ]
[ , ] max , ( , 0 )max [ 1, ] ( )kz m

T k m
T k m k N m MT k m z V z

 

          
 (11) 

The optimal objective value of ( )VAP  can be obtained by 

 
0
max{ [ , ]}

m M
T n m

 
 (12) 

 
Fig. 2. Number of units of the item and computation time; 

50n  , VCG is noted as EXACT 

 
Fig. 3. Number of bidders and computation time;  

M = 200, VCG is noted as EXACT 
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Let 50n  or 200M  . Tables 1 and 2 show the averages of computation time and 
approximation ratio in GBA against VCG, where the approximation ratio is defined by  

 approximate value of ( )
optimal value of ( )

V

V

AP
AP

 (13) 

which actually measures the efficiency rate of GBA against VCG. In Tables 1 and 2, 
VCG is denoted as EXACT in order to indicate that the optimal values are used there. 
In subject experiments, human bidders do not necessarily behave in such a way that the 
optimal values of ( )VAP  are derived even in VCG. Figures 2 and 3 depict the average 
computation time which correspond to the instances listed in Tables 1 and 2, respec-
tively. 

Table 1 shows that as the number of units of the item increases, the computation 
time in VCG remarkably increases, whereas the increase in computation time is sup-
pressed in GBA. When the number of bidders, n , does not change, the expected values 
of ii N

   and maxl  also do not change, respectively. The expected value of the up-

per bound of computation time in GBA, O( 2
max(log )n l ), is then kept intact, as far 

as n  is fixed. As the number of bidders, n , increases, the upper bound of computation 
time, O( 2

max(log )n l ), is expected to go up in GBA, because the expected value of 

ii N
   increases, although max 15l   always. Even in this case, Table 2 shows that 

GBA finds the solution of ( )BAP  much faster than VCG. 
Note that the approximation ratios shown in Tables 1 and 2 are bounded by 0.62 

and 0.92. As is mentioned above, those ratios actually measure efficiency rates of GBA 
against VCG. In the next section, we show that the average rates of efficiency in GBA 
observed in the subject experiment were more than 0.93, although there was truly a dif-
ference between GBA and VCG. We also show, however, that there was no significant 
difference in seller’s revenue between GBA and VCG. The rate of efficiency is defined 
with the observed value and the optimal value (EXACT) both in GBA and in VCG. 

4. Subject experiment 

Unlike truth-telling machine bidders in the numerical experiment (Section 3), hu-
man bidders might not necessarily report their true unit valuations of the item even in 
VCG. It may be too complicated for the subjects to understand how VCG works. Even 
in that case, the VCG mechanism may achieve the higher efficiency due to its algorith-
mic feature, when bidders take on the behaviour of almost truth-telling. Then, what 
would be the efficiency and seller’s revenue in GBA? 
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In this section, the rates of efficiency and seller’s revenue are defined as the observed 
value of ( )VAP  against the optimal value of ( )VAP  and the observed total amount of pay-
ments against the optimal total amount of payments, where optimal values are computed 
with truth-telling machine bidders in VCG. 

4.1. Experimental design 

In the experiment, 5 units of an item are auctioned off to 3 bidders, where the item 
is a virtual object, i.e., 3n   and 5.M   Each session consists of 20 rounds in total, 
and 2 sessions are paired; In a session GBA is applied in the first 10 rounds and VCG 
is applied in the second 10 rounds, and the order of GBA and VCG is reversed in another 
session. Every subject thus bids in both treatments, although he or she is assigned to 
only one session. (In analysis, the data should be merged in order to cancel the effect of 
the order of treatments on the results.) We will explain how subjects were recruited and 
assigned to a session later at the beginning of Subsection 4.2. Below are the contents 
described in the instruction of this experiment. 

For every bidder i, the number of anchor values is set as 5,i   and thus his or her 
anchor values are 0 0,id   1 1id  , ..., 5 5.id   As is mentioned in Section 1, for each 
 bidder i  and for each unit of the item, his or her unit valuation for k  units of the item, 

k
iv  ( 1, ..., 5),k   is independently and uniformly distributed over integers between 1 

and 200. At the beginning of each round, each bidder i  is given his or her unit valua-
tions  | 0, ...,k

i iv k    by a computer, which are his or her private information. (The 

reasons why each unit valuation was randomly drawn independently of the others will 
be explained in Section 5.) Each bidder i  submits his or her unit bids 
 | 1, ..., .k

i iB k   When k  units of the item are allocated to bidder i, he or she receives 

the points that amounts k
iv k  minus his or her payment. 

In each round, there is a 120-second time limit for submitting unit bids. If none of 
three bidders bids within the time limit, every bidder of those three then obtains zero 
point for that round. The units assigned to a bidder and his or her payment are shown to 
the bidder in 5 seconds at the end of each round. The cumulative points of bidders are 
not shown to them. It is thus prohibited for subjects to take notes throughout the session. 

Subjects are informed that they will be paid according to the total points they obtain 
in 6 rounds (3 from the first 10 rounds and 3 from the subsequent 10 rounds) randomly 
selected by a computer at the end of each session, with the pre-determined exchange 
rate in addition to the show-up fee. In this experiment, the exchange rate was 1 point = 
1 JPY and the show-up fee was 1500 JPY. 
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At the beginning of each session, GBA (or VCG) is applied in the first 10 rounds 
with the general instruction. There is an intermission after the first 10 rounds, and then 
VCG (or GBA) applied in the second 10 rounds is explained. Before proceeding to the 
experiment, subjects play 1 round for practice to familiarize themselves with the soft-
ware. 

4.2. Results 

A computerized laboratory experiment was conducted at the University of Tsukuba 
in Japan. We developed a software which uses Python CGI for the experiment. We had 
4 sessions in February 2014 and 4 sessions in January 2016. Each session conducted in 
2016 involved 8 groups of 3 subjects. At the beginning of each round, all subjects were 
randomly re-grouped into 8 groups by a computer. Subjects were informed of the fact 
that their two opponents were human bidders but were not informed of who were in the 
same group. Each session conducted in 2014 involved 8 groups of 1 subject as a human 
bidder and 2 machine bidders who were programmed as truth-telling bidders. Subjects 
were informed of the fact that their two opponents were machine bidders who obeyed 
a theory but were not informed of what theory was applied. At the beginning of each 
session, each subject was randomly assigned to one of the 8 groups by a computer. This 
assignment was fixed throughout that session, but this information was not revealed to 
the subjects. 

Table 3. Features of the experimental sessions 

Session 
No. 

Machine
bidders 

Show-up fee
(JPY) 

Point-to- 
-JPY ratio

# of 
subjects

Session 
date 

Average point 
per subject 

1 

yes 

1500 1.0 

8 February13, 2014 513.75 
2 8 609.63 
3 8 February14, 2014 295.38 
4 8 169.29 
5 

no 

24 January 30, 2016 510.42 
6 24 641.04 
7 24 January 31, 2016 284.75 
8 24 583.71 

 
Subjects were recruited from all over the campus, and undergraduate students 

whose major was engineering were most populous among them. Once a subject partic-
ipated in a session, he or she was prohibited to participate in any other sessions for this 
experiment. Upon arrival, they were provided with a written instruction, and then the 
experimenter read it aloud. (The instruction is available upon request. A part of the in-
struction is provided in the Appendix, where GBA and VCG are explained with exam-
ples for two bidders.) Subjects could ask questions regarding the instruction by raising 



An approximation algorithm for multi-unit auctions 107

their hand and the experimenter gave the answers to those questions privately. Any 
communication among subjects was strictly prohibited. Thus, their interactions were 
only through the information they enter in their computer screens. Each session lasted 
about 100 min including the instruction. There was no observation of bidding made after 
the time limit. Features of the experimental sessions are summarized in Table 3. 

In Table 3, there were some outliers of unit bids in sessions 3, 4, and 7, which were 
extraordinarily higher than the corresponding unit valuation. Thus, the average points 
per subject were lower than those in the other sessions. We dropped extreme outliers in 
our regression analysis of subjects’ bidding behaviour, the result of which is shown later 
in this section. The rate of efficiency in GBA (or in VCG) are defined by  

 observed value of ( )
optimal value of ( )

V

V

AP
AP

 (14) 

where the observed value of ( )VAP  is calculated with an allocation x observed when 
GBA (or VCG) is applied. The rate of the seller’s revenue (profit) in GBA (or in VCG) 
is defined by  

 observed total amount of payments
optimal total amount of payments

 (15) 

The optimal total amount of payments is represented by ,j
j N

p

  where jp  is calcu-

lated for each j N  according to (6). Our main observation is then stated as follows. 

Observation 1. In the subject experiment, there was a difference in efficiency rate 
but no significant difference in seller’s revenue between GBA and VCG. 

Tables 4 and 5 show the average rates of efficiency and seller’s revenue (profit) 
observed in 2014 and 2016, respectively. Every subject bids in both GBA and VCG, 
although he or she is assigned to only one session. In analysis, the data should thus be 
merged in order to cancel the effect of the order of treatments on the results. We ana-
lysed the data taken from the last 5 rounds in each treatment, because we allowed sub-
jects the opportunity to learn better bidding behaviour in GBA and VCG. Each treatment 
had 4 sessions, and there were 8 groups in each session, and thus the sample size is 160 
for each treatment. 

The p-values for the two-sided permutation test (perm) are reported under each 
panel that corresponds to the rates of efficiency and seller’s revenue, respectively. The 
null hypotheses on the rates of efficiency were rejected at the 5% significance level with 
both data taken in 2014 and in 2016; the p-value is 0.0068 for the sessions conducted in 
2014 and it is 0.0001 for the sessions conducted in 2016. The null hypotheses on the 
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rates of seller’s revenue, however, could not be rejected at the 5% significance level 
with both data taken in 2014 and in 2016; the p-value is 0.1703 for the sessions con-
ducted in 2016 and it is 0.8471 for the sessions conducted in 20168. 

Table 4. Average rates of efficiency  
and seller’s revenue (profit) in 2014 

Parameter 
Efficiency Profit 

GBA VCG GBA VCG 
Mean 0.9341 0.9626 1.0069 0.9828
St. dev. 0.0277 0.0345 0.0651 0.0402
p-Value (perm) 0.0068 0.1703

Table 5. Average rates of efficiency  
and seller’s revenue (profit) in 2016 

Parameter 
Efficiency Profit 

GBA VCG GBA VCG 
Mean 0.9365 0.9737 0.9037 0.8978
St. dev. 0.0302 0.0220 0.0993 0.0775
p-Value (perm) 0.0001 0.8471

 
As noted at the end of Subsection 2.1, the VCG mechanism, in theory, induces al-

locative efficiency by providing every bidder with an incentive to submit his or her 
valuations truthfully for each unit (i.e., truth-telling is a dominant strategy). The rates 
of efficiency shown in Tables 4 and 5, however, both suggest that human bidders should 
not necessarily report their true unit valuations of the item in VCG as well. Even in that 
case, the VCG mechanism could achieve high efficiency due to its algorithmic feature, 
when bidders would take on the behaviour of almost truth-telling.  

On the other hand, the results of numerical experiment shown in Section 3 indicate 
that even under the assumption of truth-telling bidding, GBA should be inferior to VCG 
in terms of the efficiency rate measured by (15), because the approximation ratios were 
0.622 to 0.915. If, between GBA and VCG, there is no significant difference in the 
number of almost truth-telling bids but there is clear difference in the number of almost 
efficiency, then we can infer that truth-telling does not deserve an essential factor that 
brings high efficiency.  

 _________________________  
8There was no significant difference in the rates of seller’s revenue between GBA and VCG, even if the 

data are analysed in each session. As for the rate of efficiency, there was a significant difference between 
two algorithms only when VCG was applied first. 
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Thus, in order to confirm those feature of GBA and VCG in subject experiment, we 
counted the number of unit bids that satisfy  

 
unit value unit bid

0.05
unit value


  (16) 

and the number of efficiency rates each of which satisfies the efficiency rate 0.95.  
We say that a unit bid obeys 95% truth-telling when it satisfies (16) and that an 

auction outcome is 95% efficient when the rate of efficiency not lower than 0.95. The 
next observation is confirmed in Table 6. 

Table 6. Numbers of 95% truth-telling bidding  
and in 95% efficiency 

Parameter 
Truth-telling Efficiency 

GBA VCG GBA VCG 
Sessions 1–2 996 (196) 964 (164) 57 71
p-Value (Fisher) 0.1019 0.0095

sessions 3–4 963 (163) 975 (175) 48 68
p-Value (Fisher) 0.5690 0.0007

sessions 5–6 498 527 57 69
p-Value (Fisher) 0.2318 0.0325

sessions 7–8 444 426 52 70
p-Value (Fisher) 0.4704 0.0014

 
Observation 2. In the subject experiment, there was no significant difference in the 

number of bids that obey 95% truth-telling between GBA and VCG, whereas there was 
clear difference in the number of 95% efficiency between GBA and VCG. 

Table 6 shows the numbers of 95% truth-telling unit bids and 95% efficiency ob-
served in each pair of 2 sessions. The sample size is 1200 for 95% truth-telling unit bids 
and it is 80 for 95% efficiency. The sample size of human subjects’ bids is 400 in each 
pair of sessions 1–2 and sessions 3–4. As noted, we would like to confirm here whether 
the VCG mechanism achieves high efficiency, when bidders take on the behaviour of 
95% truth-telling. Thus, we took 800 truth-telling unit bids into account. (The numbers 
of human subjects’ truth-telling unit bids are noted in the parentheses.) 

The p-values for the two-sided Fisher exact test (Fisher) are reported under each 
panel that corresponds to truth-telling and efficiency. The null hypotheses on 95% truth- 
-telling could not be rejected at the 5% significance level with both data taken in 2014 
and in 2016. The null hypotheses on 95% efficiency were rejected at the 5% significance 
level with both data taken in 2014 and in 2016. Therefore, Observation 2 is consistent 
with the result in the numerical experiment. 
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Observation 2 also says that in the subject experiment there was no significant dif-
ference in the number of bids that obey “almost” truth-telling between GBA and VCG, 
although it is not clear in theory that bidders will truthfully tell their unit valuations by 
bidding in GBA. 

Finally, we report the regression results on the subjects’ bidding behaviour. For each 
bidder, each unit valuation is drawn independently of the other unit valuations. We thus 
analyse the data unit by unit. If the absolute value of a unit valuation minus a unit bid 
falls within the top 5% of all those absolute values, we then dropped the data as an 
outlier for our regression analysis. Tables 7 and 8 show the regression results with the 
data taken in 2014 and 2016, respectively. 

  
Fig. 4. GBA in 2014 Fig. 5. VCG in 2014 

  
Fig. 6. GBA in 2016 Fig. 7. VCG in 2016 
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The p-values for the two-sided t-test and coefficients of determination (R-squared) 
are also reported corresponding to the estimated coefficients of constants (constant) and 
unit valuations (valuation). Figures 4–7 depict unit valuations and unit bids observed in 
2014 and 2016, respectively. The coefficients on valuations were less than one and they 
are statistically significant, except in the session for VCG conducted in 2014. 

Table 7. Results of regression analysis for 2014 

Parameter GBA 
# of units 1 2 3 4 5 
Constant –2.5966 –3.2360 –0.3177 –1.8116 –2.0598
p-Value 0.0370 0.0210 0.7930 0.0790 0.0140
Valuation 0.9832 0.9850 0.9500 0.9850 0.9982
p-Value <0:0001 <0:0001 <0:0001 <0:0001 <0:0001
R-squared 0.9140 0.8980 0.9050 0.9350 0.9590
Parameter VCG 
# of units 1 2 3 4 5
Constant –1.6190 –1.0880 –1.1676 –0.9239 –0.3216
p-Value 0.0270 0.0450 0.0190 0.1440 0.7950
Valuation 1.0029 1.0069 1.0114 1.0085 1.0233
p-Value <0:0001 <0:0001 <0:0001 <0:0001 <0:0001
R-squared 0.9660 0.9800 0.9840 0.9710 0.9030

Table 8. Results of regression analysis for 2016 

Parameter GBA 
# of units 1 2 3 4 5
Constant –1.1523 –3.6660 –2.8788 –4.0178 –6.9879
p-Value 0.6980 0.1620 0.3110 0.1490 0.0000
Valuation 0.8618 0.9063 0.8848 0.9154 0.9761
p-Value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
R-squared 0.7060 0.7720 0.7220 0.7580 0.8700
Parameter VCG 
# of units 1 2 3 4 5
Constant 0.7320 –6.3762 –6.5492 –5.3207 –6.4748
p-Value 0.8420 0.0440 0.0400 0.0960 0.0050
Valuation 0.7857 0.9030 0.9219 0.9173 0.9693
p-Value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
R-squared 0.5590 0.6940 0.7130 0.7060 0.8170

 
In Table 8, the estimated coefficients of valuations are all smaller than 1, which 

implies underbidding both in GBA and VCG. In Table 7, however, the estimated coef-
ficients of valuations are all larger than 1 in the case of VCG, which implies overbidding 
in the environment where human subjects bid against truth-telling machine bidders. 
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Observation 3. In the subject experiment, subjects would underbid, except in the 
sessions for VCG in which human bidders bid against truth-telling machine bidders. 
Subjects would overbid under VCG, when human bidders compete with truth-telling 
machines. 

There is little literature on experiments for VCG, and thus we have not yet found 
the essential fact that induces subjects to overbid when human bidders compete with 
machine bidders. As for individual bidding behaviour, GBA and VCG show a sharp 
contrast when a human bidder competes against machine bidders; underbidding was 
observed in GBA, while overbidding was observed in VCG. 

5. Final remarks 

There is little literature on subject experiments which investigated how approxima-
tion algorithms of the VCG mechanism work in the multi-unit non-reverse auctions to 
which Kothari et al. [8] referred. To begin with, the experimental results on how VCG 
works themselves are still rare. Kagel and Levin [5], for instance, studied subjects’ bid-
ding behaviour in multi-unit auctions, but they imposed a uniform price on all units of 
the item9. We thus carefully prepared for the experimental design. It was assumed that 
for all bidders, each unit valuation is drawn independently of the other unit valuations. 
As mentioned in Section 1, we found that it was better for us to do so from a result of 
a preliminary experiment. 

The preliminary experiment was conducted also at the University of Tsukuba. We 
had 4 sessions on February 13 and 14 in 2015. Each session consisted of 20 rounds in 
total, and 2 sessions were paired; in a session unit valuations were randomly drawn 
independently of the other units in the first 10 rounds and they were aligned for five 
units in the monotone non-increasing order (descending order in case of no tie in unit 
valuations) after independent random draws in the second 10 rounds, while the order of 
those displays was reversed in another session. The other part of the experimental design 
was completely the same as the one described in this paper. In the data taken from last 
5 rounds in each treatment, the average rate of seller’s revenue was 0.977 with standard 
deviation of 0.0132 when unit valuations were drawn in the random order, whereas it 
was 1.0564 with standard deviation of 0.258 when they were drawn in the monotone 
non-increasing order. Truly, the average rate of seller’s revenue was slightly higher 
when unit valuations were aligned in the monotone non-increasing order after independ-
ent random draws, but the standard deviation was remarkably higher than that in the 
case of random draws. The credibility of the experimental observations depends on low 

 _________________________  
9Kagel and Levin [7] presented a comprehensive survey of experimental results in various auctions 

and mechanisms. Dobzinski and Nisan [3] showed the latest theory in multi-unit auctions. 
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standard error of the results. We thus in this time chose an experimental environment 
where each unit valuation is drawn independently of the other unit valuations. 

 At the end, we will leave two remarks for future investigation. Chen and 
Takeuchi [2] reported underbidding in VCG, although they studied combinatorial auc-
tions. Kagel et al. [6] conducted an experiment in which a human bidder with at demand 
for two units competes against machine bidders each demanding a single unit, and they 
reported overbidding of each human bidder for both units. It is interesting that observa-
tion 3 is similar to these results, although the direct comparison to them is not appropri-
ate. The other remark is on observation 2; not only in VCG but also even in GBA, the 
number of 95% truth-telling unit bids in the environment of a human bidder and two 
machine bidders is about twice as many as the one in the environment of all human 
bidders, although it is not clear in theory whether each bidder has an incentive to submit 
his or her true unit valuations in GBA. Thus, it is an open question to identify some 
reason why subjects learned such a bidding behaviour. 
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Appendix. Examples in the instruction 

In the instruction, we explained GBA and VCG with the following examples. Sub-
jects were announced that three units of an object were available in those examples, 
although they were asked to bit for five units in the sessions. 

GBA. Allocation problem 
Item allocation problem: 5 steps in total. Unit valuations and bids are given as below. 
1. Find the highest unit bid. Give “tentatively” the unit to the highest unit bidder. In 

the example shown in Table 1A, the highest unit bid is 75 cast by bidder 1 for 1 unit. 

Table 1A. GBA 

1 2 3

Bidder 1 valuation 80×1 60×2 55×3
bid 75×1 55×2 40×3

Bidder 2 valuation 40×1 70×2 65×3
bid 40×1 63×2 65×3
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2. Update the other unit bids of the highest unit bidder in the following way. 

 updated unit bid for 2 units 55 2 75 1 35,
2 1

  
 


 

 updated unit bid for 3 units 40 3 75 1 22.5.
3 1

  
 


  

As for 1 unit, according to this update formula, the numerator is zero (75×1 – 75×1) 
but the denominator is also zero (1 – 1). The GBA thus leaves it blank for updated unit 
bid for 1 unit. (See Table 2A.) 

3. Find the highest (updated) unit bid. Give tentatively the corresponding unit to the 
highest (updated) unit bidder. This bidder is also called a “tentative winner”. 

4. If all units are just assigned, the assignment is then implemented. If some units 
are not assigned, go to step 2. If the number of units is less than the sum of assigned 
units (there is the “excess demand”), then go to step 5. 

The highest (updated) unit bid is 65 cast by bidder 2 for 3 units. In the first round, 
bidder 1 was assigned 1 unit as a tentative winner, and thus there is the excess demand. 
Thus, go to step 5. 

Table 2A. Bidder 1’s updated unit bids 

1 2 3

Bidder 1 valuation 80×1 60×2 55×3
bid 35×2 22.5×3

Bidder 2 valuation 40×1 70×2 65×3
bid 40×1 63×2 65×3

 
5. Choose such an allocation that maximizes the total amount of bids among the 

allocations of tentative winners. 
 1 unit to bidder 1 and 2 units to bidder 2. Total amount of bids = 75×1 + 63×2 = 201. 
 0 unit to bidder 1 and 3 units to bidder 2. Total amount of bids = 65×3 = 195. 
Choose allocation 1. 

GBA. Payment determination  
Payment of bidder i (winner) = total amount of bids in the auction that excludes 

bidder i (65×3 for bidder 2, 40×3 for bidder 1 in allocation 1) – total amount of bids in 
the original auction (201 in allocation 1) + bidder i’s bid for the unit assigned to (75×1 
for bidder 1, 63×2 for bidder 2 in allocation 1); 

 payment of bidder 1 = (65×3) – 201 + (75×1) = 69, 
 payment of bidder 2 = (40×3) – 201 + (63×2) = 45. 

Exact VCG. Allocation problem 
 Choose such an allocation that maximizes the total amount of bids among all pos-

sible allocations;  
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(0, 0): 0, (1, 1): 70×1 + 40×1 = 110 (1, 0): 70×1 = 70, (2, 0): 55×2 = 110, (3, 0): 
50×3 = 150, (0, 1): 40×1 = 40, (0, 2): 60×2 = 120: (0, 3): 65×3 = 195, (1, 2): 70×1 + 
60×2 = 190, (2,1): 55×2 + 40×1 = 150. 

Table 3A. Exact VCG 

1 2 3

Bidder 1 Valuation 80×1 60×2 55×3
Bid 35×2 22.5×3

Bidder 2 Valuation 40×1 70×2 65×3
Bid 40×1 63×2 65×3

  
Choose (0, 3). The total amount of bids is 195, which is less than the value GBA 

gives, i.e., 201. 

Exact VCG. Payment determination 
The payment is determined in the same way as shown in GBA. 
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