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ABSTRACT

A probabilistic framework is introduced for reducing thénément
uncertainty of trajectory data collected for RFID-mon&drob-
jects. The framework represents the position of an objeetiah
instant as a random variable over the set of possible latatibhe
probability density function of this random variable istialized
according to an a-priori probability distribution, and theevised
by conditioning it w.r.t. the event that integrity constri are sat-
isfied. In particular, integrity constraints implied by th&ucture
of the map of locations and the motility characteristicsas the
maximum speed) of the monitored objects are exploited (hame

direct unreachabilitylatencyandminimum traveling timeonstraints).

The efficiency and effectiveness of the proposed approaziasr
sessed experimentally on synthetic data.

1. INTRODUCTION

RFID-based applications. The recent improvements in the RFID
technology have led to the pervasive use of RFID devices ap-a s
port for object tracking. Basically, RFID technology ralien two
types of device, i.e.tags (which can emit a radio signal encod-
ing simple identification information) anckaders(which detect

the signals emitted by tags). Thus, stays and movementsecan b

monitored by appropriately placing RFID readers in the fioces
and then attaching RFID tags to the objects to be tracked.

One of the prominent scenarios which can benefit from theiise o

RFID technology is the monitoring of people, animals, angcis
moving inside buildings [18, 19, 22], such as museums, dshoo
hospitals, office buildings, factories, farms. The reasonghis
kind of monitoring are various, and range from collectingadi®
support the behavior analysis over the monitored entitibeensur-
ing security for people and assets. For instance, infoonath the
trajectory followed by monitored people can be used to preve
look into crimes, and detect dangerous or suspicious gnatAs
another example, information on the trajectory followedabyis-

itor inside a museum can be used to provide her during hetr visi

with very detailed context-aware information, that arespealized
on the basis of the artworks she saw in the rooms visited quely.
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Ambiguity of RFID data. For each monitored object, the collecte
data are pairétimestampreaden, or, equivalently(timestampset
of reader$ (called ‘reading$ in the following), each encoding the
fact that the object was detected by the specified set of RE&D-r
ers at the specified time instant. Analysis tasks on the roadt
world commonly reason on an interpreted version of thesa, d
obtained by moving from the point of view of readers to thatoef
cations. In particular, object-tracking and trajectonalgsis tools
often require the readings to be in the foftimestamplocation).
The point is that, generally, there is not a one-to-one spon-
dence between locations and readers, and no way to detstimil
cally decide the location given that a set of readers dedenteob-
ject: the same location may contain zones where an objedbea
detected by different readers, the same reader may defectoht
different locations, and false negative readings may hapgeavell
(an object close to a reader is not detected, owing to irreEmtes
or malfunction).

For instance, consider Fig(d). If an objecto was detected at
some instant by both readersandrs, two locations are possible
L, or Ls. Analogously, ifo was detected bys only, we can not
conclude that it was surely i3, as it could be the case that
failed to detect it despite it was close enough to its anteiihas,
also the case thatwas inL, (in particular, in the zone af, where
an object can be detected by bethandrs) is a possibility.

This suggests that the association readers/locations eaatb
urally modeled in probabilistic terms, for instance by nmeaf a
probability distributionp® (1| R) defined for each locatiohand set
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Figure 1: (a) A floor of a building; (b) map used in Example 4
and subsequent ones.
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R of readers, which represents the probability that an olgjeet
tected by all and only the readershis at locationl. In the case
depicted in Fig. 1p°®(I|R) could be such that®(L:|{ri,7s5}) =
p*(Lal{r1,75}) = 0.5 andp®(Lo|{ro}) = 1 (for the sake of
brevity, we do not report the other combinations locatiet/sf
readers). Such a probabilistic model can be obtained inraeve
ways. For instance, by building a “physical” model, whickes

trajectories resulting from usingf* (¢|©) to interpret the sequenct
of readings, and the cleaning task consists in revising ttblegbil -
ities assigned to these trajectories.

Cleaning RFID data. Although a number of data-cleaning tect
nigues for RFID data have been proposed (see Section 7),aha
them do not exploit any knowledge on the map and on the mc
ity characteristics (such as the maximum speed) of the i@t

into account the placement of the readers over the map and thegpjects, even if the users who analyze the data are typieaHy

variability of the reading rate of the readers vs. the distanAn
example of this approach is the three-state model propospd.i

Otherwise p®(I|R) can be defined experimentally, on the basis of

samples of detections of tagged objects (this is how we obdai
the distribution®® (1| R) used in our experiments).

Things become more complex when trying to translate a seguen

of readings collected for an objegbver a time interval into possi-
ble trajectories (i.e., sequences of locations). A naive twasolve
this problem is to use the knowledge i5f(!| R) and consider the
steps of the trajectory independent from each other, aseiriah
lowing example.

ExampPLE 1. Consider Fig. 1a) and assume that, at both in-
stantsO and 1, objecto is detected by both; and rs, while at
instant2 it is detected by-,. Moreover, assume that’({|R) is
as discussed above, that is, objects detected by/hotimdrs are
at location L, with probability 0.5 or at L4 with probability 0.5,
and those detected by are at Lo with probability 1. Reasoning
only on the basis of these probabilities and exploiting rohier
knowledge (thus assuming independence between differeniri-
stants), we have that the trajectories followedtyompatible with
the readings areity. Ly Ly Lo, to: L1 L4 Lo, t3: La Ly Lo, t4:
L4 L4 Lo, each with probability).25(= 0.5 - 0.5 - 1).

Thus, independence assumption allows for reasoning atmut t
jectory probabilities as follows. Consider an objeahoving over
time interval 7 = [r..7,], and the sequence of readin@s =
(11, R1), ..., (Tn, Rn), meaning that, at each € T, o was de-
tected by the seR; of readers. Then, the probability thatfol-
lowed the trajectory = 14, . .., , (meaning thab was at location
l; at time pointr;, for each: € [1..n]) can be expressed (under the
independence assumption) a&(t|©) = II;;p*(l;|R:). Unfor-
tunately, as highlighted in the following example, the @bitities
returned byp®(t|©) can be very different from those returned by
the “actual” probability distributio®Pr(¢|©).

EXAMPLE 2. (continuing Example 1). Looking at the map, we
can infer thatt, is the only correct interpretation of the data, since

Lo and L4 have no direct connection (as they are divided by a

wall), and L, is directly connected (by means of a door) ke
but not to L4. Thus, a correct probability distribution over the
possible trajectories, t2, ts3, t4 is as follows: Pr(¢1|©) = 1,
Pr(t2|®) = Pr(t3|©) = Pr(t4|©) = 0, where® = 61, 6>, and
91 = (7'1,{7'1,7’5}), 92 = <T2,{T'()}>.

The point is that while?(I|R) (and, in turn,p®(¢|©)) is easy
to obtain (as discussed above), finding a formulationFo(t|©)
is very hard, as it requires analyzing and encoding the lztivas
among possible positions over time.

guainted with these aspects. The point is that, from thiskedge
of the domain, constraints can be naturally derived on tmaec-
tivity between pairs of locationslirect unreachabilityconstraints)
and/or on the time needed for reaching a location startiom fan-
other one fraveling-timeconstraints): as explained in the follow
ing example, these constraintsould be profitably used at leas
to discard interpretations of the data corresponding toriaistent
trajectories.

ExampPLE 3. Consider the scenario of examples 1 and 2. T
map easily implies a set dfirect unreachabilityconstraints, one
for each pair of rooms which are not directly connected tigloa
door, such aslo, L4, and L1, L4. In particular, these two con-
straints are those exploited in Example 2 to infer thais the only
possible trajectory in accordance with the readings andrtiz.

The map implies further constraints, other than direct awcte
ability. For instance, it says thal, and Ls, although close to one
another, are connected only by a pretty long path. Reasgnibl
can be imposed that5 secs are required to go through this pat
(this will be called ‘traveling-timeconstraint”). This constraint
implies that, when interpreting the readings for a persorvimg
across the map, all the interpretations corresponding &jetcto-
ries where the person reachdds from Lo in less thanl5 secs
should be discarded. d

The discussion in Example 3 explains how considering ifitteg
constraints can reduce uncertainty, as it allows trajextaio be
removed from the valid interpretations of the data. Thee pbint
becomes how to reasonably combine the integrity conssraiith
the a-priori probabilistic model encoded hy* (| R), in order to
devise a mechanism for revising the a-priori probabilitdéghe
remaining valid trajectories and making them sum up.to

Arigorous approach (commonly adopted in probabilisti@adase
to enforce constraints over probabilistic data [16, 7]pipérform
conditioning starting from the a-priori probabilities (which do nc
take into account the constraints), the probabilities ef tifajec-
tories are re-evaluated as conditioned to the event thatdhe
straints are satisfied. That is, given a €t constraints, proba-
bilities of the formp®(t|©) are revised intep®(t|© A ZC). This
way, the probability of invalid trajectories becom@swhile that
of each valid trajectory becomes the ratio of its a-priooha-
bility to the overall a-priori probability of the valid tragtories.

1 It is worth noting that direct-unreachability (DU) and teding-
time (TT) constraints can be reasonably assumed to be bleites
obtaining them does not require all that specific knowledgihe
domain. In particular, DU constraints can be easily inféfirem
the map of the locations, and TT constraints can be easigjrudd
by reasoning on the distances between pairs of locationghenc

In this paper, we address this problem: given a sequence of maximum speeda of the objects being monitored. Obviously, tr

readings® and exploiting the knowledge qi*(I|R) (and thus
p?(¢]©)), how can we effectively and efficiently revipé(t|©) so

that it takes into account possible correlations insidedtita, thus
obtaining a better estimate &% (¢|©)? Intuitively enough, revis-

ing p*(t|©) according to the known correlations can be viewed as

a cleaning problem: the data to be cleaned are the (prosiad)ili
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map is known to any user asking for cleaned data (as she weill
these data to analyze trajectories!), and reasonablyrésgign up-
per bound on is easy in several contexts, such as people visitin
museum or moving inside an office building. In fact, in our esip
ments, these constraints have been inferred automatitiaéiyonly
input of the inference task were the map and the maximum spe
of the objects being monitored.



For instance, in the case discussed in examples 1, 2, 3, each aL and whose probability density function (PDF)fi§Xy = [) =

priori probability p®(¢;|©) is revised intop®(t;|© A ZC), where
p®(t2|® AN ZIC) = p*(t3]© NIC) = p®(t4|© NZC) = 0, while
p*(t11© AZC) = 322 = 1. In general, constraints reduce the
number of valid trajectories, and the conditioning assignthem
“new” probabilities by keeping, for each pair of trajectsj the
same probability ratios between their a-priori probaieiit For in-
stance, considet trajectoriesty, to, t3, t4 With a priori probabil-
itiesp1 = 0.5, p2 = 0.25, ps = 0.2, pa = 0.05, respectively.
If t3 andt4 are invalid, then they will be discarded, while and

t2 will be assigned the (conditioned) probabilitigs> = 2 and
225 — 1. This reflects the fact that, before conditioning,was
twice as probable as.

Contribution. The revision problem of evaluating (¢|© A ZC)
starting fromp®(¢|©) is generally complex. The naive approach
of enumerating the trajectories compatible with the regslimis-
carding those not satisfying the constraints, and finallisieg the
probabilities of the remaining ones is often infeasiblehasrajec-
tories to deal with are too many. For instance, if, for eactant

in the time interval1..100], two locations are compatible with the
readings, we have to consid2f™ (that is aboutl0°°) trajectories.

Our main contribution is a framework which cleans RFID data

by exploiting direct unreachabilityand traveling-timeconstraints
(along with latency constraints, which will be introduced in the
core of the paper). The proposed approach returns a congpaet r
sentation §t-graph of the valid trajectories and their conditioned
probabilities. This compact representation is obtainedibyter-
ative algorithm which builds a graph whose nodes corresgond
pairs (location timestamjp and where paths from source to target
nodes one-to-one correspond to the valid trajectoriesr¢soand
target nodes refer to the first and last instant of the timerwad of
interest, respectively). This graph is built incrememtadiming at
preventing the creation of nodes and edges which would piztids
corresponding to invalid trajectories. The same algoritdgsigns
to each node or edge a probability obtained by suitably imyis
the a-priori probability of the corresponding pélocation, times-
tamp, so that the overall probability of a source-to-target path
the conditioned probability of the corresponding trajegto

2. PRELIMINARIES

We consider a s&R = {r1,...,7,} of RFID readers, a single
objecto equipped with an RFID tag, and the set= {l1,...,l.}
of locations among which moves while monitored by the readers

in R. We assume that time is represented by the set of non-negativ

integers, and denote §5 = [0..7¢] the time interval over whiclh
is monitored by the readers .

A readingd of o is a pair(r, R), stating that, at time € T, o
was detected by all and only the reader&inwhereR C R (R=10
means thab was detected by no reader at timp Its components
7 andR are denoted agtime andd[readers.

A reading sequencg-sequence) foo over7T is a setO of read-
ings ofo containing,v7 € T, a unique readingr, R).

We assume given the probability distributipfi({|R), defined
over everyl € £ andR C R, representing tha-priori probability
that an object is in the locatidngiven that it has been detected by
all and only the readers iR?.

Givenp®(l|R) and a reading, we can associatéwith the (dis-
crete) random variabl&y, which is defined over the locations in

2We assume that this probability does not depend on the dettect

object and is invariant over time. The extension of our framr
to the more general case that this probability varies owee tnd
type of objects is straightforward.
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p(l| 0[readers). Basically,Xy represents the alternative locatior
of the object at tim@[timeg which are compatible with the fact that
at that time, it was detected by the $@eaders of readers. Each
alternative location is assigned the probability impligdB.

Givenp“(I|R) and an r-sequend®, we define theprobabilis-
tic) location sequencél-sequence for short) corresponding @
(according tp®(I|R)) as the sef' = {Xy |6 € ©}.

For the sake of presentation, we will represent any |-secpie
by making explicit all the pairgtimestamplocation) compatible
with the readings in the corresponding r-sequence. Thahés|-
sequencé&’ corresponding to the r-sequen®edor o over7T will be
denoted as a palf = (A, p), where:

— Ais a set of pairs of the form = (r, 1), with € T andl € L,
containing at least one pa(r, I) for eachr € T;

— p assigns to each pajr, ) € A the valuef(Xy = 1), wheref is
the reading at time. That is,p assigns ta/r, l) the probability
that the object was at locatidrat timer, as implied by the PDF
of the random variable corresponding to the reading at time

Given an I-sequende = (A, p), we assume that contains only
pairs which are assigned a non-zero probabilitypby
From now on, in the examples we will consider the map in Fig.

EXAMPLE 4 (RUNNING EXAMPLE). Consider the r-sequenc
© ={(0,{r1}), (L, {r2}), (2, {ra})} andp®(I|R) s.t. p*(L1[{r1})
15, p*(L2l{r}) = 15, p*(Ls|{r=}) = 5, p"(Ls|{ra}) = 3,
p*(La|{r2}) = %, andp®(Ls|{rs}) = %. The corresponding I-
sequencd” = (A,p) issit. A = {A1 = (0, L1), A2 = (0, L2),
As = (1, L3), Aa = (1,L4), As = (2, L3), A¢ = (2, Ls)}, and
p(M) = 55, p(A2) = 15, p(A3) = 3, p(M) = p(Xs) = £, and
p()\ﬁ) = % O

Given a pair\ = (r,1) € A, we denote with\[time] and A[loc]
the first and the second componentofespectively.

DEFINITION1 (TRAJECTORY). Let® be an r-sequence ove
T andT' = (A, p) be the I-sequence corresponding@o A tra-
jectoryoverI is a sett C A of pairs such that, for each € T,
there is a unique paih € t such that\[time] = 7. The (a-priori)
probability oft is p* (t|©) = [],c, p(N). O

For the sake of simplicity, in the following we assume given
r-sequenced, thus we writep® (¢t) instead ofp® (¢|©).

The set of the trajectories over an I-sequeices denoted as
T(T"). Given atrajectory, the pair\ € ¢ such that\[timg = 7 is
said to be the-th stepof ¢.

Basically, a trajectory over an |-sequericés obtained by pick-
ing, for each timestamp, one of the possible locations cditvipa
with the reading at that timestamp, and thus representsssifgle
interpretation” of the readings. Obviously, many trajeie are
possible over the same I|-sequence: in particular, theirb@uris
IT.c7 | {A € AJA[timg = 7}/, corresponding to all the ways o
picking a location compatible with the observed readings\aith
p®(l|R) at each time point. Each of them is associated with a pr
ability, implied byp® (1| R) under the assumption of independen
between the random variableslin This, in turn, means consider
ing as independent the locations where the object was invaoy
time points. Itis easy to see that, ;- p*(t) = 1.

EXAMPLE 5. Two out of theB trajectories over the I-sequenci
I' = (A, p) of Example 4 aré; = {\1, A3, A5}, which means that
objecto went fromL; to L3 and stayed in_s for two consecutive
timestamps, anth = {\1, A3, A¢ }, which describes the case the



objecto went from locationl; to Ls through Ls. Their a-priori
probabilities arep” (t1) = p(A1)-p(As)-p(As) = 5= andp® (t2) =
p(A1) - p(Xs) - p(Ne) = 55- O

In what follows, we will see how integrity constraints camit
the number of trajectories which should be considered &g, vaus
reducing the uncertainty inherent to the readings.

3. CLEANING EXPLOITING INTEGRITY
CONSTRAINTS

We consider three kinds of integrity constraints (nameigect
unreachability traveling time andlatencyconstraints), whose def-
inition is as follows.

Given two locationg, , I> € £, adirect unreachabilityconstraint
(DU) has the fornunreachablé¢!l:, I ) and states that no object can
reachi, from [; in one time point. Given two locatioris, l» € £
and a non-negative integer atraveling time(7"T") constraint is of
the formtravelingTimél,, I, v) and states that, for any object, the
time needed to move from to I» is not less thaw. Finally, given
a locationl € £ and a non-negative integéy alatency constraint
(LT) associated with is denoted atatencyl, §) and imposes that
every time an object goes into locatignt must stay inl for at least
4 time points.

Intuitively enough,DU constraints are implied by the structure
of the map, and'T" constraints are implied by the minimum dis-

Itis easy to see that trajectory of Example 5 is valid, as it does
not violate any constraint ifC. Trajectoryts in the same example
is not valid, as it does not satisfsavelingTimé L+, Ls, 3). Indeed,
the difference between the timestamp®and the timestamp of;
is 2. Itis easy to see that is the unique valid trajectory over
andZC. ad

Given a sefZC of integrity constraints and a locatiére £, we
define maxTravelingTim@) = max{v|travelingTimél,!’,v) €
IC}, i.e., maxTravelingTim@) is the maximum among the min
imum traveling times required for objeetto move froml to any
other!’ € £ according to the constraints #C.

In the rest of the paper, we assume that an |-sequéhaad a
setZC of integrity constraints are given.

3.1 Revising the probabilities of the trajecto-
ries: the problem

As explained above, integrity constraints can be explotted
clean the data, as they allow valid trajectories to be disished
from invalid ones. In order to go through the cleaning precése
problem must be addressed of how to assign a reasonablebgrot
ity to the valid trajectories, given that the a-priori prbb#ies of
the trajectories do not take into account the cleaning etiethe
constraints. In fact, invalid trajectories have non-zeiari prob-
abilities (although these trajectories are not valid intetations of
the readings), and the a-priori probabilities of valid épries do

tances between the locations and the maximum speed of the ob-not sum up tal (though these trajectories are the only possible

jects. We already discussed on haw/ andT'T" are easy to be

obtained, and on the fact that they can be reasonably assttmed

be available in several contexts (see footnote 1 in thednirtion).
As regards latency constraints, they take into account kysip
cal inertia of objects, as well as the processing times (fongl
some job). Users can specify latency constraints even icdke

terpretations of the readings).

Arigorous approach (commonly adopted in probabilisti@bdase
to enforce constraints over probabilistic data [16, 7]pipérform
conditioning starting from the a-priori probabilities, the probabil
ties of the trajectories are evaluated as conditioned tevhat that
the constraints are satisfied. That is, the probability edlid tra-

that they do not encode a true knowledge of what happens in thejectories become8, while that of each valid trajectory become

real-world: they can be useful for discarding interpretasi of the
data corresponding to very short stays at some locatiorishveine
not of interest for the data analysis which will be perfornad
the cleaning data. For instance, imposlatency(“coffee room”,
20s), removes from the interpretations of the data thosengtéiat
the monitored person stayed at rodnfor 2 minutes, then at the
adjacent coffee room fa2 seconds, and then again at rodnfior

some more minutes: 2zsecond long stay at a coffee room can be

considered too short to be considered as meaningful.

DEFINITION 2. LetI’ = (A, p) be an |-sequence arifC a set
of integrity constraints. A trajectoryoverT is valid w.r.t. ZC iff

— for eachlatencyl, §) ZC, it holds that, for each pai(r, ) in
t such that eitherr =0 or there is(t—1,1') € ¢, withl’ # [, ¢
contains all the pairgt + ¢,1) withi € [1..6 — 1];

— for eachunreachabl@,, l;) € ZC, there are no pairgr, !;) and
(t 4+ 1,12) int; and

— for eachtravelingTimé!1, l2, v) € ZC, there are no(r, 11) and
(72,12) int, withm, < 72, such thatrs — 71 < v. O

The subset of (I") containing all and only the trajectories which
are valid w.r.t.ZC will be denoted a§ =%¢(T").

EXAMPLE 6. Consider” = (A, p) from Example 4 andC =
{latency L4, 2), unreachablelLz, Ls), travelingTime Ly, Ls, 3) },
imposing that (i) if objecb reaches locatiorl4, it must stay there
for at least two consecutive timestamps; (ii) objectinnot directly
reach locationLs from locationL»; and (iii) objecto cannot reach
location L5 from locationL; in less thar8 timestamps.
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the ratio of its a-priori probability to the overall a prigniobability
of the valid trajectories. That is, given a trajectang T(I), its
probability p® (¢) conditioned to the fact that the constraintsZi¢
are satisfied is given by* (¢|ZC)?, where:

— p*(t|ZC) = 0 if t is not valid w.r.tZC;
- p*(t|7C) = —F——, otherwise.
t/ eT FZC (1)

Now, the probabilities of the valid trajectories sum uplf@and
the a-priori probabilities are taken into account as, faheagair of
trajectories, the ratio between their conditioned prolit#s is the
same as that between their a-priori probabilities.

As discussed in the introduction, evaluating conditioneabp
abilities is, in general, a complex problem. Our approachns
ad-hoc solution for the considered scenario, and providesna
pact representation of the valid trajectories and theidi@med
probabilities. This compact representation is obtainedimbyter-
ative algorithm which, starting from an I-sequence, buddgaph
(namedconditioned trajectory graphwhose nodes correspond t
pairs (location, timestamp and where paths from source to ta
get nodes one-to-one correspond to the valid trajectosesr¢e
and target nodes refer to the first and last instantg jmespec-
tively). The algorithm assigns probabilities to the sourodes and
the edges of the conditioned graph, by suitably revisingierip
probabilities implied by* (1| R), so that the overall probability of €
source-to-target path (evaluated as the product of thegéyprob-
abilities of its source node and its edges) is the conditiqreba-
bility of the corresponding trajectory.

3We recall that this corresponds b (¢|© A ZC).




4. CONDITIONED TRAJECTORY GRAPHS

The conditioned trajectory grapl{ct-graph for short) over an

I-sequencd” = (A, p) will be exploited to concisely represent tr

a_

jectories ovefl in the presence of integrity constraints. The nodes

of a ct-graph are said to Hecation nodes Each location node

corresponds to a pajr, ) € A and is connected through directed

edges to location nodes (chosen among the sseticdessorsf n)
corresponding to subsequent timestamps.

In the following, we formalize the concepts of location node

(Section 4.1), successors of location nodes (Section &rf),fi-
nally provide the definition of ct-graph and formalize thencept
of path over a ct-graph (Section 4.3).

4.1 Location nodes

A location node corresponds to a péir, [) € A. It stores some

information summarizing the trajectory of the object untiand, in
particular, pieces of information useful to check whetliner paths
including this node describe valid trajectories. This dapgntary
information is about the length of the current stay of thecobp

at [ (which will be used to check latency constraints), and about

some of the locations wherehas been before (which will be
used to check traveling-time constraints). More formajlyen an
I-sequencd” = (A, p) for an objecto and a sefZC of integrity
constraints, a location nodeis a tuple of the form(r, 1,4, T'L),
where(r,l) € A, 0 € T U{L} (whereL means hon-specifiet),

andT L is a (possibly empty) set of pais:, 1) € A (with iy # 1),

containing no two pairs coinciding in either the timestamphe
location. It represents the following facts:

A. owas in locatiorl at timer;

B. the stay ofo at! starteds time points before;

C. foreach(ri, 1) € TL,the most recent detection eht location
l1 (beforer) is at time pointry .

Given a location node. = (r,1,6,7L) and a trajectory over
I', we say that is compatible with if, according tot, the factsA,
B, C hold.

For instance, both the trajectorias= {(0, L1), (1, Ls), (2, L3) }

andte = {(0, L1), (1, Ls), (2, Ls) } of Example 5 are compatible

with location nod€ 1, L3, 0, {(0, L1)}) since, according to both
andts, o was inL3 at timestamp, the duration of the stay ef at
Ls is 0, and the most recent detectionaoht L, is at time poin®.

The information stored in a location nodecan be used to state

that some trajectories are invalid. Specifically, ary T(I") com-
patible withn is invalid if either?) or 4¢) hold:

i) All the following conditions are satisfied:
— n.TL contains a paitr’, '),
— there istravelingTimg!’, I, v") € ZC with (n.7+1)—7' <1/,
— the (7+1)-th step oft is at location” .
In fact,t would represent that the object went fréhto I’ in less
thany’ time points, thus violating the TT constraint;

i) Thereidatency(,§’) € ZC withn.d < &, and the(7+1)-th step

of t is at a location different fromd. In fact, ¢ would represent

that the object went away froafter staying less tha#l time
points, thus violating the latency constraint.

For instance, consider location node= (1, L3, 0, {(0, L1)})
and the TT constraintravelingTiméL1, Ls, 3).

It is easy to see

that the information stored in can be used to state that any tra-

jectory compatible witm and whose second step islaf (such as

trajectoryts of the running example) is invalid. Indeed, the facts

that the second step of the trajectory idat and that the most re
cent detection 0é in L, was at timestamp (as stated im.T'L),
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mean thab would reach locatiorls from L, in less tharB times-
tamps (thus violating the TT constraint).

Pointi) means that an entry’, ') in n.T L can be used only
to check TT constraints involving locatidh, thus reporting it in
n.TL is useless if there is no TT constraint i involving '
Analogously, pointii) means that the value ef.é is useful only
to check latency constraints defined oveland thus reporting it
is useless ifZC contains no latency constraint of this kind. The
are also other cases when reportinig n or some entry(7’, ') in
n.TL is useless for detecting invalid trajectories (accordmthe
strategy in points) andii)). In particular, consider the case tiat
contains a latency constraiiit = latency(n.l, "), but evaluating
¢ according to its definition (poinB.) yieldsn.§ > 6. This means
that, for every trajectory compatible with the stay at location.l
involving time pointr is long enough to satisfie, thus reporting
is useless for discarding trajectories which, due to their 1)-th
step, do not satisfyc. Analogously, consider the case that the
is some TT constraint involving as first argument, and that th
most recent time point’ when the object moved away frothis
such that.r—7' >maxTravelingTimg’). Then, reportingr’,1")
in n.T'L is useless for discarding invalid trajectories based oin tt
(7+1)-th step, since no choice of the location at ther +1)-th
step can violate some TT constraint involviligs first argument.

Therefore, we will assume that in every location nade

— n.TL contains only entries of the forgr’, I’), where locatiori’
is involved in at least one TT constraint, and it holds that—
7' < maxTravelingTim@');

— n.d is assigned a value ifi iff there is a latency constraita-
tencyn.l, 6*) and the value ofi.§ (computed as specified i)
is such that.§ < §*. Otherwisen.é is assignedL.

Under this assumption, we denote &sthe set of the location
nodes that can be defined ovérandZC, and asSN and TN
the subsets alV' of sourceandtarget nodes (i.e., locations node
whose timestamps are the first and the last time pointg)ofre-
spectively. As it will be clearer later, when constructirig tct-
graph, not all of the nodes iV’ will be materialized, but they are
nevertheless used to formalize our approach.

ExAMPLE 7. Continuing our running example, the s&tover
I and ZC consists of the following location nodes:

no = <07L17J-7®>7 ni = <03L23J—3®>3

no — <1,L3,L,®>, ns = <1,Lg,J¥7 {<0,L1>}>,
ng = <17L4707 ®>7 ns = <15L4303{<05L1>}>a
ne = <27L37J—7®>7 nr = <25L35J—v{<03L1>}>7
ng = <2,L5,L,®>, ng = <2,L5,J;7 {<0,L1>}>

Location noden, means thata) sincens.7 = 1 andns.l = Ls,
objecto was inL3 at timestamp; b) sincen..d = L, either there
is no LT constraint overLs, or its stay atL3 started more tha@a*
time points beford, wherelatency(Ls, ) is the LT constraint
over Ls; ¢) sincens. TL = 0, for every location visited by the
object in the past, either there is A" constraints having as first
argument, or the object leftmore thanv* time points ago, where
all the T'T constraintgravelingTimel, !’, v) € ZC havingl as first
argument are such that < v*.

Analogouslyns means thata) o was inL4 at timestampl; b)
its stay atL, started in the current timestamp) in the past, it
stayed at;, from which it moved away at time poifit O

4.2 Successors of a location node

We now introduce the concept sficcessonf a location node.
Roughly speaking, location node, = (7 + 1,12,02,TLs) is a



successopf a location nodew; = (7,11, 61,7 L1) if ne describes
(in terms of facts4, B, C) a possible scenario at time+ 1 which
is consistent with the integrity constraints and with therggio at
time T described by .

DEFINITION 3 (SUCCESSOR. Given apair of location nodes
ny = {11,11,81, TL1) andns = (12, l2, 82, T L2), n» is successor
of n, iff the following conditions hold:

1) To =711+ 1;

2) unreachabl@, l2) ¢ ZC;

3) if l1 = l2, thends = 61 + 14;

4) if Iy # l2 andlatencyli,d) € ZC, thend: > § (if 61 # 1)
and eitherd2 = 0 (if there is a latency constraint aia in ZC) or
d2 = L (otherwise);

5) there is no pair(v’,1") € T'L; such that there is a constraint
travelingTime!’, Iz, v) in ZC with 72 — 7/ < v;

6) TLo=TL1U{(r1, 1) |travelingTime!y,l,0) € ZC}\

({{(r,1) eTL1 | 72 — T >maxTravelingTimg) }U
{<T,l>€TL1|l:l2}) (]

Basically,ns is a successor of, iff 1) n; andn, refer to consec-
utive time points; 2). can be directly reached starting frdm 3)

if at time 7> the object is still inly = I3, then this is consistently
reflected by an increment 6§; 4) no stay constraint ifC involv-
ing [; is violated if the object moves froh to another location
l2 at timeT; 5) no traveling time constraint iBC imposing that
the time needed to move from a location belongin@fo; to I5 is
violated if the object moves frorh to another locatiord, at time
T2; 6) T Lo can be obtained by first augmentifig.; with the pair
(71,11) (this happens if there is a traveling time constraint involv
ing I; as first argument), and then discarding those pair¥ bf
which have become useless for checking TT constraints arsth
referring to a previous stay &f.

EXAMPLE 8. Continuing our running example, itis easy to see
thatns andns are successors afy. Analogouslyn is a successor
of n1, and, finally,n- is a successor of;. The reader can easily
check that there is no other pair of location nodes\insuch that
one is a successor of the other. For instanegjs not a successor
of n, sinceunreachablel,, L3) € ZC, thus Condition 2) of Defi-
nition 3 does not hold. Similarly;s is not a successor ofs since
travelingTimé L1, Ls, 3) € ZC, thus Condition 5) of Definition 3
does not hold. Finally, note thaty is not a successor of; since
both Condition 5) and Condition 6) of Definition 3 do not hold.

The following proposition states a property that will be dan
mental for understanding how our cleaning algorithm expltie
notion of successor.

PrRopPoOSITION 1. If anon-target location node admits no suc-
cessor then every trajectorycompatible withn is not valid.

4.3 ct-graphs and how to use them to encode
valid trajectories

Based on the notions of location node, source and targetsnode

and successor, the definition of ct-graph is as follows.

DEFINITION 4 (CT-GRAPH). LetN be the set of location nodes

over the I-sequencE, andZC a the set of integrity constraints. A
conditioned trajectory graph (ct-graph) is atuple= (N, E, p~, PE),
where:

“We override operatoy so thatlL +1=_1,andz+1=_1, whenz
is equal to the duration of the latency constraint dver
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1) NCWN;
2) (N, E) is a graph (whereN and E are the sets of nodes ani
edges, respectively) satisfying the following properties

a) a pair (ni,n2) belongs toF iff n1,n2 € N andns is a
successor ofi;

b) for everyn € N, there is at least one path from a sourc
node to a target node iV which contains;

3) pn : SN — (0, 1] is a PDF over the set of source nodes;

4) pg is a set containing, for each non-target nodef G, a PDF
p’% over its outgoing edges, that i = {p%In € N\ TN}
wherep% : E, — (0,1] andE,, = {(n,n")|(n,n') € E}. O

A pathr over a ct-graplG = (N, E,p~,pEe) is a path from a
source to a target node over the grgph E). It is easy to see thai
every path ovef7 corresponds to a valid trajectory. Specifically,
pathm = no,...,n., overG corresponds to the valid trajector
t = no[A], ..., n-,[A], wheren;[\] denotes thgtimestamploca-
tion) pair whichn; refers to. In fact¢ is compatible with every
location node along, and, since the edges G6fconnect only pairs
of nodesn1, no S.t. no is successor af, ¢ must be valid w.r.t the
integrity constraints.

What said above entails that a ct-graph can represagtvalid
trajectories (encoding them as paths of location nodeghdmext
section, we present an algorithm for building a ct-graph thp-
resentsall and onlythe valid trajectories. Furthermore, our algt
rithm instantiates the functionsy andpz of G so that the prob-
ability p(w) of a pathm over G is equal to the conditioned prob
ability p®(t|ZC) of the corresponding trajectory wherep(w) =

Tr—1 .
pn(no) X TTiLy Py ((ni,nit1)).

ExampPLE 9. Continuing our running example, it is easy t
check thatG = (N, E, pn, pE), whereN = {no,ns,n7}, E =
{(no,n3), (n3,n7)}, pn(no) = 1, andpy’ ((n3,n7)) = lisact-
graph (depicted in Fig. 7). As we will show in the next sect@is
the ct-graph returned by our algorithm run over the I-sequesand
the constraints of our running example. In fact, the (unjqoath
T = no, ns, ny overG corresponds to the (unique) valid trajector
{1, A3, A5 } of Example 6, and its probability js(7) = 1. O

5. THE CLEANING ALGORITHM

In this section we introduce Algorithm 1, which builds a co
ditioned trajectory grapld? from an I-sequenc& and a sefZC of
integrity constraints. In particular, the graph returngdhr algo-
rithm compactly represents all and only the valid trajeetoover
T, in the sense that each valid trajectorgorresponds to a path
over G, and vice versa. Moreover, it is such that the condition
probability of each valid trajectorgcoincides with that of the cor-
responding path overG.

Algorithm 1 consists of two phases, callfmward (lines 5-14)
and backward phase (lines 15-29). The forward phase consi
of one iteration for each timestampe 7. At the first iteration
(7 = 0), the setV of the location nodes belonging to the ct-gray
G being constructed is initialized with the set of the sourodes,
and the probabilities of these nodes are set to those impliede
a-priori probabilities. Then, at-th iteration, NV is progressively
augmented with location nodes referring to the timestamp 1
and which are successors of some other location node alirac
N. Correspondingly, the edges between location nodes eddor
timestampr and their successors are addeditoand their proba-
bilities are set to those implied by the a-priori probaifitinction.
The fact that a node is added taNV at 7-th iteration means that
there is a trajectory compatible withn which is valid if only its



first 7 4+ 1 steps are considered. Clearly, in a subsequent iteration, Algorithm 1 Building the conditioned trajectory graph

such a trajectory could be recognized as invalid due to the fact

thatn, or any of the other nodes with whic¢his compatible, admits
no successor (see Proposition 1). This makes it possiblprése
ence, at the end of the forward phase, of some “leaf’ nodesh(su

asn mentioned above) that are non-target nodes having no suc-

cessor. The backward phase deals with removing these Idaéno
along with all of the other nodes which become leaves in thasp
due to the deletion of all its successors. Furthermorendutiis
phase, the probabilities of edges and those of source noglesra:
ditioned, that is they are revised to take into account tio&agiili-
ties of the trajectories that are recognized as invalid.

We now provide a detailed description of Algorithm 1, shagvin
how it works over our running example.

While building a ct-graph, Algorithm 1 exploits an auxilarari-
ablen.lossfor each node: of the graph. Roughly speaking, at each
step, the value of.lossis the ratio between the overall probability
of the trajectories compatible with which have been recognized
as invalid, and the overall probability of the trajectordesnpatible
with n. Moreover, Algorithm 1 exploits also a priority quedg
which is used to store (in descending timestamp order) tegilon
nodesn for which n.loss is greater tha®, which are the location
nodes that have to be processed during the backward phase.

The initialization phase (lines 1-4) of Algorithm 1 is aslfols.
First of all, the setV of the nodes of the grapfi being constructed
is initialized with the set of the source nodes yielded bycfion
sourceNodethat builds them from the |-sequenEdline 2). Next,
the probabilityp - (n) of each source nodeis set to the probability
of the pair(0, I) of I whichn refers to (line 3), and the queugis
set to be empty.

ExAMPLE 10. Consider thel-sequencel’ = (A,p) and the
setZC of constraints of our running example. In the initializatio
phase, Algorithm 1 works as follows. At line 2, function seiNodes
builds the source location nodes andn: (see Example 7), and
puts them intdV. Next, at line 3pn (no) andpx (n1) are assigned
probabilitiesp(A1) = = andp(A2) = -5, respectively. O

Forward phase

In the forward phase, for each timestamgor each location node
n referring tor and belonging taV, the setS of the location nodes
n’ such thaw’ is a successor af is built by functionbuild Successors
(line 7). Next, each node’ of S is added taV and consequently
the edges of the forngn, n’) are added to the sét of G (line
10). Next, beingr’ = (r + 1,1’,§',TL’) a successor of, the
probabilityp% ({n,n)) of the edge(n, n’) is set equal to the prob-
ability of the pair(r + 1,1’) provided by functiorp in T'. Once
all the successors of have been added @, variablen.loss is
set to the one’s complement of the sum of the probabilitiethef
the outgoing edges af (that is, the sum of the probabilities of the

pairs (r + 1,1”) which do not appear in any of the successors of

n) (line 12). Finally,n is added to the queu@ if n.loss is greater
than zero (line 14).

ExampPLE 11. After the initialization phase, Algorithm 1 works
as follows. At iterationr = 0 (line 5), bothny andn, are pro-
cessed. In the case = ng, the inner loop processes the location

nodesns andns, which, as shown in Example 8, are the only suc-

cessors ofg. Both nodes:s and ns are added taN, and both
the edgesno, ns) and(no, ns) are added taF, with probabilities
p((no,n3)) = p({1, Ls)) = 1/3 andp((no,ns)) = p({1, L)) =
2/3. At the end of inner looppo.loss is set to0 (line 12) and
thusno is not added taQ. It is worth noting that location nodes
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Require: T = (A, p), ZIC

Ensure: G = (N, E,pn,pe) overl’ andZC
1: SN « sourceNodeg")

2: N+ SN

3:Vn=(0,1,-,-) € N, pn(n) < p((0,1))
4:Q« 0

5: forall 7 € [0..7f — 1] do

6 forall n € N s.t.n[\[time] = 7 do
7: S + buildSuccessors(n,I', IC)
8: forall n’ €S do
9: letn’ = (r+1,1',6',TL")
10: N+ NU{n}L E+ EU{{nn)}
11 pe((n,n)) < p((T+ 1,1'))
12: nloss =13, »cpPE((n,n))
13: if n.loss > 0then
14: in(Q,n)
15: while @ is not emptydo
16: n < out(Q)
17: if n.loss < 1then
18: forall (n,n') € Edo
19: pi((n,n)) — FEED
20: forall (n’,n) € £ do
21: old + p%((n',n))
22: P ((n',n)) < p ((n,n)) — n.loss x old
23: n'.loss < n’.loss + n.loss x old
24; if n” € Q then
25: in(@,n’)
26: if n.loss = 1then
27: E <+ E—{(n',n)}
28: if n.loss = 1then
29: N+ N —{n}
30: forall n € (NN SN) do
31: pn(n) Py (1)

n’e(NnsN) PN (n')

32: return G consisting of N, E, pn, PE)

that are not successors of any node in the graph are disreghrc
For instance, though refers to timestamp (see Example 7), it
is disregarded, as it is not a successorgf or of n; (as said in
Example 8). In the case = n., the inner loop only processe:
the location nodeu4, which is the only successor of (see Exam-
ple 8). Thusn, is added toN, the edge(n1,n4) is added toF,
and the probabilityp((n1,n4)) is set equal to((1, Ls)) = 2/3.
Variable n;.loss is set tol — 2/3 = 1/3, andn; is added toQ
(line14). The structure off at end of the iteration- = 0 of the
outermost loop is depicted in Fig. 2.

ERENIENE]

n; loss=0
BRI NS

n, loss=1/3 n, loss=0

© [loc[5] 1L 23! T [loc[5] 1L
0|21 ] o T LA 0] o
p(n)=4/10

Figure 2: G and @ at the end of iteration T = 0



At iterationT = 1 (line 5), n3, n5 andny4 are processed. In the
casen = ng, the inner loop only processes the location nedge
which is the only successor 0f (as said in Example 8). Thusy
is added taV, the edgdns, n7) is added toF, and the probability
p({ns,n7)) of the edge is assigned with{(2, L3)) = 2/3. Next,
ngz.loss is assigned with — 2/3 = 1/3 andns is added toQ.

In both the cases = ns andn = n4, since there is no location
node which is a successorof or n4 (see Example 8)5.l0ss and
na.loss are both assigned with andns andn4 are both added to
Q. The structure o7 at end of the forward phase is shown in Fig.

3 O
=0 1=/ =2
.......................................................................

n, loss=1/3 n; loss=0

v [loc| TL 23, v [loc] 3 TL

1 [L3] L [{=0,L1>}] 2 |L3]| L [{<0,L1>}
. ns loss=1
pi()=6/10 2,
N N IR IR
n, loss=1/3 n, loss=1
[z Jloc[ 8] 1L | 28.  J= Jloc|[5] TL |
el e 1 ¢ i o |

pa(n,)=4/10

Figure 3: G and @ at the end of the forward phase.

Backward phase

1/3 +2/3 = 1. Next, at line 25, no operation is performed sinc
ny is already present ir). Then, at line 27, the edgeu1, n4)
is removed fronG, and, at line 29,4 is removed fromV. The
structure ofG at end of the while loop processing is shown in
Fig. 4.

23! T |loc| & TL
. T2 3] L]i<o,Li>}

Pn)=6/10

n, loss=1

ol 5|

pn)=4/10

Figure 4: Structure of G after removing n4 from @ and pro-
cessing it.

The second iteration of thevhile loop processes the node;.
Sincens.loss is equal tol, no conditioning of outgoing edges i
performed. Then, Algorithm 1 processes the ingoing edges o
(lines 20-27), and, reasoning as in the case described atibee
probability value(ng, ns) is set to0, and variableng.loss is set
to 2/3. Next,ng is inserted intoQ (line 25), the edgéno, ns) is
removed frontZ (line 27), andns is removed fromV (line 29).
The structure o7 at end of the while loop processing is shown

During the backward phase, each location node which has beenin Fig. 5

added to the priority queué is processed. During this phase,
the probability values attached to the edges (and to soudes),
as well as the values of tHessvariables associated with location
nodes, are revised. In particular, at line 16, a nademong those
having the highest timestamp is extracted fr@nThen, ifn.loss
is lower thanl (meaning that: has at least one outgoing edge),
the probability of each of the outgoing edgesrofs conditioned,
that is, its current value is divided by the sum of the proliéds
of the outgoing edges af (which is equal tdl — n.loss) (line 19).
Next, in order to propagate backward the value of variabless ,
the probability value each ingoing ed€, n) of n, along with the
value of variable’ .loss of each nodex’ of whichn is successor is
revised. Specifically, the probability of each ingoing edgé n)
of n is decremented by the value afloss multiplied by the old
probability value of the edgén’, n) (line 22). Correspondingly,
the value ofn’.loss of each node:’ of which n is successor is in-
cremented by the value afloss multiplied by the old probability
value of the edgén’, n) (line 23). Next, since:’.loss has been in-
cremented at line 23 and thus it is greater thanoden’ is added
to Q, if itis not already present in it (line 25). Furthermore tie
casen.loss = 1, the edggn’, n) is removed fromE (line 27).
Atthe end of the loop scanning the ingoing edges,dof n.loss =
1 (i.e.,n is a leaf node) is removed fromV (line 29). Finally, the
probability p (n) of each source nodein NV is conditioned, that

is pn (n) is divided by the sum of the probabilities of the source

nodes belonging t&v (line 31).

ExamMPLE 12. Continuing our example, the backward phase of

Algorithm 1 is as follows. At the first iteration of thehile loop

(line 15), noden4 is removed fron®). Sincens.loss is equal tol,

lines 17-19, which perform the conditioning of the outgcdages
of the current node, are skipped. Thus, Algorithm 1 procetise
ingoing edges ofi4 (lines 20-27). Specifically, as; has only the
incoming edgeni, n4), the probability value ofn, n4) is set to
2/3 —2/3 = 0, and, correspondingly variable;.loss is set to

386

=0 =1 =2
0 loss=23  + N loss=1/3 R
T [loc[ 5] TL 13, [xJlc[8] 1L | 23. T [loc[ 5] TL
0L & . U [L3[ L [{<0.L1>} 2 [L3[ L [i<0,L1>}
P(1,)=6/10 :
n, loss=1
o] 7]
[ofe2[i] & |
pi(n,)=4/10

Figure 5: Structure of G after removing ns from @ and pro-
cessing it.

At the third iteration of thevhile, nodens is removed frong.
Sincens.loss is lower thanl, Algorithm 1 performs the condi-
tioning of the outgoing edges af so that the probability of the
unigue outgoing edgéns, n7) of ng is set tol. Next, the unique
ingoing edggno, ns) of ns is scanned, the probability dfio, n3)
is settol/3 —1/3 -1/3 = 2/9, and variableng.loss is set to
2/34+1/3-1/3 =7/9. Sinceng is already inQ, the iteration pro-
cessingns ends without doing anything else. The graph resulti
from this is shown in Fig. 6.

=0 =1 =2
n, loss=7/9 ny . n
t [loc[ 8] TL 29 © [loc[ & TL 1. T |loc[8] 1L
0 |L1| 1 %] 1 |L3| 1 |{<0,L1>} : L3 | 1 [{<0,L1>}
Pun,)=6/10
n; loss=1 . 0:
[0 [L2fu] & |
pa(n,)=4/10

Figure 6: Structure of G after removing ns from @ and pro-
cessing it.



At the fourth iteration of thevhile loop the noden; is is removed
from @ and processed. Sinee .loss is equal tol and it has no
ingoing edges, the only operation performed is that of rangpv
n1 from N (line 29). Finally, the node, is removed fronQ) and
processed. The conditioning of its outgoing edges (lineslQy
entails that the probability ofng,ns) is set tol. Asng has no
ingoing edges angy.loss < 1, the lines 20-29 are skipped. Atthis
stage, the probability of the source node (the unique that is still
in N) is conditioned, obtainingx(no) = 1, and the algorithm

returns the ct-graph shown in Fig. 7. m]
=0 =1 =2

n, . n, ' n,

[T [lc[5] 7% | ! ¢ J<le[s] T | ! : J=[wc]5] 7L |

[0t & | T3l [{=0,L1>}] 2 |L3] L [{<0,L1>}

pa(n,)=1
Figure 7: Ct-graph returned by Algorithm 1.

As regards the computational complexity of our algorithinis i
easy to see that Algorithm 1 works in polynomial time w.rhe t
length of trajectories over the |-sequert&hat is, the size of)°.
The actual computational cost of our algorithm will be expen-
tally validated in the next section.

Remark: querying cleaned data.We do not give details on how
queries can be evaluated on ct-graphs, as ct-graphs caemhase
Markovian streams and thus warehousing systems for Maakovi
streams, such as Lahar [22, 18, 19], can be used to store angl qu
ct-graphs. Indeed, in [22, 18, 19] a Markovian stream witlyon
one node (tuple) for each pdjr, ) is used for encoding RFID data,

cell F'[r, c] the number of times that the tag was detected by ree
r during its30-second long stay inside ceill
After populatingF’, p®(I|R) was obtained as follows:

127 if Ve € Cells[,.c g Flr,d] =0;
PR =9 e Flrel
ceCel(l) Tref , otherwise

>ccCellsllrer Flr.el

whereCells(l) andCellsrepresent the cells inside locatiband all
the cells inside the map, respectively.

ConditionVc € Cells] ], F'[r, c] = 0 means that there is nc
cell ¢ such that the tag used for learniighas been detected b
all the readers irR when it was inc. In this case, we have no a
priori knowledge about the probability that an object is In@ation
given that it has been detected by the readef,ithus we assume
a uniform distribution over.

6.3 Integrity constraints

Over each data set, the following sets of constraints warside
ered:

— DU: it contains all theDU constraints implied by the map;
— LT: it contains anLT constraint for every location but the cot

ridors, imposing that the duration of every stay at any liocat
must be not less thahseconds.

— T'T: it contains &7 constraint for every pair of locations whicl

are connected, but not directly connected. For each paioaf |
tions L1, Lo of this kind, the constraint was automatically gene
ated by taking the ratio between the minimum walking distar
betweenl; andL», and the maximum speed of a person walkil
inside a building (which was assumed tobgs ).

meaning that each stay has no memory of what happened inghe pa 6.4 Synthetic data generator

stays. However, the Lahar data model is expressive enolaioto
storing more than one tuple for each péit!), thus allowing the
representation of ct-graphs. In other words, our ct-gragamsbe

viewed as a way of simulating memory in Markovian streams, by

creating different nodes for a stay, depending on its adtére -
long sequences of past stays (whemepends on the constraints).

6. EXPERIMENTAL VALIDATION

All the experiments have been carried out on an Intel i7 CPU

with 8GB RAM running Windows 7.

6.1 Data Sets

We considered two synthetic data sets (nansetyl andsyn2),
obtained using our synthetic data generator on two buiklaidour
and eight floors respectively. An example map of a floor is riegb
in Fig. 1(a). Each synthetic data set consistsifftrajectories, that
is, 25 trajectories for each duration §10m, 60m, 90m, 120m}.
The 25 trajectories insYN1 with durationz minutes will be de-
noted assyYN1, (the same fosYN2).

6.2 The a-priori probability distribution p2(i|R)

As discussed in the introduction, several ways can be adopte

for obtainingp® (| R). In our experimentsp®(l|R) was obtained
as follows. First, the map in Fig. 1(a) was partitioned adoay to
a regular grid of square cells having sizémtx0.5mt. Then, a
tag was kept inside each of these cells 36rseconds and the bi-

dimensional array” (consisting of one row for each reader and one

column for each cell) was progressively filled by reportingeach

SWe refer to data complexity, according to which the size efght
of integrity constraints and the size of the set of locatiaresfixed.

387

The data generator consists of two modules: the trajecteny ¢
erator and the reading generator.

The former takes as input the numbearm and the duratiod’s
of the trajectories to be generated, and a graph of locatiingse
nodes represent rooms (described by the coordinates ofttipei
left and bottom-right corner) and whose edges representdms
tween rooms (edges are labeled with the coordinates of ttre-cc
sponding doors). Theum generated trajectories consist of or
triple (z,y, ) for eachr € [0..T%], wherez,y are coordinates
inside the space covered by the map.

Each trajectory is constructed iteratively, and, at eaep,sthe
following trajectory portion is generated. First, the altjedenoted
aso) moves (with velocityv) from an “entrance pointep of the
current room to a “rest-point”rp insidel; then,o stays atrp for
lat time instants; finallyp moves (at velocity) to an “exit point”
ep’ of I. The rest-point-p is randomly generated inside the po
tion of space covered by the room, the latency tiaiés randomly
generated if30s..60s], the velocityv is randomly generated ir
[lms'..2ms™"], while the exit-pointep’ is randomly generatec
among the doors connectirigwith other rooms. The choice o
ep’ determines the room and the entrance point at the next ste
the first step, the current location and its entrance poiatran-
domly generated). The generation of a trajectory ends when
input duration has been reached.

The reading generator takes as input a trajectory genebste
the first module, a grid-partitioning of the map, and a moael
the reading capacity of the RFID antennas, in terms of aryal
F[r, c] analogous to that defined in the previous section. Spe:
cally, each cell inF'[r, c] represents the percentage of times that
object staying for consecutive time points inside the cealf the
grid is detected by reader



The readings are generated by transforming each triplet, )
into a reading(R, 7), whereR is obtained as follows. First, the
cell ¢ of the grid containing the point with coordinatesy is deter-
mined. Then, for each readera number: is randomly generated
in [0, 1], andr is put intoR if and only if z is less tharF'[r, ¢]. This
means interpreting’[r, ¢] as the probability that an object inis
detected by, and assuming that readers behave independently.

6.5 Data Cleaning Cost

Figures §a) and &b) report the average running time of CTG
over SYN1 andsyN2 vs. trajectory length. In all the diagrams,

CTG(X) denotes our approach considering all the constraints in
X

The curves show that:

— for the same data set and set of constraints, the runnirgitim
creases linearly with the trajectory length.

— for the same data set and duration of trajectories, consgla
wider set of constraints slows down the cleaning task. Tlais w
rather expected, as exploitiddgl” andT'T yields a larger number
of nodes in the conditioned trajectory graph.

— CTG runs faster orsYN1 than onsyN2, especially when also

TT are considered. In fact, the larger the map, the longer the

maximum duration of the generat§dl” constraints over each
location. This may increase the number of location nodeshvhi
must be created over the same géime point, locatioi.

6.6 Accuracy of query answers over cleaned
data

Correspondingly, given a stay quepyand a ct-grapits, the ac-
curacy of the answey(G) will be measured as the probability as
sociated withL in ¢(G), whereL is the answer of evaluated on
the actual trajectofy Similarly, given a trajectory queryand a ct-
graphG, the accuracy of the answefG) will be measured as the
probability associated with the same answesbr no) returned by
evaluatingg on the actual trajectory.

As regards stay queries, for all the considered data setspme
sidered a query workload consisting df0 stay queries over eact
trajectory. Each query was generated by randomly pickirigna t
point of the trajectory. The average accuracies of the arsafe
stay queries for the two data sets are reported in Figlire 9

As regards trajectory queries, we randomly generafegueries
over each trajectory, whose pattern contain two, three warlfca-
tion symbols, separated by symbol Specifically, each trajectory
query is generated as follows. First, a numiés randomly cho-
sen in2,3,4. Then,z locationsiy,...,l, are randomly choser
among those appearing in the map, and, for each picked dodati
a numbern; in —1,3,5,7,9 is generated. The generated patte
is” 201 [nd] 7. .. Ue[na] 7.

Fig. 9b) and Fig. 9c) report the average accuracy of trajecto
queries vs. the two data sefs and the query length (for the cas
of SYN2) (¢), respectively.

6.7 Querying efficiency and ct-graph size

The average query execution times of CTG over the two dasa
vs. the trajectory length are reported in FigecB The query exe-
cution times of CTG grows linearly with trajectory length.ow
ever, when running queries over ct-graphs obtained usihgy

In this section we analyze the accuracy of the query answers gnd 1T constraints much faster execution times are obtained:

evaluated over the cleaned data. We considered two kindseoies

(namelystayandtrajectory queries), and evaluated them over the

ct-graphs returned by our approach.

derives from the fact that these ct-graphs are smaller thasetob-
tained when considering al§6I" constraints.
As regards the size of ct-graphs, we obtained that the ase

A Stay query asks where the monitored ObjeCt was at a SpeCified memory needed to store Ct_graphs represeﬂmin_long trajec_

time point, while a trajectory query asks whether the titajgcfol-
lowed by the monitored object matches a pattern. Specificall
pattern is a sequence of location conditions, where a lotabn-
dition is either:) a location name, possibly followed by], where
n is a number of time points, a@¥) the wildcard symbol “?”.

The location conditions in a pattern must be expanded as fol-

lows:

— “?" — a (possibly empty) sequence of (any) locations;
— [ — a sequence dfof length at least one;
— l[n] — a sequence dfof length at least.

The answer to a trajectory queryyissiff the sequence of loca-
tions travelled by the object can be obtained by expandiadptta-
tion conditions in the query pattern. For instance, trajgctjuery

q =711[3]?12[2]7 asks whether the object, at some point, stayed at
[, for at least3 consecutive time points, and then travelled towards

l2 (passing by any other locations), where it stayed for at lwas
consecutive time points.

The probabilistic answers of stay and trajectory queries ot
graphs are the natural probabilistic extensions of thetierdan-
istic semantics. Thus, given a ct-graph the answeg(G) of a

stay queryy over time pointr is a set of locations, each associated

with the probability that the object was at the location ateir

according toG (this means assigning to a location the sum of the

probabilities of the trajectories representedsinvhoser-th step is
at this location). Similarly, given a ct-graphi, the answeg(G)
of a trajectory query; is yes(resp.,no) with probability p (resp.,

1 — p), wherep is the sum of the probabilities of source-to-target

tories is25 Mb in the case thaDU, LT, TT constraints are used
and it is only640 kb in the case thaDU constrains are used by
CTG.

7. RELATED WORK

The management of RFID data has been studied from diffel
perspectives. The definition of models for suitably repndsg
RFID data has been addressed in [1, 3, 17], where severaldec
logical aspects and management issues for RFID data have
discussed, and a number of requirements in data modeling
software management have been highlighted. In the same ¢
modeling context, the problem of defining an efficient warefio
ing model along with techniques for summarizing and indgxi
RFID data has been investigated in [9, 8]. These approacmeke
viewed as lossless compression techniques for RFID datasyLt
compression techniques for RFID-data are instead propioséd
5] and in [2], where compression can be also seen as a forr
cleaning.

The problem of cleaning RFID data was more specifically ¢
dressed in several other works. In [14], cleaning techniu&/RF
was proposed, specifically designed for dealing with falegan
tives. SMURF is a combination of sampling techniques with
adaptive, declarative smoothing filter, which determinasther an
object which has not been detected by a reader was actudhg ir

®ForsyN1 andsYN2, the actual trajectories were generated by 1
trajectory generator module.

In the case that;, = —1 , then conditionl; is used instead of

paths ovelG representing trajectories matching the query pattern. 1;[n;].
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query range by looking at the “history” of detections of tlzene
object at the same location. SMURF works at level of readeds a
not of locations, and cleans the sequences of readingsajeddyy
distinct readers by considering them separately. Thuferdiitly
from our approach, it can not exploit the spatio-temporateia-
tions described by the constraints considered in our sitenduen
cleaning the data.

In [4, 25], sampling techniques guided by the constrainés ar
used to clean RFID data, as they generate (weighted) sasgiles
fying the constraints (the samples can be viewed as cleaatadrd
the sense that they are representative of consistent iiatatipns
of the data). Although “sampling under constraints” is aegah
statistical framework which, in principle, may deal withyakind
of constraint, these works use this framework under coimssran-
volving the positions where the same object is detected ateang
time point (they do not explicitly deal with constraints aiving the
positions at different time points). The main relationshgiween
our work and sampling techniques is that our ct-graph carsbd u
a basis for efficiently performing sampling: any trajectpigked
from the ct-graph is valid, thus sampling can be done oveitlit a0
need to devise mechanisms for avoiding the generation afithv
samples. In future work, we plan to investigate differerinderms
of efficiency between constructing a ct-graph and pickingpas
from it w.r.t. some adaption of the “sampling under consiisi
framework to RFID-trajectory data.

In [23], the cleaning problem is addressed in a differenhade:
the reader is mobile, its position is known at each time possi-
bly with some approximation), and the problem is that of date-
ing the position (in terms of spatial coordinates) of taggbjects
from the noisy and incomplete stream generated by the re&uder
[10], a general cleaning framework is introduced, whiclesebn
a collection of cleaning methods, associated with coste. afipli-
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es (b) vs. the two datasets, and for trajectory quergs oversyNn2

cation of the framework on an RFID data set results in a ciepr
plan that optimizes the overall accuracy-adjusted clepoasts by
determining the conditions under which inexpensive methae
appropriate, and those under which more expensive methed:
necessary. In [24], some form of cleaning (elimination opldu
cates) is performed while suitably populating a databastite
where the represented events are the changes of locatidhe ¢
monitored objects. [15] is a general probabilistic frameufor
fixing streaming data (thus, also RFID data) which are inisbest
w.r.t. some integrity constraints. The fixing strategy dstssin
adding probabilistic tuples whose probabilities are deieed so
that the integrity constraints are satisfied. The condsane in-
equalities on the number of tuples satisfying a propéftyand are
considered to be satisfied when tneeragenumber of tuples hav-
ing propertyX satisfies the inequality, where the average is eve
ated on all the possible interpretations of the probakildatabase.
This is different from our approach, where all the interatiens of
the data which are not consistent with the integrity comstsaare
discarded. Another difference is that the approach in [If6sat
fixing only the marginal probabilities of the tuples. Thus;ould
assign probabilityl0% to a pair(r, 1), but it would not be able to
represent thaB9% out of 40% covers the case that the object
T+ 1is at a locatiori’, while 1% out of 40% covers the case tha
the object at- + 1 is at a locatiori”.
Other related work/research projects are the following:

— [16], where the problem of conditioning probabilistic alaéses
was first addressed. Indeed, our approach is inspired tmthe
mal framework proposed in [16], that we specialized for cieg
RFID-data. In this seminal workys-treeswere introduced as &
compact representation of conditioned databases, andthige
were devised for obtaining a ws-tree starting from a prdisiioi
database and a set of constraints expressed as ws-setsvefon



directly applying the technique in [16] to our scenario wbul
require to give exponentially large ws-sets (encoding, LT
andT'T constraints) as input to their algorithm for obtaining ws-
trees. This makes using the general approach in [16] imipeadct
for conditioning RFID-data.

— the Lahar Project [18, 19, 22]: see Remark in Section 5.

— the Spatial PrObabilistic Temporal (SPOT) framework, ckhis
a general paradigm for reasoning with probabilistic stzets
about moving objects (see [13] for a survey). In [18ach-
ability rules (corresponding to ouDU constraints) have been
introduced and exploited in a different problem, i.e., sewj a
KB representing moving objects when fresh information (ie t
form of probabilistic spatial-temporal atoms regardingittpo-

sition) is added to it. The issue of querying SPOT data has bee

investigated in [21, 20, 11] but without considering datalating
reachability rules.

8. CONCLUSIONS AND FUTURE WORK

A probabilistic cleaning framework for RFID data has been in
troduced, which cleans trajectories by conditioning thenthe
event that integrity constraints encoding some knowledgysuta
the map and the motility characteristics of the monitorepectis
hold. Future work will be focused on extending the framewark
take into account other forms of correlations, such as thok#ing
in groups of objects moving together, which typically clwtesize
supply-chain scenarios.
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