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ABSTRACT
A probabilistic framework is introduced for reducing the inherent
uncertainty of trajectory data collected for RFID-monitored ob-
jects. The framework represents the position of an object ateach
instant as a random variable over the set of possible locations. The
probability density function of this random variable is initialized
according to an a-priori probability distribution, and then revised
by conditioning it w.r.t. the event that integrity constraints are sat-
isfied. In particular, integrity constraints implied by thestructure
of the map of locations and the motility characteristics (such as the
maximum speed) of the monitored objects are exploited (namely,
direct unreachability, latencyandminimum traveling timeconstraints).
The efficiency and effectiveness of the proposed approach are as-
sessed experimentally on synthetic data.

1. INTRODUCTION
RFID-based applications.The recent improvements in the RFID
technology have led to the pervasive use of RFID devices as a sup-
port for object tracking. Basically, RFID technology relies on two
types of device, i.e.tags (which can emit a radio signal encod-
ing simple identification information) andreaders(which detect
the signals emitted by tags). Thus, stays and movements can be
monitored by appropriately placing RFID readers in the locations
and then attaching RFID tags to the objects to be tracked.

One of the prominent scenarios which can benefit from the use of
RFID technology is the monitoring of people, animals, and objects
moving inside buildings [18, 19, 22], such as museums, schools,
hospitals, office buildings, factories, farms. The reasonsfor this
kind of monitoring are various, and range from collecting data to
support the behavior analysis over the monitored entities,to ensur-
ing security for people and assets. For instance, information on the
trajectory followed by monitored people can be used to prevent or
look into crimes, and detect dangerous or suspicious situations. As
another example, information on the trajectory followed bya vis-
itor inside a museum can be used to provide her during her visit
with very detailed context-aware information, that are personalized
on the basis of the artworks she saw in the rooms visited previously.
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Ambiguity of RFID data. For each monitored object, the collected
data are pairs〈timestamp, reader〉, or, equivalently,〈timestamp, set
of readers〉 (called “readings” in the following), each encoding the
fact that the object was detected by the specified set of RFID read-
ers at the specified time instant. Analysis tasks on the monitored
world commonly reason on an interpreted version of these data,
obtained by moving from the point of view of readers to that oflo-
cations. In particular, object-tracking and trajectory-analysis tools
often require the readings to be in the form〈timestamp, location〉.
The point is that, generally, there is not a one-to-one correspon-
dence between locations and readers, and no way to deterministi-
cally decide the location given that a set of readers detected an ob-
ject: the same location may contain zones where an object canbe
detected by different readers, the same reader may detect objects at
different locations, and false negative readings may happen as well
(an object close to a reader is not detected, owing to interferences
or malfunction).

For instance, consider Fig. 1(a). If an objecto was detected at
some instant by both readersr1 andr5, two locations are possible:
L1 or L4. Analogously, ifo was detected byr3 only, we can not
conclude that it was surely inL3, as it could be the case thatr2
failed to detect it despite it was close enough to its antenna. Thus,
also the case thato was inL2 (in particular, in the zone ofL2 where
an object can be detected by bothr2 andr3) is a possibility.

This suggests that the association readers/locations can be nat-
urally modeled in probabilistic terms, for instance by means of a
probability distributionpa(l|R) defined for each locationl and set

Figure 1: (a) A floor of a building; (b) map used in Example 4
and subsequent ones.
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R of readers, which represents the probability that an objectde-
tected by all and only the readers inR is at locationl. In the case
depicted in Fig. 1,pa(l|R) could be such thatpa(L1|{r1, r5}) =
pa(L4|{r1, r5}) = 0.5 and pa(L0|{r0}) = 1 (for the sake of
brevity, we do not report the other combinations location/set of
readers). Such a probabilistic model can be obtained in several
ways. For instance, by building a “physical” model, which takes
into account the placement of the readers over the map and the
variability of the reading rate of the readers vs. the distance. An
example of this approach is the three-state model proposed in [4].
Otherwise,pa(l|R) can be defined experimentally, on the basis of
samples of detections of tagged objects (this is how we obtained
the distributionspa(l|R) used in our experiments).

Things become more complex when trying to translate a sequence
of readings collected for an objecto over a time interval into possi-
ble trajectories (i.e., sequences of locations). A naive way to solve
this problem is to use the knowledge ofpa(l|R) and consider the
steps of the trajectory independent from each other, as in the fol-
lowing example.

EXAMPLE 1. Consider Fig. 1(a) and assume that, at both in-
stants0 and 1, objecto is detected by bothr1 and r5, while at
instant 2 it is detected byr0. Moreover, assume thatpa(l|R) is
as discussed above, that is, objects detected by bothr1 andr5 are
at locationL1 with probability0.5 or at L4 with probability0.5,
and those detected byr0 are atL0 with probability1. Reasoning
only on the basis of these probabilities and exploiting no further
knowledge (thus assuming independence between different time in-
stants), we have that the trajectories followed byo compatible with
the readings are:t1: L1 L1 L0, t2: L1 L4 L0, t3: L4 L1 L0, t4:
L4 L4 L0, each with probability0.25(= 0.5 · 0.5 · 1).

Thus, independence assumption allows for reasoning about tra-
jectory probabilities as follows. Consider an objecto moving over
time intervalT = [τ1..τn], and the sequence of readingsΘ =
〈τ1, R1〉, . . . , 〈τn, Rn〉, meaning that, at eachτi ∈ T , o was de-
tected by the setRi of readers. Then, the probability thato fol-
lowed the trajectoryt = l1, . . . , ln (meaning thato was at location
li at time pointτi, for eachi ∈ [1..n]) can be expressed (under the
independence assumption) as:pa(t|Θ) = Πn

i=1p
a(li|Ri). Unfor-

tunately, as highlighted in the following example, the probabilities
returned bypa(t|Θ) can be very different from those returned by
the “actual” probability distributionPr(t|Θ).

EXAMPLE 2. (continuing Example 1). Looking at the map, we
can infer thatt1 is the only correct interpretation of the data, since
L0 and L4 have no direct connection (as they are divided by a
wall), and L1 is directly connected (by means of a door) toL0

but not toL4. Thus, a correct probability distribution over the
possible trajectoriest1, t2, t3, t4 is as follows: Pr(t1|Θ) = 1,
Pr(t2|Θ) = Pr(t3|Θ) = Pr(t4|Θ) = 0, whereΘ = θ1, θ2, and
θ1 = 〈τ1, {r1, r5}〉, θ2 = 〈τ2, {r0}〉.

The point is that whilepa(l|R) (and, in turn,pa(t|Θ)) is easy
to obtain (as discussed above), finding a formulation forPr(t|Θ)
is very hard, as it requires analyzing and encoding the correlations
among possible positions over time.

In this paper, we address this problem: given a sequence of
readingsΘ and exploiting the knowledge ofpa(l|R) (and thus
pa(t|Θ)), how can we effectively and efficiently revisepa(t|Θ) so
that it takes into account possible correlations inside thedata, thus
obtaining a better estimate ofPr(t|Θ)? Intuitively enough, revis-
ing pa(t|Θ) according to the known correlations can be viewed as
a cleaning problem: the data to be cleaned are the (probabilistic)

trajectories resulting from usingpa(t|Θ) to interpret the sequence
of readings, and the cleaning task consists in revising the probabil-
ities assigned to these trajectories.

Cleaning RFID data. Although a number of data-cleaning tech-
niques for RFID data have been proposed (see Section 7), mostof
them do not exploit any knowledge on the map and on the motil-
ity characteristics (such as the maximum speed) of the monitored
objects, even if the users who analyze the data are typicallyac-
quainted with these aspects. The point is that, from this knowledge
of the domain, constraints can be naturally derived on the connec-
tivity between pairs of locations (direct unreachabilityconstraints)
and/or on the time needed for reaching a location starting from an-
other one (traveling-timeconstraints): as explained in the follow-
ing example, these constraints1 could be profitably used at least
to discard interpretations of the data corresponding to inconsistent
trajectories.

EXAMPLE 3. Consider the scenario of examples 1 and 2. The
map easily implies a set ofdirect unreachabilityconstraints, one
for each pair of rooms which are not directly connected through a
door, such asL0, L4, andL1, L4. In particular, these two con-
straints are those exploited in Example 2 to infer thatt1 is the only
possible trajectory in accordance with the readings and themap.

The map implies further constraints, other than direct unreach-
ability. For instance, it says thatL0 andL5, although close to one
another, are connected only by a pretty long path. Reasonably, it
can be imposed that15 secs are required to go through this path
(this will be called “traveling-timeconstraint”). This constraint
implies that, when interpreting the readings for a person moving
across the map, all the interpretations corresponding to trajecto-
ries where the person reachedL5 from L0 in less than15 secs
should be discarded. ✷

The discussion in Example 3 explains how considering integrity
constraints can reduce uncertainty, as it allows trajectories to be
removed from the valid interpretations of the data. Then, the point
becomes how to reasonably combine the integrity constraints with
the a-priori probabilistic model encoded bypa(l|R), in order to
devise a mechanism for revising the a-priori probabilitiesof the
remaining valid trajectories and making them sum up to1.

A rigorous approach (commonly adopted in probabilistic databases
to enforce constraints over probabilistic data [16, 7]) is to perform
conditioning: starting from the a-priori probabilities (which do not
take into account the constraints), the probabilities of the trajec-
tories are re-evaluated as conditioned to the event that thecon-
straints are satisfied. That is, given a setIC constraints, proba-
bilities of the formpa(t|Θ) are revised intopa(t|Θ ∧ IC). This
way, the probability of invalid trajectories becomes0, while that
of each valid trajectory becomes the ratio of its a-priori proba-
bility to the overall a-priori probability of the valid trajectories.

1 It is worth noting that direct-unreachability (DU) and traveling-
time (TT) constraints can be reasonably assumed to be available, as
obtaining them does not require all that specific knowledge of the
domain. In particular, DU constraints can be easily inferred from
the map of the locations, and TT constraints can be easily obtained
by reasoning on the distances between pairs of locations andthe
maximum speedv of the objects being monitored. Obviously, the
map is known to any user asking for cleaned data (as she will use
these data to analyze trajectories!), and reasonably assigning an up-
per bound onv is easy in several contexts, such as people visiting a
museum or moving inside an office building. In fact, in our experi-
ments, these constraints have been inferred automatically: the only
input of the inference task were the map and the maximum speedv
of the objects being monitored.
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For instance, in the case discussed in examples 1, 2, 3, each a-
priori probability pa(ti|Θ) is revised intopa(ti|Θ ∧ IC), where
pa(t2|Θ ∧ IC) = pa(t3|Θ ∧ IC) = pa(t4|Θ ∧ IC) = 0, while
pa(t1|Θ ∧ IC) = 0.25

0.25
= 1. In general, constraints reduce the

number of valid trajectories, and the conditioning assignsto them
“new” probabilities by keeping, for each pair of trajectories, the
same probability ratios between their a-priori probabilities. For in-
stance, consider4 trajectoriest1, t2, t3, t4 with a priori probabil-
ities p1 = 0.5, p2 = 0.25, p3 = 0.2, p4 = 0.05, respectively.
If t3 andt4 are invalid, then they will be discarded, whilet1 and
t2 will be assigned the (conditioned) probabilities0.5

0.75
= 2

3
and

0.25
0.75

= 1
3
. This reflects the fact that, before conditioning,t1 was

twice as probable ast2.

Contribution. The revision problem of evaluatingpa(t|Θ ∧ IC)
starting frompa(t|Θ) is generally complex. The naive approach
of enumerating the trajectories compatible with the readings, dis-
carding those not satisfying the constraints, and finally revising the
probabilities of the remaining ones is often infeasible, asthe trajec-
tories to deal with are too many. For instance, if, for each instant
in the time interval[1..100], two locations are compatible with the
readings, we have to consider2100 (that is about1030) trajectories.

Our main contribution is a framework which cleans RFID data
by exploiting direct unreachabilityand traveling-timeconstraints
(along with latencyconstraints, which will be introduced in the
core of the paper). The proposed approach returns a compact repre-
sentation (ct-graph) of the valid trajectories and their conditioned
probabilities. This compact representation is obtained byan iter-
ative algorithm which builds a graph whose nodes correspondto
pairs〈location, timestamp〉 and where paths from source to target
nodes one-to-one correspond to the valid trajectories (source and
target nodes refer to the first and last instant of the time interval of
interest, respectively). This graph is built incrementally, aiming at
preventing the creation of nodes and edges which would yieldpaths
corresponding to invalid trajectories. The same algorithmassigns
to each node or edge a probability obtained by suitably revising
the a-priori probability of the corresponding pair〈location, times-
tamp〉, so that the overall probability of a source-to-target pathis
the conditioned probability of the corresponding trajectory.

2. PRELIMINARIES
We consider a setR = {r1, . . . , rk} of RFID readers, a single

objecto equipped with an RFID tag, and the setL = {l1, . . . , ln}
of locations among whicho moves while monitored by the readers
inR. We assume that time is represented by the set of non-negative
integers, and denote asT = [0..τf ] the time interval over whicho
is monitored by the readers inR.

A readingθ of o is a pair〈τ,R〉, stating that, at timeτ ∈ T , o
was detected by all and only the readers inR, whereR ⊆ R (R=∅
means thato was detected by no reader at timeτ ). Its components
τ andR are denoted asθ[time] andθ[readers].

A reading sequence(r-sequence) foro overT is a setΘ of read-
ings ofo containing,∀τ ∈ T , a unique reading〈τ,R〉.

We assume given the probability distributionpa(l|R), defined
over everyl ∈ L andR ⊆ R, representing thea-priori probability
that an object is in the locationl given that it has been detected by
all and only the readers inR2.

Givenpa(l|R) and a readingθ, we can associateθ with the (dis-
crete) random variableXθ, which is defined over the locations in

2We assume that this probability does not depend on the detected
object and is invariant over time. The extension of our framework
to the more general case that this probability varies over time and
type of objects is straightforward.

L and whose probability density function (PDF) isf(Xθ = l) =
pa(l | θ[readers]). Basically,Xθ represents the alternative locations
of the object at timeθ[time] which are compatible with the fact that,
at that time, it was detected by the setθ[readers] of readers. Each
alternative location is assigned the probability implied by pa.

Givenpa(l|R) and an r-sequenceΘ, we define the(probabilis-
tic) location sequence(l-sequence for short) corresponding toΘ
(according topa(l|R)) as the setΓ = {Xθ | θ ∈ Θ}.

For the sake of presentation, we will represent any l-sequence
by making explicit all the pairs〈timestamp, location〉 compatible
with the readings in the corresponding r-sequence. That is,the l-
sequenceΓ corresponding to the r-sequenceΘ for o overT will be
denoted as a pairΓ = 〈Λ, p〉, where:

– Λ is a set of pairs of the formλ = 〈τ, l〉, with τ ∈ T andl ∈ L,
containing at least one pair〈τ, l〉 for eachτ ∈ T ;

– p assigns to each pair〈τ, l〉 ∈ Λ the valuef(Xθ = l), whereθ is
the reading at timeτ . That is,p assigns to〈τ, l〉 the probability
that the object was at locationl at timeτ , as implied by the PDF
of the random variable corresponding to the reading at timeτ .

Given an l-sequenceΓ = 〈Λ, p〉, we assume thatΛ contains only
pairs which are assigned a non-zero probability byp.

From now on, in the examples we will consider the map in Fig 1(b).

EXAMPLE 4 (RUNNING EXAMPLE). Consider the r-sequence
Θ = {〈0, {r1}〉, 〈1, {r2}〉, 〈2, {r4}〉} andpa(l|R) s.t.pa(L1|{r1})
= 6

10
, pa(L2|{r1}) =

4
10

, pa(L3|{r2}) =
1
3
, pa(L3|{r4}) =

2
3
,

pa(L4|{r2}) =
2
3
, andpa(L5|{r4}) =

1
3
. The corresponding l-

sequenceΓ = 〈Λ, p〉 is s.t. Λ = {λ1 = 〈0, L1〉, λ2 = 〈0, L2〉,
λ3 = 〈1, L3〉, λ4 = 〈1, L4〉, λ5 = 〈2, L3〉, λ6 = 〈2, L5〉}, and
p(λ1) = 6

10
, p(λ2) =

4
10

, p(λ3) = 1
3
, p(λ4) = p(λ5) = 2

3
, and

p(λ6) =
1
3
. ✷

Given a pairλ = 〈τ, l〉 ∈ Λ, we denote withλ[time] andλ[loc]
the first and the second component ofλ, respectively.

DEFINITION 1 (TRAJECTORY). LetΘ be an r-sequence over
T andΓ = 〈Λ, p〉 be the l-sequence corresponding toΘ. A tra-
jectoryoverΓ is a sett ⊆ Λ of pairs such that, for eachτ ∈ T ,
there is a unique pairλ ∈ t such thatλ[time] = τ . The (a-priori)
probability oft is pa(t|Θ) =

∏

λ∈t p(λ). ✷

For the sake of simplicity, in the following we assume given an
r-sequenceΘ, thus we writepa(t) instead ofpa(t|Θ).

The set of the trajectories over an l-sequenceΓ is denoted as
T(Γ). Given a trajectoryt, the pairλ ∈ t such thatλ[time] = τ is
said to be theτ -th stepof t.

Basically, a trajectory over an l-sequenceΓ is obtained by pick-
ing, for each timestamp, one of the possible locations compatible
with the reading at that timestamp, and thus represents a “possible
interpretation” of the readings. Obviously, many trajectories are
possible over the same l-sequence: in particular, their number is
∏

τ∈T | {λ ∈ Λ|λ[time] = τ}|, corresponding to all the ways of
picking a location compatible with the observed readings and with
pa(l|R) at each time point. Each of them is associated with a prob-
ability, implied bypa(l|R) under the assumption of independence
between the random variables inΓ. This, in turn, means consider-
ing as independent the locations where the object was in any two
time points. It is easy to see that

∑

t∈T(Γ) p
a(t) = 1.

EXAMPLE 5. Two out of the8 trajectories over the l-sequence
Γ = 〈Λ, p〉 of Example 4 aret1 = {λ1, λ3, λ5}, which means that
objecto went fromL1 to L3 and stayed inL3 for two consecutive
timestamps, andt2 = {λ1, λ3, λ6}, which describes the case that
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objecto went from locationL1 to L5 throughL3. Their a-priori
probabilities arepa(t1) = p(λ1)·p(λ3)·p(λ5) =

12
90

andpa(t2) =
p(λ1) · p(λ3) · p(λ6) =

6
90

. ✷

In what follows, we will see how integrity constraints can limit
the number of trajectories which should be considered as valid, thus
reducing the uncertainty inherent to the readings.

3. CLEANING EXPLOITING INTEGRITY
CONSTRAINTS

We consider three kinds of integrity constraints (namely,direct
unreachability, traveling time, andlatencyconstraints), whose def-
inition is as follows.

Given two locationsl1, l2 ∈ L, adirect unreachabilityconstraint
(DU ) has the formunreachable(l1, l2) and states that no object can
reachl2 from l1 in one time point. Given two locationsl1, l2 ∈ L
and a non-negative integerν, a traveling time(TT ) constraint is of
the formtravelingTime(l1, l2, ν) and states that, for any object, the
time needed to move froml1 to l2 is not less thanν. Finally, given
a locationl ∈ L and a non-negative integerδ, a latency constraint
(LT ) associated withl is denoted aslatency(l, δ) and imposes that
every time an object goes into locationl, it must stay inl for at least
δ time points.

Intuitively enough,DU constraints are implied by the structure
of the map, andTT constraints are implied by the minimum dis-
tances between the locations and the maximum speed of the ob-
jects. We already discussed on howDU andTT are easy to be
obtained, and on the fact that they can be reasonably assumedto
be available in several contexts (see footnote 1 in the introduction).
As regards latency constraints, they take into account the physi-
cal inertia of objects, as well as the processing times (for doing
some job). Users can specify latency constraints even in thecase
that they do not encode a true knowledge of what happens in the
real-world: they can be useful for discarding interpretations of the
data corresponding to very short stays at some locations, which are
not of interest for the data analysis which will be performedon
the cleaning data. For instance, imposinglatency(“coffee room”,
20s), removes from the interpretations of the data those stating that
the monitored person stayed at room1 for 2 minutes, then at the
adjacent coffee room for2 seconds, and then again at room1 for
some more minutes: a2-second long stay at a coffee room can be
considered too short to be considered as meaningful.

DEFINITION 2. LetΓ = 〈Λ, p〉 be an l-sequence andIC a set
of integrity constraints. A trajectoryt overΓ is valid w.r.t. IC iff

– for eachlatency(l, δ)∈ IC, it holds that, for each pair〈τ, l〉 in
t such that eitherτ =0 or there is〈τ−1, l′〉 ∈ t, with l′ 6= l, t
contains all the pairs〈τ + i, l〉 with i ∈ [1..δ − 1];

– for eachunreachable(l1, l2) ∈ IC, there are no pairs〈τ, l1〉 and
〈τ + 1, l2〉 in t; and

– for eachtravelingTime(l1, l2, ν) ∈ IC, there are no〈τ1, l1〉 and
〈τ2, l2〉 in t, with τ1 < τ2, such thatτ2 − τ1 < ν. ✷

The subset ofT(Γ) containing all and only the trajectories which
are valid w.r.t.IC will be denoted asT |=IC(Γ).

EXAMPLE 6. ConsiderΓ = 〈Λ, p〉 from Example 4 andIC =
{

latency(L4, 2), unreachable(L2, L3), travelingTime(L1, L5, 3)
}

,
imposing that (i) if objecto reaches locationL4, it must stay there
for at least two consecutive timestamps; (ii) objecto cannot directly
reach locationL3 from locationL2; and (iii) objecto cannot reach
locationL5 from locationL1 in less than3 timestamps.

It is easy to see that trajectoryt1 of Example 5 is valid, as it does
not violate any constraint inIC. Trajectoryt2 in the same example
is not valid, as it does not satisfytravelingTime(L1, L5, 3). Indeed,
the difference between the timestamp ofλ6 and the timestamp ofλ1

is 2. It is easy to see thatt1 is the unique valid trajectory overΓ
andIC. ✷

Given a setIC of integrity constraints and a locationl ∈ L, we
definemaxTravelingTime(l) = max{ν|travelingTime(l, l′, ν) ∈
IC}, i.e., maxTravelingTime(l) is the maximum among the min-
imum traveling times required for objecto to move froml to any
otherl′ ∈ L according to the constraints inIC.

In the rest of the paper, we assume that an l-sequenceΓ and a
setIC of integrity constraints are given.

3.1 Revising the probabilities of the trajecto-
ries: the problem

As explained above, integrity constraints can be exploitedto
clean the data, as they allow valid trajectories to be distinguished
from invalid ones. In order to go through the cleaning process, the
problem must be addressed of how to assign a reasonable probabil-
ity to the valid trajectories, given that the a-priori probabilities of
the trajectories do not take into account the cleaning effect of the
constraints. In fact, invalid trajectories have non-zero a-priori prob-
abilities (although these trajectories are not valid interpretations of
the readings), and the a-priori probabilities of valid trajectories do
not sum up to1 (though these trajectories are the only possible in-
terpretations of the readings).

A rigorous approach (commonly adopted in probabilistic databases
to enforce constraints over probabilistic data [16, 7]) is to perform
conditioning: starting from the a-priori probabilities, the probabili-
ties of the trajectories are evaluated as conditioned to theevent that
the constraints are satisfied. That is, the probability of invalid tra-
jectories becomes0, while that of each valid trajectory becomes
the ratio of its a-priori probability to the overall a prioriprobability
of the valid trajectories. That is, given a trajectoryt ∈ T(Γ), its
probabilitypa(t) conditioned to the fact that the constraints inIC
are satisfied is given bypa(t|IC)3, where:

– pa(t|IC) = 0 if t is not valid w.r.tIC;

– pa(t|IC) = pa(t)∑

t′∈T |=IC(Γ)

pa(t′)
, otherwise.

Now, the probabilities of the valid trajectories sum up to1, and
the a-priori probabilities are taken into account as, for each pair of
trajectories, the ratio between their conditioned probabilities is the
same as that between their a-priori probabilities.

As discussed in the introduction, evaluating conditioned prob-
abilities is, in general, a complex problem. Our approach isan
ad-hoc solution for the considered scenario, and provides acom-
pact representation of the valid trajectories and their conditioned
probabilities. This compact representation is obtained byan iter-
ative algorithm which, starting from an l-sequence, buildsa graph
(namedconditioned trajectory graph) whose nodes correspond to
pairs 〈location, timestamp〉 and where paths from source to tar-
get nodes one-to-one correspond to the valid trajectories (source
and target nodes refer to the first and last instants inT , respec-
tively). The algorithm assigns probabilities to the sourcenodes and
the edges of the conditioned graph, by suitably revising a-priori
probabilities implied bypa(l|R), so that the overall probability of a
source-to-target path (evaluated as the product of the revised prob-
abilities of its source node and its edges) is the conditioned proba-
bility of the corresponding trajectory.
3We recall that this corresponds topa(t|Θ ∧ IC).
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4. CONDITIONED TRAJECTORY GRAPHS
The conditioned trajectory graph(ct-graph for short) over an

l-sequenceΓ = 〈Λ, p〉 will be exploited to concisely represent tra-
jectories overΓ in the presence of integrity constraints. The nodes
of a ct-graph are said to belocation nodes. Each location noden
corresponds to a pair〈τ, l〉 ∈ Λ and is connected through directed
edges to location nodes (chosen among the set ofsuccessorsof n)
corresponding to subsequent timestamps.

In the following, we formalize the concepts of location node
(Section 4.1), successors of location nodes (Section 4.2),and fi-
nally provide the definition of ct-graph and formalize the concept
of path over a ct-graph (Section 4.3).

4.1 Location nodes
A location node corresponds to a pair〈τ, l〉 ∈ Λ. It stores some

information summarizing the trajectory of the object untilτ , and, in
particular, pieces of information useful to check whether the paths
including this node describe valid trajectories. This supplementary
information is about the length of the current stay of the object o
at l (which will be used to check latency constraints), and about
some of the locations whereo has been beforeτ (which will be
used to check traveling-time constraints). More formally,given an
l-sequenceΓ = 〈Λ, p〉 for an objecto and a setIC of integrity
constraints, a location noden is a tuple of the form〈τ, l, δ, TL〉,
where〈τ, l〉 ∈ Λ, δ ∈ T ∪ {⊥} (where⊥means “non-specified”),
andTL is a (possibly empty) set of pairs〈τ1, l1〉 ∈ Λ (with l1 6= l),
containing no two pairs coinciding in either the timestamp or the
location. It represents the following facts:

A. o was in locationl at timeτ ;
B. the stay ofo at l startedδ time points beforeτ ;
C. for each〈τ1, l1〉 ∈ TL, the most recent detection ofo at location

l1 (beforeτ ) is at time pointτ1.

Given a location noden= 〈τ, l, δ, TL〉 and a trajectoryt over
Γ, we say thatt is compatible withn if, according tot, the factsA,
B, C hold.

For instance, both the trajectoriest1= {〈0, L1〉, 〈1, L3〉, 〈2, L3〉}
andt2 = {〈0, L1〉, 〈1, L3〉, 〈2, L5〉} of Example 5 are compatible
with location node〈1, L3, 0, {〈0, L1〉}〉 since, according to botht1
andt2, o was inL3 at timestamp1, the duration of the stay ofo at
L3 is 0, and the most recent detection ofo atL1 is at time point0.

The information stored in a location noden can be used to state
that some trajectories are invalid. Specifically, anyt ∈ T(Γ) com-
patible withn is invalid if eitheri) or ii) hold:

i) All the following conditions are satisfied:
− n.TL contains a pair〈τ ′, l′〉,
− there istravelingTime(l′, l′′, ν′)∈IC with (n.τ+1)−τ ′<ν′,
− the(τ+1)-th step oft is at locationl′′.
In fact,t would represent that the object went froml′ to l′′ in less
thanν′ time points, thus violating the TT constraint;

ii ) There islatency(l, δ′) ∈ IC with n.δ < δ′, and the(τ+1)-th step
of t is at a location different froml. In fact, t would represent
that the object went away froml after staying less thanδ′ time
points, thus violating the latency constraint.

For instance, consider location noden = 〈1, L3, 0, {〈0, L1〉}〉
and the TT constrainttravelingTime(L1, L5, 3). It is easy to see
that the information stored inn can be used to state that any tra-
jectory compatible withn and whose second step is atL5 (such as
trajectoryt2 of the running example) is invalid. Indeed, the facts
that the second step of the trajectory is atL5, and that the most re-
cent detection ofo in L1 was at timestamp0 (as stated inn.TL),

mean thato would reach locationL5 from L1 in less than3 times-
tamps (thus violating the TT constraint).

Point i) means that an entry〈τ ′, l′〉 in n.TL can be used only
to check TT constraints involving locationl′, thus reporting it in
n.TL is useless if there is no TT constraint inIC involving l′.
Analogously, pointii) means that the value ofn.δ is useful only
to check latency constraints defined overl, and thus reporting it
is useless ifIC contains no latency constraint of this kind. There
are also other cases when reportingδ in n or some entry〈τ ′, l′〉 in
n.TL is useless for detecting invalid trajectories (according to the
strategy in pointsi) andii)). In particular, consider the case thatIC
contains a latency constraintic = latency(n.l, δ∗), but evaluating
δ according to its definition (pointB.) yieldsn.δ > δ∗. This means
that, for every trajectory compatible withn, the stay at locationn.l
involving time pointτ is long enough to satisfyic, thus reportingδ
is useless for discarding trajectories which, due to their(τ+1)-th
step, do not satisfyic. Analogously, consider the case that there
is some TT constraint involvingl′ as first argument, and that the
most recent time pointτ ′ when the object moved away froml′ is
such thatn.τ−τ ′ ≥maxTravelingTime(l′). Then, reporting〈τ ′, l′〉
in n.TL is useless for discarding invalid trajectories based on their
(τ+1)-th step, since no choice of the location at the(n.τ+1)-th
step can violate some TT constraint involvingl′ as first argument.

Therefore, we will assume that in every location noden:

– n.TL contains only entries of the form〈τ ′, l′〉, where locationl′

is involved in at least one TT constraint, and it holds thatn.τ−
τ ′ < maxTravelingTime(l′);

– n.δ is assigned a value inT iff there is a latency constraintla-
tency(n.l, δ∗) and the value ofn.δ (computed as specified inB)
is such thatn.δ < δ∗. Otherwise,n.δ is assigned⊥.

Under this assumption, we denote asN the set of the location
nodes that can be defined overΓ and IC, and asSN and TN
the subsets ofN of sourceandtarget nodes (i.e., locations nodes
whose timestamps are the first and the last time points ofT ), re-
spectively. As it will be clearer later, when constructing the ct-
graph, not all of the nodes inN will be materialized, but they are
nevertheless used to formalize our approach.

EXAMPLE 7. Continuing our running example, the setN over
Γ andIC consists of the following location nodes:

n0 = 〈0, L1,⊥, ∅〉, n1 = 〈0, L2,⊥, ∅〉,
n2 = 〈1, L3,⊥, ∅〉, n3 = 〈1, L3,⊥, {〈0, L1〉}〉,
n4 = 〈1, L4, 0, ∅〉, n5 = 〈1, L4, 0, {〈0, L1〉}〉,
n6 = 〈2, L3,⊥, ∅〉, n7 = 〈2, L3,⊥, {〈0, L1〉}〉,
n8 = 〈2, L5,⊥, ∅〉, n9 = 〈2, L5,⊥, {〈0, L1〉}〉.

Location noden2 means that:a) sincen2.τ = 1 andn2.l = L3,
objecto was inL3 at timestamp1; b) sincen2.δ = ⊥, either there
is noLT constraint overL3, or its stay atL3 started more thanδ∗

time points before1, wherelatency(L3, δ
∗) is theLT constraint

overL3; c) sincen2.TL = ∅, for every locationl visited by the
object in the past, either there is noTT constraints havingl as first
argument, or the object leftl more thanν∗ time points ago, where
all theTT constraintstravelingTime(l, l′, ν) ∈ IC havingl as first
argument are such thatν ≤ ν∗.

Analogously,n5 means that:a) o was inL4 at timestamp1; b)
its stay atL4 started in the current timestamp;c) in the past, it
stayed atL1, from which it moved away at time point0. ✷

4.2 Successors of a location node
We now introduce the concept ofsuccessorof a location node.

Roughly speaking, location noden2 = 〈τ + 1, l2, δ2, TL2〉 is a
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successorof a location noden1 = 〈τ, l1, δ1, TL1〉 if n2 describes
(in terms of factsA, B, C) a possible scenario at timeτ +1 which
is consistent with the integrity constraints and with the scenario at
time τ described byn1.

DEFINITION 3 (SUCCESSOR). Given a pair of location nodes
n1 = 〈τ1, l1, δ1, TL1〉 andn2 = 〈τ2, l2, δ2, TL2〉, n2 is successor
of n1 iff the following conditions hold:

1) τ2 = τ1 + 1;
2) unreachable(l1, l2) 6∈ IC;
3) if l1 = l2, thenδ2 = δ1 + 14;
4) if l1 6= l2 and latency(l1, δ) ∈ IC, thenδ1 ≥ δ (if δ1 6= ⊥)

and eitherδ2 = 0 (if there is a latency constraint onl2 in IC) or
δ2 = ⊥ (otherwise);

5) there is no pair〈τ ′, l′〉 ∈ TL1 such that there is a constraint
travelingTime(l′, l2, ν) in IC with τ2 − τ ′ < ν;

6) TL2=TL1 ∪ {〈τ1, l1〉 | travelingTime(l1, l, δ) ∈ IC}\
(

{〈τ, l〉∈TL1 | τ2 − τ≥maxTravelingTime(l)}∪
{〈τ, l〉∈TL1 | l = l2}

)

✷

Basically,n2 is a successor ofn1 iff 1) n1 andn2 refer to consec-
utive time points; 2)l2 can be directly reached starting froml1; 3)
if at time τ2 the object is still inl2 = l1, then this is consistently
reflected by an increment ofδ2; 4) no stay constraint inIC involv-
ing l1 is violated if the object moves froml1 to another location
l2 at timeτ2; 5) no traveling time constraint inIC imposing that
the time needed to move from a location belonging toTL1 to l2 is
violated if the object moves froml1 to another locationl2 at time
τ2; 6) TL2 can be obtained by first augmentingTL1 with the pair
〈τ1, l1〉 (this happens if there is a traveling time constraint involv-
ing l1 as first argument), and then discarding those pairs ofTL1

which have become useless for checking TT constraints and those
referring to a previous stay atl2.

EXAMPLE 8. Continuing our running example, it is easy to see
thatn3 andn5 are successors ofn0. Analogously,n4 is a successor
of n1, and, finally,n7 is a successor ofn3. The reader can easily
check that there is no other pair of location nodes inN such that
one is a successor of the other. For instance,n2 is not a successor
of n1 sinceunreachable(L2 , L3) ∈ IC, thus Condition 2) of Defi-
nition 3 does not hold. Similarly,n9 is not a successor ofn3 since
travelingTime(L1, L5, 3) ∈ IC, thus Condition 5) of Definition 3
does not hold. Finally, note thatn9 is not a successor ofn2 since
both Condition 5) and Condition 6) of Definition 3 do not hold.✷

The following proposition states a property that will be funda-
mental for understanding how our cleaning algorithm exploits the
notion of successor.

PROPOSITION 1. If a non-target location noden admits no suc-
cessor then every trajectoryt compatible withn is not valid.

4.3 ct-graphs and how to use them to encode
valid trajectories

Based on the notions of location node, source and target nodes,
and successor, the definition of ct-graph is as follows.

DEFINITION 4 (CT-GRAPH). LetN be the set of location nodes
over the l-sequenceΓ, andIC a the set of integrity constraints. A
conditioned trajectory graph (ct-graph) is a tupleG = 〈N,E, pN , ~pE〉,
where:
4We override operator+ so that⊥+1=⊥, andx+1=⊥, whenx
is equal to the duration of the latency constraint overl1.

1) N ⊆ N ;
2) 〈N,E〉 is a graph (whereN andE are the sets of nodes and

edges, respectively) satisfying the following properties:

a) a pair 〈n1, n2〉 belongs toE iff n1, n2 ∈ N and n2 is a
successor ofn1;

b) for everyn ∈ N , there is at least one path from a source
node to a target node inN which containsn;

3) pN : SN → (0, 1] is a PDF over the set of source nodes;
4) ~pE is a set containing, for each non-target noden ofG, a PDF
pnE over its outgoing edges, that is,~pE = {pnE |n ∈ N \ TN}
wherepnE : En → (0, 1] andEn = {〈n, n′〉|〈n, n′〉 ∈ E}. ✷

A pathπ over a ct-graphG = 〈N,E, pN , ~pE〉 is a path from a
source to a target node over the graph〈N,E〉. It is easy to see that
every path overG corresponds to a valid trajectory. Specifically, a
pathπ = n0, . . . , nτf overG corresponds to the valid trajectory
t = n0[λ], . . . , nτf [λ], whereni[λ] denotes the〈timestamp, loca-
tion〉 pair whichni refers to. In fact,t is compatible with every
location node alongπ, and, since the edges ofG connect only pairs
of nodesn1, n2 s.t.n2 is successor ofn1, t must be valid w.r.t the
integrity constraints.

What said above entails that a ct-graph can representonly valid
trajectories (encoding them as paths of location nodes). Inthe next
section, we present an algorithm for building a ct-graph that rep-
resentsall and only the valid trajectories. Furthermore, our algo-
rithm instantiates the functionspN and~pE of G so that the prob-
ability p(π) of a pathπ overG is equal to the conditioned prob-
ability pa(t|IC) of the corresponding trajectoryt, wherep(π) =

pN(n0)×
∏τf−1

i=0 pni
E (〈ni, ni+1〉).

EXAMPLE 9. Continuing our running example, it is easy to
check thatG = 〈N,E, pN , ~pE〉, whereN = {n0, n3, n7}, E =
{〈n0, n3〉, 〈n3, n7〉}, pN(n0) = 1, andpn3

E (〈n3, n7〉) = 1 is a ct-
graph (depicted in Fig. 7). As we will show in the next section, G is
the ct-graph returned by our algorithm run over the l-sequence and
the constraints of our running example. In fact, the (unique) path
π = n0, n3, n7 overG corresponds to the (unique) valid trajectory
{λ1, λ3, λ5} of Example 6, and its probability isp(π) = 1. ✷

5. THE CLEANING ALGORITHM
In this section we introduce Algorithm 1, which builds a con-

ditioned trajectory graphG from an l-sequenceΓ and a setIC of
integrity constraints. In particular, the graph returned by our algo-
rithm compactly represents all and only the valid trajectories over
Γ, in the sense that each valid trajectoryt corresponds to a pathπ
overG, and vice versa. Moreover, it is such that the conditioned
probability of each valid trajectoryt coincides with that of the cor-
responding pathπ overG.

Algorithm 1 consists of two phases, calledforward (lines 5–14)
and backwardphase (lines 15–29). The forward phase consists
of one iteration for each timestampτ ∈ T . At the first iteration
(τ = 0), the setN of the location nodes belonging to the ct-graph
G being constructed is initialized with the set of the source nodes,
and the probabilities of these nodes are set to those impliedby the
a-priori probabilities. Then, atτ -th iteration,N is progressively
augmented with location nodes referring to the timestampτ + 1
and which are successors of some other location node alreadyin
N . Correspondingly, the edges between location nodes referring to
timestampτ and their successors are added toE, and their proba-
bilities are set to those implied by the a-priori probability function.
The fact that a noden is added toN at τ -th iteration means that
there is a trajectoryt compatible withn which is valid if only its
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first τ + 1 steps are considered. Clearly, in a subsequent iteration,
such a trajectoryt could be recognized as invalid due to the fact
thatn, or any of the other nodes with whicht is compatible, admits
no successor (see Proposition 1). This makes it possible thepres-
ence, at the end of the forward phase, of some “leaf” nodes (such
asn mentioned above) that are non-target nodes having no suc-
cessor. The backward phase deals with removing these leaf nodes,
along with all of the other nodes which become leaves in this phase
due to the deletion of all its successors. Furthermore, during this
phase, the probabilities of edges and those of source nodes are con-
ditioned, that is they are revised to take into account the probabili-
ties of the trajectories that are recognized as invalid.

We now provide a detailed description of Algorithm 1, showing
how it works over our running example.

While building a ct-graph, Algorithm 1 exploits an auxiliary vari-
ablen.lossfor each noden of the graph. Roughly speaking, at each
step, the value ofn.lossis the ratio between the overall probability
of the trajectories compatible withn which have been recognized
as invalid, and the overall probability of the trajectoriescompatible
with n. Moreover, Algorithm 1 exploits also a priority queueQ
which is used to store (in descending timestamp order) the location
nodesn for which n.loss is greater than0, which are the location
nodes that have to be processed during the backward phase.

The initialization phase (lines 1-4) of Algorithm 1 is as follows.
First of all, the setN of the nodes of the graphG being constructed
is initialized with the set of the source nodes yielded by function
sourceNodesthat builds them from the l-sequenceΓ (line 2). Next,
the probabilitypN(n) of each source noden is set to the probability
of the pair〈0, l〉 of Γ whichn refers to (line 3), and the queueQ is
set to be empty.

EXAMPLE 10. Consider thel-sequenceΓ = 〈Λ, p〉 and the
setIC of constraints of our running example. In the initialization
phase, Algorithm 1 works as follows. At line 2, function sourceNodes
builds the source location nodesn0 andn1 (see Example 7), and
puts them intoN . Next, at line 3,pN(n0) andpN(n1) are assigned
probabilitiesp(λ1) =

6
10

andp(λ2) =
4
10

, respectively. ✷

Forward phase
In the forward phase, for each timestampτ , for each location node
n referring toτ and belonging toN , the setS of the location nodes
n′ such thatn′ is a successor ofn is built by functionbuildSuccessors
(line 7). Next, each noden′ of S is added toN and consequently
the edges of the form〈n, n′〉 are added to the setE of G (line
10). Next, beingn′ = 〈τ + 1, l′, δ′, TL′〉 a successor ofn, the
probabilitypnE(〈n, n

′〉) of the edge〈n, n′〉 is set equal to the prob-
ability of the pair〈τ + 1, l′〉 provided by functionp in Γ. Once
all the successors ofn have been added toG, variablen.loss is
set to the one’s complement of the sum of the probabilities ofthe
the outgoing edges ofn (that is, the sum of the probabilities of the
pairs〈τ + 1, l′′〉 which do not appear in any of the successors of
n) (line 12). Finally,n is added to the queueQ if n.loss is greater
than zero (line 14).

EXAMPLE 11. After the initialization phase, Algorithm 1 works
as follows. At iterationτ = 0 (line 5), bothn0 andn1 are pro-
cessed. In the casen = n0, the inner loop processes the location
nodesn3 andn5, which, as shown in Example 8, are the only suc-
cessors ofn0. Both nodesn3 and n5 are added toN , and both
the edges〈n0, n3〉 and〈n0, n5〉 are added toE, with probabilities
p(〈n0, n3〉) = p(〈1, L3〉) = 1/3 andp(〈n0, n5〉) = p(〈1, L4〉) =
2/3. At the end of inner loop,n0.loss is set to0 (line 12) and
thusn0 is not added toQ. It is worth noting that location nodes

Algorithm 1 Building the conditioned trajectory graph

Require: Γ = 〈Λ, p〉, IC
Ensure: G = 〈N,E, pN , ~pE〉 overΓ andIC
1: SN ← sourceNodes(Γ)
2: N ← SN
3: ∀ n = 〈0, l, ·, ·〉 ∈ N , pN(n)← p(〈0, l〉)
4: Q← ∅
5: for all τ ∈ [0..τf − 1] do
6: for all n ∈ N s.t.n[λ][time] = τ do
7: S ← buildSuccessors(n,Γ, IC)
8: for all n′ ∈ S do
9: letn′ = 〈τ + 1, l′, δ′, TL′〉

10: N ← N ∪ {n′}, E ← E ∪ {〈n, n′〉}
11: pnE(〈n, n

′〉)← p(〈τ + 1, l′〉)
12: n.loss = 1−

∑

〈n,n′〉∈E
pnE(〈n, n

′〉)

13: if n.loss > 0 then
14: in(Q,n)
15: while Q is not emptydo
16: n← out(Q)
17: if n.loss < 1 then
18: for all 〈n, n′〉 ∈ E do

19: pnE(〈n, n
′〉)←

pnE(〈n,n′〉)

(1−n.loss)

20: for all 〈n′, n〉 ∈ E do
21: old← pn

′

E (〈n′, n〉)

22: pn
′

E (〈n′, n〉)← pn
′

E (〈n′, n〉)− n.loss× old
23: n′.loss← n′.loss + n.loss × old
24: if n′ 6∈ Q then
25: in(Q,n′)
26: if n.loss = 1 then
27: E ← E − {〈n′, n〉}
28: if n.loss = 1 then
29: N ← N − {n}
30: for all n ∈ (N ∩ SN) do
31: pN(n)← pN (n)∑

n′∈(N∩SN) pN (n′)

32: return G consisting of〈N,E, pN , ~pE〉

that are not successors of any node in the graph are disregarded.
For instance, thoughn2 refers to timestamp1 (see Example 7), it
is disregarded, as it is not a successor ofn0 or of n1 (as said in
Example 8). In the casen = n1, the inner loop only processes
the location noden4, which is the only successor ofn1 (see Exam-
ple 8). Thus,n4 is added toN , the edge〈n1, n4〉 is added toE,
and the probabilityp(〈n1, n4〉) is set equal top(〈1, L4〉) = 2/3.
Variablen1.loss is set to1 − 2/3 = 1/3, andn1 is added toQ
(line14). The structure ofG at end of the iterationτ = 0 of the
outermost loop is depicted in Fig. 2.
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0 L1 ^ Æ
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loss=0

t=0

n1

Q:

pN( )=4/10n1

pN( )=6/10n0

Figure 2: G and Q at the end of iteration τ = 0
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At iterationτ = 1 (line 5),n3, n5 andn4 are processed. In the
casen = n3, the inner loop only processes the location noden7

which is the only successor ofn3 (as said in Example 8). Thus,n7

is added toN , the edge〈n3, n7〉 is added toE, and the probability
p(〈n3, n7〉) of the edge is assigned withp(〈2, L3〉) = 2/3. Next,
n3.loss is assigned with1 − 2/3 = 1/3 and n3 is added toQ.
In both the casesn = n5 andn = n4, since there is no location
node which is a successor ofn5 or n4 (see Example 8),n5.loss and
n4.loss are both assigned with1 andn5 andn4 are both added to
Q. The structure ofG at end of the forward phase is shown in Fig.
3. ✷
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Figure 3: G andQ at the end of the forward phase.

Backward phase
During the backward phase, each location node which has been
added to the priority queueQ is processed. During this phase,
the probability values attached to the edges (and to source nodes),
as well as the values of thelossvariables associated with location
nodes, are revised. In particular, at line 16, a noden among those
having the highest timestamp is extracted fromQ. Then, ifn.loss
is lower than1 (meaning thatn has at least one outgoing edge),
the probability of each of the outgoing edges ofn is conditioned,
that is, its current value is divided by the sum of the probabilities
of the outgoing edges ofn (which is equal to1−n.loss) (line 19).
Next, in order to propagate backward the value of variablen.loss ,
the probability value each ingoing edge〈n′, n〉 of n, along with the
value of variablen′.loss of each noden′ of whichn is successor is
revised. Specifically, the probability of each ingoing edge〈n′, n〉
of n is decremented by the value ofn.loss multiplied by the old
probability value of the edge〈n′, n〉 (line 22). Correspondingly,
the value ofn′.loss of each noden′ of whichn is successor is in-
cremented by the value ofn.loss multiplied by the old probability
value of the edge〈n′, n〉 (line 23). Next, sincen′.loss has been in-
cremented at line 23 and thus it is greater than0, noden′ is added
to Q, if it is not already present in it (line 25). Furthermore, inthe
casen.loss = 1, the edge〈n′, n〉 is removed fromE (line 27).

At the end of the loop scanning the ingoing edges ofn, if n.loss =
1 (i.e.,n is a leaf node)n is removed fromN (line 29). Finally, the
probabilitypN(n) of each source noden in N is conditioned, that
is pN (n) is divided by the sum of the probabilities of the source
nodes belonging toN (line 31).

EXAMPLE 12. Continuing our example, the backward phase of
Algorithm 1 is as follows. At the first iteration of thewhile loop
(line 15), noden4 is removed fromQ. Sincen4.loss is equal to1,
lines 17–19, which perform the conditioning of the outgoingedges
of the current node, are skipped. Thus, Algorithm 1 processes the
ingoing edges ofn4 (lines 20–27). Specifically, asn4 has only the
incoming edge〈n1, n4〉, the probability value of〈n1, n4〉 is set to
2/3 − 2/3 = 0, and, correspondingly variablen1.loss is set to

1/3 + 2/3 = 1. Next, at line 25, no operation is performed since
n1 is already present inQ. Then, at line 27, the edge〈n1, n4〉
is removed fromG, and, at line 29,n4 is removed fromN . The
structure ofG at end of the while loop processingn4 is shown in
Fig. 4.
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Figure 4: Structure of G after removing n4 from Q and pro-
cessing it.

The second iteration of thewhile loop processes the noden5.
Sincen5.loss is equal to1, no conditioning of outgoing edges is
performed. Then, Algorithm 1 processes the ingoing edges ofn5

(lines 20–27), and, reasoning as in the case described above, the
probability value〈n0, n5〉 is set to0, and variablen0.loss is set
to 2/3. Next,n0 is inserted intoQ (line 25), the edge〈n0, n5〉 is
removed fromG (line 27), andn5 is removed fromN (line 29).
The structure ofG at end of the while loop processingn5 is shown
in Fig. 5.
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Figure 5: Structure of G after removing n5 from Q and pro-
cessing it.

At the third iteration of thewhile, noden3 is removed fromQ.
Sincen3.loss is lower than1, Algorithm 1 performs the condi-
tioning of the outgoing edges ofn3 so that the probability of the
unique outgoing edge〈n3, n7〉 of n3 is set to1. Next, the unique
ingoing edge〈n0, n3〉 of n3 is scanned, the probability of〈n0, n3〉
is set to1/3 − 1/3 · 1/3 = 2/9, and variablen0.loss is set to
2/3+1/3 ·1/3 = 7/9. Sincen0 is already inQ, the iteration pro-
cessingn3 ends without doing anything else. The graph resulting
from this is shown in Fig. 6.
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Figure 6: Structure of G after removing n3 from Q and pro-
cessing it.
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At the fourth iteration of thewhile loop the noden1 is is removed
from Q and processed. Sincen1.loss is equal to1 and it has no
ingoing edges, the only operation performed is that of removing
n1 fromN (line 29). Finally, the noden0 is removed fromQ and
processed. The conditioning of its outgoing edges (lines 17–19)
entails that the probability of〈n0, n3〉 is set to1. Asn0 has no
ingoing edges andn0.loss < 1, the lines 20–29 are skipped. At this
stage, the probability of the source noden0 (the unique that is still
in N ) is conditioned, obtainingpN(n0) = 1, and the algorithm
returns the ct-graph shown in Fig. 7. ✷
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Figure 7: Ct-graph returned by Algorithm 1.

As regards the computational complexity of our algorithm, it is
easy to see that Algorithm 1 works in polynomial time w.r.t. the
length of trajectories over the l-sequenceΓ (that is, the size ofT )5.
The actual computational cost of our algorithm will be experimen-
tally validated in the next section.

Remark: querying cleaned data.We do not give details on how
queries can be evaluated on ct-graphs, as ct-graphs can be seen as
Markovian streams and thus warehousing systems for Markovian
streams, such as Lahar [22, 18, 19], can be used to store and query
ct-graphs. Indeed, in [22, 18, 19] a Markovian stream with only
one node (tuple) for each pair〈τ, l〉 is used for encoding RFID data,
meaning that each stay has no memory of what happened in the past
stays. However, the Lahar data model is expressive enough toallow
storing more than one tuple for each pair〈τ, l〉, thus allowing the
representation of ct-graphs. In other words, our ct-graphscan be
viewed as a way of simulating memory in Markovian streams, by
creating different nodes for a stay, depending on its alternativex-
long sequences of past stays (wherex depends on the constraints).

6. EXPERIMENTAL VALIDATION
All the experiments have been carried out on an Intel i7 CPU

with 8GB RAM running Windows 7.

6.1 Data Sets
We considered two synthetic data sets (namely,SYN1 andSYN2),

obtained using our synthetic data generator on two buildings of four
and eight floors respectively. An example map of a floor is reported
in Fig. 1(a). Each synthetic data set consists of100 trajectories, that
is, 25 trajectories for each duration in{10m, 60m, 90m, 120m}.
The 25 trajectories inSYN1 with durationx minutes will be de-
noted asSYN1x (the same forSYN2).

6.2 The a-priori probability distribution pa(l|R)

As discussed in the introduction, several ways can be adopted
for obtainingpa(l|R). In our experiments,pa(l|R) was obtained
as follows. First, the map in Fig. 1(a) was partitioned according to
a regular grid of square cells having size0.5mt×0.5mt. Then, a
tag was kept inside each of these cells for30 seconds and the bi-
dimensional arrayF (consisting of one row for each reader and one
column for each cell) was progressively filled by reporting in each

5We refer to data complexity, according to which the size of the set
of integrity constraints and the size of the set of locationsare fixed.

cellF [r, c] the number of times that the tag was detected by reader
r during its30-second long stay inside cellc.

After populatingF , pa(l|R) was obtained as follows:

pa(l|R) =











1
|L|

, if ∀c ∈ Cells
∏

r∈R F [r, c]=0;

∑

c∈Cells(l)
∏

r∈R F [r,c]
∑

c∈Cells
∏

r∈R F [r,c]
, otherwise

whereCells(l) andCellsrepresent the cells inside locationl and all
the cells inside the map, respectively.

Condition∀c ∈ Cells
∏

r∈R
F [r, c] = 0 means that there is no

cell c such that the tag used for learningF has been detected by
all the readers inR when it was inc. In this case, we have no a-
priori knowledge about the probability that an object is in alocation
given that it has been detected by the readers inR, thus we assume
a uniform distribution overL.

6.3 Integrity constraints
Over each data set, the following sets of constraints were consid-

ered:

– DU : it contains all theDU constraints implied by the map;
– LT : it contains anLT constraint for every location but the cor-

ridors, imposing that the duration of every stay at any location
must be not less than5 seconds.

– TT : it contains aTT constraint for every pair of locations which
are connected, but not directly connected. For each pair of loca-
tionsL1,L2 of this kind, the constraint was automatically gener-
ated by taking the ratio between the minimum walking distance
betweenL1 andL2, and the maximum speed of a person walking
inside a building (which was assumed to be2ms−1).

6.4 Synthetic data generator
The data generator consists of two modules: the trajectory gen-

erator and the reading generator.
The former takes as input the numbernum and the durationTf

of the trajectories to be generated, and a graph of locations, whose
nodes represent rooms (described by the coordinates of their top-
left and bottom-right corner) and whose edges represent doors be-
tween rooms (edges are labeled with the coordinates of the corre-
sponding doors). Thenum generated trajectories consist of one
triple 〈x, y, τ 〉 for eachτ ∈ [0..Tf ], wherex, y are coordinates
inside the space covered by the map.

Each trajectory is constructed iteratively, and, at each step, the
following trajectory portion is generated. First, the object (denoted
aso) moves (with velocityv) from an “entrance point”ep of the
current rooml to a “rest-point”rp insidel; then,o stays atrp for
lat time instants; finally,o moves (at velocityv) to an “exit point”
ep′ of l. The rest-pointrp is randomly generated inside the por-
tion of space covered by the room, the latency timelat is randomly
generated in[30s..60s], the velocityv is randomly generated in
[1ms1..2ms−1], while the exit-pointep′ is randomly generated
among the doors connectingl with other rooms. The choice of
ep′ determines the room and the entrance point at the next step (at
the first step, the current location and its entrance point are ran-
domly generated). The generation of a trajectory ends when the
input duration has been reached.

The reading generator takes as input a trajectory generatedby
the first module, a grid-partitioning of the map, and a model for
the reading capacity of the RFID antennas, in terms of an array
F [r, c] analogous to that defined in the previous section. Specifi-
cally, each cell inF [r, c] represents the percentage of times that an
object staying for consecutive time points inside the cellc of the
grid is detected by readerr.
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The readings are generated by transforming each triplet〈x, y, τ 〉
into a reading〈R, τ 〉, whereR is obtained as follows. First, the
cell c of the grid containing the point with coordinatesx, y is deter-
mined. Then, for each readerr, a numberz is randomly generated
in [0, 1], andr is put intoR if and only ifz is less thanF [r, c]. This
means interpretingF [r, c] as the probability that an object inc is
detected byr, and assuming that readers behave independently.

6.5 Data Cleaning Cost
Figures 8(a) and 8(b) report the average running time of CTG

over SYN1 andSYN2 vs. trajectory length. In all the diagrams,
CTG(X) denotes our approach considering all the constraints in
X.

The curves show that:

– for the same data set and set of constraints, the running time in-
creases linearly with the trajectory length.

– for the same data set and duration of trajectories, considering a
wider set of constraints slows down the cleaning task. This was
rather expected, as exploitingLT andTT yields a larger number
of nodes in the conditioned trajectory graph.

– CTG runs faster onSYN1 than onSYN2, especially when also
TT are considered. In fact, the larger the map, the longer the
maximum duration of the generatedTT constraints over each
location. This may increase the number of location nodes which
must be created over the same pair〈time point, location〉.

6.6 Accuracy of query answers over cleaned
data

In this section we analyze the accuracy of the query answers
evaluated over the cleaned data. We considered two kinds of queries
(namelystayandtrajectory queries), and evaluated them over the
ct-graphs returned by our approach.

A stay query asks where the monitored object was at a specified
time point, while a trajectory query asks whether the trajectory fol-
lowed by the monitored object matches a pattern. Specifically, a
pattern is a sequence of location conditions, where a location con-
dition is eitheri) a location name, possibly followed by[n], where
n is a number of time points, orii) the wildcard symbol “?”.

The location conditions in a pattern must be expanded as fol-
lows:

– “?” → a (possibly empty) sequence of (any) locations;
– l→ a sequence ofl of length at least one;
– l[n]→ a sequence ofl of length at leastn.

The answer to a trajectory query isyesiff the sequence of loca-
tions travelled by the object can be obtained by expanding the loca-
tion conditions in the query pattern. For instance, trajectory query
q =?l1[3]?l2[2]? asks whether the object, at some point, stayed at
l1 for at least3 consecutive time points, and then travelled towards
l2 (passing by any other locations), where it stayed for at least two
consecutive time points.

The probabilistic answers of stay and trajectory queries over ct-
graphs are the natural probabilistic extensions of their determin-
istic semantics. Thus, given a ct-graphG, the answerq(G) of a
stay queryq over time pointτ is a set of locations, each associated
with the probability that the object was at the location at time τ
according toG (this means assigning to a location the sum of the
probabilities of the trajectories represented inG whoseτ -th step is
at this location). Similarly, given a ct-graphG, the answerq(G)
of a trajectory queryq is yes(resp.,no) with probability p (resp.,
1 − p), wherep is the sum of the probabilities of source-to-target
paths overG representing trajectories matching the query pattern.

Correspondingly, given a stay queryq and a ct-graphG, the ac-
curacy of the answerq(G) will be measured as the probability as-
sociated withL in q(G), whereL is the answer ofq evaluated on
the actual trajectory6. Similarly, given a trajectory queryq and a ct-
graphG, the accuracy of the answerq(G) will be measured as the
probability associated with the same answer (yesor no) returned by
evaluatingq on the actual trajectory.

As regards stay queries, for all the considered data sets, wecon-
sidered a query workload consisting of100 stay queries over each
trajectory. Each query was generated by randomly picking a time
point of the trajectory. The average accuracies of the answers of
stay queries for the two data sets are reported in Figure 9(a).

As regards trajectory queries, we randomly generated50 queries
over each trajectory, whose pattern contain two, three or four loca-
tion symbols, separated by symbol?. Specifically, each trajectory
query is generated as follows. First, a numberx is randomly cho-
sen in2, 3, 4. Then,x locationsl1, . . . , lx are randomly chosen
among those appearing in the map, and, for each picked location li,
a numberni in −1, 3, 5, 7, 9 is generated. The generated pattern
is 7 ? l1[n1] ? . . . ?lx[nx] ?.

Fig. 9(b) and Fig. 9(c) report the average accuracy of trajectory
queries vs. the two data sets(b) and the query length (for the case
of SYN2) (c), respectively.

6.7 Querying efficiency and ct-graph size
The average query execution times of CTG over the two data sets

vs. the trajectory length are reported in Fig. 8(c). The query exe-
cution times of CTG grows linearly with trajectory length. How-
ever, when running queries over ct-graphs obtained using only DU
andLT constraints much faster execution times are obtained: this
derives from the fact that these ct-graphs are smaller than those ob-
tained when considering alsoTT constraints.

As regards the size of ct-graphs, we obtained that the average
memory needed to store ct-graphs representing120min-long trajec-
tories is25 Mb in the case thatDU,LT, TT constraints are used,
and it is only640 kb in the case thatDU constrains are used by
CTG.

7. RELATED WORK
The management of RFID data has been studied from different

perspectives. The definition of models for suitably representing
RFID data has been addressed in [1, 3, 17], where several techno-
logical aspects and management issues for RFID data have been
discussed, and a number of requirements in data modeling and
software management have been highlighted. In the same data-
modeling context, the problem of defining an efficient warehous-
ing model along with techniques for summarizing and indexing
RFID data has been investigated in [9, 8]. These approaches can be
viewed as lossless compression techniques for RFID data. Lossy
compression techniques for RFID-data are instead proposedin [6,
5] and in [2], where compression can be also seen as a form of
cleaning.

The problem of cleaning RFID data was more specifically ad-
dressed in several other works. In [14], cleaning techniqueSMURF
was proposed, specifically designed for dealing with false nega-
tives. SMURF is a combination of sampling techniques with an
adaptive, declarative smoothing filter, which determines whether an
object which has not been detected by a reader was actually inthe

6For SYN1 andSYN2, the actual trajectories were generated by the
trajectory generator module.
7In the case thatni = −1 , then conditionli is used instead of
li[ni].

388



Figure 8: Average cleaning times vs SYN-1 (a) and SYN-2 (b) and average query time on SYN-1/SYN-2

Figure 9: Average accuracy for stay queries (a) and trajectory queries (b) vs. the two datasets, and for trajectory queries overSYN2
vs. the query length (c)

query range by looking at the “history” of detections of the same
object at the same location. SMURF works at level of readers and
not of locations, and cleans the sequences of readings generated by
distinct readers by considering them separately. Thus, differently
from our approach, it can not exploit the spatio-temporal correla-
tions described by the constraints considered in our scenario when
cleaning the data.

In [4, 25], sampling techniques guided by the constraints are
used to clean RFID data, as they generate (weighted) samplessatis-
fying the constraints (the samples can be viewed as cleaned data in
the sense that they are representative of consistent interpretations
of the data). Although “sampling under constraints” is a general
statistical framework which, in principle, may deal with any kind
of constraint, these works use this framework under constraints in-
volving the positions where the same object is detected at a given
time point (they do not explicitly deal with constraints involving the
positions at different time points). The main relationshipbetween
our work and sampling techniques is that our ct-graph can be used
a basis for efficiently performing sampling: any trajectorypicked
from the ct-graph is valid, thus sampling can be done over it with no
need to devise mechanisms for avoiding the generation of invalid
samples. In future work, we plan to investigate differencesin terms
of efficiency between constructing a ct-graph and picking samples
from it w.r.t. some adaption of the “sampling under constraints”
framework to RFID-trajectory data.

In [23], the cleaning problem is addressed in a different scenario:
the reader is mobile, its position is known at each time point(possi-
bly with some approximation), and the problem is that of determin-
ing the position (in terms of spatial coordinates) of taggedobjects
from the noisy and incomplete stream generated by the reader. In
[10], a general cleaning framework is introduced, which relies on
a collection of cleaning methods, associated with costs. The appli-

cation of the framework on an RFID data set results in a cleaning
plan that optimizes the overall accuracy-adjusted cleaning costs by
determining the conditions under which inexpensive methods are
appropriate, and those under which more expensive methods are
necessary. In [24], some form of cleaning (elimination of dupli-
cates) is performed while suitably populating a database instance
where the represented events are the changes of locations ofthe
monitored objects. [15] is a general probabilistic framework for
fixing streaming data (thus, also RFID data) which are inconsistent
w.r.t. some integrity constraints. The fixing strategy consists in
adding probabilistic tuples whose probabilities are determined so
that the integrity constraints are satisfied. The constraints are in-
equalities on the number of tuples satisfying a propertyX, and are
considered to be satisfied when theaveragenumber of tuples hav-
ing propertyX satisfies the inequality, where the average is evalu-
ated on all the possible interpretations of the probabilistic database.
This is different from our approach, where all the interpretations of
the data which are not consistent with the integrity constraints are
discarded. Another difference is that the approach in [15] aims at
fixing only the marginal probabilities of the tuples. Thus, it could
assign probability40% to a pair〈τ, l〉, but it would not be able to
represent that39% out of 40% covers the case that the object at
τ + 1 is at a locationl′, while 1% out of 40% covers the case that
the object atτ + 1 is at a locationl′′.

Other related work/research projects are the following:

– [16], where the problem of conditioning probabilistic databases
was first addressed. Indeed, our approach is inspired to the for-
mal framework proposed in [16], that we specialized for cleaning
RFID-data. In this seminal work,ws-treeswere introduced as a
compact representation of conditioned databases, and algorithms
were devised for obtaining a ws-tree starting from a probabilistic
database and a set of constraints expressed as ws-sets. However,
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directly applying the technique in [16] to our scenario would
require to give exponentially large ws-sets (encodingDU , LT
andTT constraints) as input to their algorithm for obtaining ws-
trees. This makes using the general approach in [16] impractical
for conditioning RFID-data.

– the Lahar Project [18, 19, 22]: see Remark in Section 5.

– the Spatial PrObabilistic Temporal (SPOT) framework, which is
a general paradigm for reasoning with probabilistic statements
about moving objects (see [13] for a survey). In [12],reach-
ability rules (corresponding to ourDU constraints) have been
introduced and exploited in a different problem, i.e., revising a
KB representing moving objects when fresh information (in the
form of probabilistic spatial-temporal atoms regarding their po-
sition) is added to it. The issue of querying SPOT data has been
investigated in [21, 20, 11] but without considering data violating
reachability rules.

8. CONCLUSIONS AND FUTURE WORK
A probabilistic cleaning framework for RFID data has been in-

troduced, which cleans trajectories by conditioning them to the
event that integrity constraints encoding some knowledge about
the map and the motility characteristics of the monitored objects
hold. Future work will be focused on extending the frameworkto
take into account other forms of correlations, such as thoseholding
in groups of objects moving together, which typically characterize
supply-chain scenarios.
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