Representation of associative functions

By CHO-HSIN LING (Chicago, I11.)

1. Introduction

In the course of their work on statistical metric spaces [17, 19, 20], B. SCHWEIZER
and A. SKLAR were led to consider a class of 2-place real functions which play an
important role in connection with generalized triangle inequalities for such spaces.
Following K. MENGER [15], they called these functions triangular norms (briefly,
f-norms).

In attacking the problem of representation of /-norms, SCHWEIZER and SKLAR
found that the most crucial property of such norms is their associativity. Thus the
representation problem for 7-norms leads naturally to the consideration of repre-
sentation for arbitrary associative functions, which in turn is one aspect of a larger
problem: the representation of multi-place functions in general by composition
(“*superposition™) of *“‘simpler’” functions, fixed functions, and functions of fewer
places. We will briefly survey the larger problem before outlining the specific
questions considered in this paper.!)

In the following discussions. £ will denote a 2-place real function to be repre-
sented, § a 2-place real, associative function, and > the 2-place sum function.
(I.e., 2 (a,b) = a+b).

Representation of Two-place Functions in general

W. SierpPINSKI was one of the first to study the representation of multiplace
functions by superpositions of functions of fewer places [21, 22]. One of his repre-
sentation theorems can be formulated as follows:

(1. 1) THEOREM. There exist two l-place functions h and k, such that for every
2-place function F, there exists a l-place function g such that

(SI) F(x.y) = g(h(x) + k().

For symmetric 2-place functions, it is reasonable to suppose, but not immediate
from (SI) that we can take h=k, and so write

F(x,y) = g(h(x)+h(y)).

1) This work was supported in part by the National Science Foundation under Grants G 21110
and GP 2541.
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The supposition is in fact true. YA0o and LING [25], using a Hamel basis argument,
have proved the following:

(1. 2) THEOREM. There exists a 1-place function f, such that for every symmetric
2-place function F, there exists a l-place function g such that

(YL) F(x,p) = g(3(f(x), /() = g(f(x)+1(»).

Representation of Continuous Functions

HILBERT, in his 13" problem (1900) conjectured that not all continuous (Hilbert
actually says ““analytic™) 3-place functions are superpositions of [continuous] 2-place
functions. Recently, V. I. ARNOLD [4], using results of his own and A. N. KoLmo-
GORoOv, disproved Hilbert’s conjecture. KoLMOGOROV [14], going further, obtained
the remarkable result that every continuous n-place function can be represented
by a superposition of >’s and continuous 1-place functions. In particular, for n =2,
his theorem can be formulated as follows:

(1. 3) THEOREM. Thiere exist ten continuous strictly increasing 1-place functions,
fisSas s fr0 from the interval [0, 1] to itself, such that for every continuous 2-place
Sfunction F on the unit square, there exist five continuous 1-place functions, g,. g, ..., g5
such that

(K) F(X, y) - m‘=§5:l. gm (2 (fm(x)’fm-i-S(y))) — més; gm(fm(x) +fm+5(y))-

(The restriction to the unit interval and the unit square is a matter of convenience
and is not essential to the validity of the result.)

It should be remarked that the outher summation cannot be eliminated in
(K). In fact ARNOLD [5] has proved not only that there exist continuous 2-place
functions that are not representable in the form g(/1(x) 4+ k(»)) (g, i, k continuous) 2)
but that the set of functions that can be so represented is nowhere dense in the space
of all continuous 2-place functions.

Representation of Continuous and Associative Functions

When F is associative as well as continuous, then the representation (K) can
be dramatically simplified. Such a representation was first obtained (sui generis,
of course, not as a special case of (K)) by ABeL in 1828 [1], under the additional
assumptions of symmetry, strict monotonicity and differentiability. His represen-
tation takes the form:

(A1) S(x,») = Y (f(x), () = [~Hx)+1(»).

2) Among the non-representable functions is the associative function Min (see Section 6).
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where fis continuous and strictly monotone, hence invertible, and f~! is the inverse
of f.

L. E. J. BROUWER [6] and E. CARTAN [7] in working with continuous groups,
in effect achieved the same representation without the assumption of differentiability.

Recent work has been done by J. AcziL [2, 3], D. TAMmARI [23], and W. M.
FAaucerr [11].

In 1948, AczfL proved the following:

(1.4) THEOREM. Let A be an open or half-open (but not closed) real interval and
S:A XA — A bea2-place function. Suppose that S is continuous and strictly increasing
in each of its places. Suppose further that S is associative, i. e., satisfies the functional
equation

(A2) S(S(x, y), z2)=S(x, S(», 2)),

for all x,y,z in A. Then there exists a function f, defined, continuous and strictly
monotone in A such that S is representable in the form (Al).

(1. 5) Remark. If S satisfies the hypotheses of Theorem (1. 4), then (A1) shows
that S is symmetric. Thus, every continuous, strictly increasing, associative function
1S symmetric, 1. €., commutative.

Representation of Non-strict Associative Functions

The requirement of strict monotonicity in Aczél’s theorem is rather severe,
and it would be desirable to weaken it whenever possible. The author showed in
her doctoral dissertation that this is indeed feasible in many cases: the result is the
main theorem or this paper (Theorem (3. 3)) and its dual (Theorem (3. 5)).

It was later found that these theorems can be derived from previous results
of P. S. MosTerT and A. L. SHIELDS [16], these results resting in turn on the work
of A. D. WALLACE [24] and W. M. FAuceTT [11], all in the general area of topological
semigroups. Since our original proof used only the tools of elementary analysis,
it has seemed desirable to present both proofs of the main theorem. Accordingly,
the original elementary proof appears in Section 4, and the second proof in Section 5.
In Section 5, we also show that the arguments can be reversed to yield the relevant
results of Mostert and Shields as consequences of the main theorem.

In Section 6, we pursue the connection between Aczél’s theorem and the main
theorem by showing that every associative function satisfying the hypotheses of
the main theorem is obtainable as a limit of *“‘Aczélian” associative functions.
Section 7 is devoted to various non-representability results, which indicate that the
results of the main theorem are in a sense “best-possible™.

I wish to take this opportunity to express my gratitude to Professor A. SKLAR
for his initially suggesting the problems investigated in this paper and his subsequent
patient guidance and encouragement in its writing. I wish also to extend my thanks
to Professors J. AczfL and A. D. WALLACE for their many generous comments
and valuable criticisms, and to Professor B. ScHweizer for his many helpful
suggestions.
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2. Conventions and preliminaries

We list conventions that will be adhered to throughout this paper.

We work throughout with the extended real number system (the ordinary
finite real numbers together with £ =o). Thus, a “real number” may be finite or
infinite.

The capital letters 7, J, K, R will be used for closed intervals. In particular, we
will always denote the closed unit interval [0, 1] by I and the closed interval [0, =]
by R. If J is a closed interval, then J* will denote the corresponding half-open
interval with the right endpoint removed. and J° the corresponding open interval
with both endpoints removed. Thus, R* denotes the set of non-negative finite real
numbers,

The small letters, i, m, n will be used for indices ranging over sets of positive
integers.

The capitalized letters F, S, T will be used for 2-place functions. Furthermore,
the use of the letters S and 7 will always imply associtivity (cf. equation (A2)) of
the functions. S(x, y) will be written as x-y if there is no danger of possible con-
fusion. Also, x" will always mean S(x"~', x), and the mapping: x -~ x" will be denoted
by s,. Other I-place functions will be denoted by the small letters £, g, h, k. j. r,.
In particular, the letter j will always be used for the identity function on any domain
in question. The domain and range of a function f are denoted by Dom (f) and
Ran (f), respectively. Composition of 1-place functions will be denoted by juxta-
position. The words “increasing”, “decreasing” and ‘“‘monotone” will be used in
the sense of “strictly increasing”, etc.

Following B. ScHwWEIZER and A. SKLAR [17, 18,19, 20], we introduce the
notions of right-subinverse and left-neutralizer.

(2. 1) Definition. A right-subinverse of a function f is a function g such
that

(RSI) Dom (g)=Ran (f). Ran(g) € Dom (f). and fg=j on Ran (f).

i.e., f(g(x))=x forall x in Ran(f).

Any function, whether it has an inverse or not, has at least one right-subinverse.
(This assertion is in fact equivalent to the axiom of choice [20].) Moreover, if g is
a right-subinverse of . then g is itself invertible, and the inverse of g is the (generally
proper) restriction of f/ to Ran (g).

(2. 2) Definition. A left-neutralizer of a real function fis a function g such
that

(LN) gf<j, i.e. g(f(x))=x for all x in Dom (gf).

In the case of continuous monotonic functions. it is convenient to single out
a particular left-neutralizer, as follows:
(2. 3) Definition. Let f:J—R be a continuous and increasing function from
[a, b] to [0, =). The pseudo-inverse of f is the function g: R -J defined by
a, if x is in [0, f(a)].

(PID) g(x) =1/71(x), if x is in [f(a), f(D)],
b, if x is in [£(b), =].
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If f is continuous and decreasing, the pseudo-inverse g is defined by

b, if x is in [0, £(D)],
(PID) g(x) =1f '), if xis in [f(b).f(a)],
a, if x is in [f(a), =].

It is easy to see that the pseudo-inverse g is continuous and weakly monotone.
Furthermore, it is immediate that, if g is the pseudo-inverse of f. then f is a right-
subinverse of g.

3. Representation of associative functions

For convenience we restate Aczél’s theorem here as follows:

(3. 1) THEOREM. [1]. Let A be an open or half-open (but not closed) interval
and S:AX A -~ A be an associative function satisfying the following conditions:

(1) S is continuous.

(i) S is increasing in each place.
Then there exists a continuous and monotone function f: A — R, such that S is repre-
sentable in the form

(A3) S(x.y) = g(f(x)+1(»),
where g is the inverse of f.

(3.2) Definition. A semigroup S satisfying the hypotheses of Aczél’s theorem
will be called Aczélian.

As stated in the introduction, our purpose is to weaken the isotonicity condition
(ii). Now it is not possible to do this in general unless additional conditions are
introduced (the 7-norm Min shows this: see Section 6). We have tried to keep these
new conditions “‘natural™, in the sense that they actually hold in the most useful
examples of Aczél’s theorem.

There is another point to be observed: Aczél’s theorem really involves three
different cases: (1) A is open, i.e., of the form (a, b); (2) A is of the form (a, b];
(3) A is of the form [a, b). It turns out that the generalisation of Aczél’s theorem
involves four different cases: (1), (2), (3) as in Aczel's theorem, and (4): A is closed,
which is expressedly excluded in Aczél's theorem. Moreover, it is most convenient
to work with case (4): and since, as we shall see, the other cases can be reduced
to this, it is case (4) alone that will be treated in detail.

Generalization of Aczél's Theorem

(3. 3) Main Theorem. Let J be a closed interval [a, b] of the extended real line
and S:JxJ — J be an associative function satisfying the following conditions:

(1) S is continuous,

(2) S is nondecreasing in each place,

(3) The endpoint a is a left unit, i. e., a-x = x for all x in J,
(4) For all x inJ°, x*=x.

D 13
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Then there exists a continuous and increasing function f-J — R such that S is represent-
able in the form

(L) S(x, ) = g(fAx)+f(»).
where g is the pseudo-inverse of f.

(3.4) Remark. The requirement that J be closed does not really restrict us in
any way. For example, if we begin with (a, 8] or (a, ), we can replace postulate
(3) by (3a):

(3a) For all y in (a, b] or in (a, b),
limS(x,y) =y, limS(x,x)=a.

Hence. upon adjoining the endpoint « to (a. b], or both endpoints @ and b to (a, b),
by continuity, we immediately recover the hypotheses of Theorem (3. 3).

In later sections (Sections 4 and 5), we shall give two proofs of the foregoing
theorem.

Dualization of the Main Theorem

For various applications, it is convenient to have a dual version of the main
theorem at hand.

(3. 5) Dual of the Main Theorem. Let J be a closed interval [a, b] of the extended
real line and S:J x J -~ J be an associative function satisfying the following conditions:

(1) S is continuous,

(2) S is nondecreasing in each place,

(3) The endpoint b is a left unit, i. e., b-x =x for all x in J,
(4) For all x inJ°, x2=x.

Then there exists a continuous and decreasing function f:J— R such that S is repre-
sentable in the form

(L)* S(x,y) = g(f(x)+f(»),
where g is the pseudo-inverse of f.

(3. 6) Theorem. The main theorem implies its dual, and conversely.

Proor. Let S satisfy all the hypotheses of the dual theorem. Let A:J—~J be
any order-reversing homeomorphism of J with itself. Then both & and its inverse
k are continuous and decreasing.

We define a 2-place function 7:Jx<J — J as follows:

T(x, y)=kS(h(x), h(p)).

We show first that 7 satisfies the hypotheses of the main theorem. T is associa-
tive by invariance under isomorphism. 7 is continuous because it is the composite
of continuous functions k, S, h.

T'is nondecreasing because A S is nonincreasing in each place, being the composite
of decreasing and nondecreasing functions k& and S. Finally kS(4(x), h(y)) is non-
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decreasing because it is the composite of a nonincreasing function k.S with a decreas-
ing function /h.

The endpoint a is a left unit because (i) S(b, x) = x for all x, (i) S(k(a), h(y)) =
=h(y) for all y. whence kS(h(a), h(y))=y for all y, i.e., T(a, y)=y for all y.

Finally let x be in J°, so that h(x) is in J°. Then S(h(x), h(x)) =h(x). By the
antitonicity of k, kS(h(x). h(x))= x, i.e.. T(x, x)= x.

Now applying the main theorem to 7, we obtain T(x,y) = g(f(x)+/(»).
where g is the pseudo-inverse of f.

Writing u = h(x), and v = h(y), whence x = k(«) and y = k(v), the representation
of T by the generator f becomes a representation of S by the generator fk:J - R
such that

Stu,v) = hg(fk(w) Jr-_ﬂ(('r)).

Since f:J -+ R is continuous and increasing, fk is continuous and decreasing.
Also remember that fk(a)=f(b) and fk(b)=/f(a). We have the following:

(i) If xisin [0, f(a)], then g(x) = a. Therefore if x is in [0, fk(b)], then hg(x) =b.

(i) If x is in [f(b), ~], then g(x)=bh. Therefore if x is in [fk(a), ~], then
hg(x)=a.

(iii) If x is in [f(a), f(B)], then g(x) =/~ '(x). Therefore if x is in [fk(b), fk(a)],
then hg(x)=Ak"'f~1(x)=(fk)~"(x). It follows that Ag is the pseudo-inverse of fk.

The converse is proved in the same manner, and this completes the proof of
Theorem (3. 6).

(3.7) Definition. A semigroup S satisfying the hypotheses of the main
theorem or its dual will be called Archimedean. (Cf. Lemma (4. 2).)

(3. 8) Definition. A function f solving equation (A3) or (L), (L)* is called
an additive generator (or simply generator) of S. (Cf. SCHWEIZER and SKLAR [20].)

(3.9) Definition. An Archimedean semigroup is called “properly Archi-
medean”, if every additive generator is unbounded.

We could equivalently say: S is properly Archimedean if the function g in
(L) or (L)* is strictly monotonic, therefore the inverse of f; otherwise S is improperly
Archimedean.

Since any properly Archimedean S is easily seen to be Aczélian on J°, we will
use the two terms: properly Archimedean, Aczélian, interchangeably.

(3. 10) Converse of the Main Theorem. Let J be a closed interval of the real
nmumbers, :J—~R be a continuous and increasing function, and g: R —~J the pseudo-
inverse of f. Then the 2-place function S defined by

(CL) S(x. y) = g(f(x) +£(»),
is an Archimedean semigroup.

ProOF. By straightforward verfication, of the postulates (1)—(4) and associa-
tivity.

(3. 11) Remark. The converse to the main theorem (or rather the converse to
the dual of main theorem) is essentially due to B. ScHwEIZER and A. SKLAR [20].
They phrased it in terms of triangular norms, but it can easily be translated into
the language of Archimedean semigroups.
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Application of Representation Theorems to T-norms

We illustrate the scope of these theorems with examples (and counterexamples)
drawn from the class of 7-norms and their duals.

(3. 12) Definition. A triangular norm (/-norm) is an associative function
T:1x1 - I satisfying the following conditions:

(SS1) 7 is nondecreasing in each of its places,

(SS2) 7 is commutative,

(SS3) The endpoint 1 is a unit, i. e.,

l<x=x-1=x forall x in I,
(SS4) 7(0,0)=0.
(3. 13) Definition. A r-norm is strict if 7 satisfies the following additional
conditions:
(SS5) T is continuous,
(SS6) T is increasing, in each of its places, on

(0. 1]><(0, 1].

(3. 14) Definition. A r-norm 7 is called Archimedean if it is Archimedean
as a semigroup (cf. Definition (3. 7)).

It is readily seen that the class of strict 7-norms is a proper subclass of Archi-
medean 7-norms.

(3. 15) Examples. Of particular importance are the r-norms T7,. 7,. Prod,
and Min, defined respectively as follows:

- y=)
T.(x,») =1), if x=1,
0, otherwise,
To(x,y) = max(x+y—1,0).
Prod (x, y) =xy (the ordinary product).

xod x=y

Min (x, y) = {

¥ I Pl

Of these r-norms, only Prod is strict, only Prod and 7, are Archimedean, and
only 7, is discontinuous.

The duals (conorms [20]) of these r-norms are also of importance. In particular
we will need the dual S, of 7,. where

So(x,¥) = Min (x+y, 1).

The following theorem applies Theorem (3. 5) to the class of Archimedean
f-norms.

(3. 16) Theorem. Let T be an Archimedean t-norm. Then there exists a conti-
nuous and decreasing function f:I-+R such that T is representable in the form

(LT)* T(x,y) = g(f(x)+1(»).
where g: R —1 is the pseudo-inverse of f, and f(1)=0.
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ProoF. T satisfies all the hypotheses of Theorem (3. 5). Therefore. there exists
a continuous and decreasing function f:/— R solving equation (LT)*.

Let f(0)=2Z and f(1)=W. Then Z= W.

We want to show that f(1)=W=0.

Recall that on [0, W] and only on [0, W] is the value of g equal to 1. Now we
have 1 = T(1,1) = g(f(1)+/(1)) = g(2W), whence 2W is in [0, W]. This is
only possible if W=0.

(3. 17) Example. Since the t-norm T, is Archimedean, it has a generator
f:I—+R, e.g. flx) = 1l—x for all x in /. The pseudoinverse g: R —~1 of f is given
by:

1—x, if x=1,

Lo {O, if x=1.
The following identity is obvious:
To(x,y) = max (x+y—1,0) = g((1—-x)+(1-y)).

Theorem (3. 16) has of course a dual which applies to conorms. In particular,
since S, is Archimedean, it has an additive generator f;,. Both f; and its pseudo-
inverse g, are readily found (either by dualizing from T, or directly): accordingly
we have the following example:

So(x, y) = go(fu(-’l') '*fu(,l-’)}

where
(3.18) folx)=x on I, and
(3.19) go(x)=Min (x, 1) on R.

The t-norm Min

The f-norm Min provides an interesting counterexample to Theorem (3. 5).
Min satisfies all the hypotheses except one (viz., x> <=x) of Theorem (3. 5). Since
Theorem (3. 5) is a characterization theorem, it follows that Min has no continuous
and decreasing generators. But we can go much further. In fact, ARNOLD and
KyRILOv (see [5]) have shown that Min (x, y) is not representable in the form
g(h(x)+ k() for any combination of continuous functions g. i, k. We can even
drop the requirement of continuity for some of the functions involved, and then
obtain the following results:

(3. 20) Theorem. The t-norm Min has no continuous additive generator. More
precisely. there exists no continuous function f:1 -~ R such that Min is representable
in the form
(C) Min (x, y) = g(f(x)+£(»)),
where g is some left-neutralizer (not necessarily continuous) of f.

PROOF. Since gf = j;, fsends distinct elements into distinct elements. Let f(0) =Z
and f(1)=W.

Since 0 =Min (0, x) =g(f(0) + f(x)) for all x in 7, g will map the closed interval
[2Z, Z + W] (in case Z = W) or [Z + W, 2Z] (in case W = Z) into the single number 0.
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In case Z <= W, then, for sufficiently small x in /7, we have 2Z = f(x) +f(x) =

< Z+W. Thus, g(f(x)+f(x)) =0. On the other hand. g(f(x)+f(x)) =
= Min (x. x) = x. This is a contradiction.

In case W<=Z, then, for all sufficiently small x, we have Z+ W <= f(x)+
+f(x) = 2Z. Thus, g(f(x)+f(x)) = 0. On the other hand, g(f(x)+f(x)) =
= Min (x, x) = x. This is a contradiction.

Hence, Min has no continuous generator.

(3. 21) Theorem. The t-norm Min has no decreasing generator. More precisely,
there exists no decreasing function f:I— R such that Min is representable in the form

(D) Min (x, ») = g(f(x) +f(»),
where g is a nonincreasing left-neutralizer of f.

PRrOOF. Suppose that Min has a decreasing generator solving the equation (D).

Since f is decreasing, it has at most countably many points of discontinuity.

Let ¢ in /° be a point of continuity of f. Choose an increasing sequence {c,}
in 7 converging to ¢ from below.

Although g is required to be only nonincreasing on Dom (g). g must be decreas-
ing on Ran (f). Hence we have the decreasing sequence {f(c,)}, which converges
from above to f(c) by the continuity of f at the point c.

Since ¢ =1, we have f(¢)=f(1)=0. whence

fle)=fle)+flc).
Therefore for sufficiently large n, we have
f(e) =fle,) =f(e) +1(c).

Applying the nonincreasing left-neutralizer g to the above inequalities, we
obtain

c= ¢,=g(f(c) +f(c)) = Min(c, ¢) = c.

This contradiction shows the nonexistence of a decreasing generator f solving
the representation equation (D).

4. First proof of the main theorem

To prove the main theorem, we first prove a sequence of lemmas which are
consequences of postulates (1)—(4) together with the assumption of associativity.

(4. 1) Lemma 1. For any x in J, the sequence {x"| is nondecreasing.
PROOF. x"*1 = y.x"=gq.x" = x" by postulates (2) and (3).

(4.2) Lemma 2. For all x and y in J°, there exists an n such that x"=y. (1. e.,
the semigroup S is Archimedean.)

PROOF. Assume the lemma to be false. Then there exist two elements x and y
in J° such that x"=y for all n. Since the sequence {x"} is nondecreasing, it has a



Representation of associative functions 199

limit L. Furthermore, x < L=y, consequently
L? = L-L = (lim x*)-(lim x*) = lim x>* = L.

But L2 =L contradicts postulate (4).

(4. 3). Remark. We could equivalently have postulated Lemma 2 in place of
postulate (4). Because if the ordering is Archimedean, and there exists an x in J~
such that x? = x, then by mathematical induction x*= x for all n. This contradicts
Lemma 2 since we may take y=ux in that lemma.

(4.4) Lemma 3. For all x in J°, the limit of the sequence {x"} is the endpoint b.

PrOOF. If lim x"=y #b, then we have x"= y for some n» by Lemma 2. Since
1am} is nondecreasing, we have a contradiction.

(4. 5) Lemma 4. The endpoint b is an annihilator, i.e., b-x =x-b=b for all
B )

Proor. If xisinJ’, then b = lim x". Therefore b-x =(lim x")-x = lim (x"*!)=5.

Similarly x-b=b, for x in J". Cc;ﬁ-écquently b?=x-b=5b, whence b*=b,
If x=a, then a-b =5 by postulate (3), and
b.a = b+(lim x) = lim (b-x) = lim (h) = b.

X—da X—d

(4. 6) Definition. An element e of J is called idempotent if e? =e. Thus we
se2 that the endpoints @ and b are idempotents. But by postulate (4) / has no interior
idempotents.

(4.7) Definition. An element x of J is called a nilpotent if x” = the annihilator
for some positive integer .

(4. 8) Lemma 5. The endpoint a is a unit, i.e., a-x=x-a=x for all x in J.

Proor. It suffices to show that a is a right unit, i. e., x-a=x for all x in J.

Consider the continuous map x —-x-a. It assumes the values a(=a-«) and
b (= b-a). Therefore it assumes all the values from « to b, 1. e., every x in J is of the
form y-a for some y in J. Then

xca=(y-a)a=y-(a-a)=y-a=x.

(4.9) Lemma 6. If x and y are in J°, then x-y=y and y-x=y. (L. e., the semi-
group S is positively ordered [9].)

PROOF. We have x-y=a-y=y. If x-y=yp, then by mathematical induction,
y=x"y for all n. But by Lemma 2, there is an »n such that x*= y. Hence y =x" =
= X"q = X"y = )

This contradiction proves x-y= y. The proof of y-x= y is similar.

(4. 10) Lemma 7. If x and y are in J and x <y, then there exist z, and z, such
that y=x-z; and y=z,-x. (l. e., the semigroup S is naturally ordered [9].)

Proor. Consider the continuous map S(x, z) with a fixed x and variable z.
It assumes the values x (=x-a), and b (=x-b). Therefore it assumes all the values
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from x to b, in particular y. Hence y is of the form x-z,. The proof of the other
part is similar,

(4. 11) Remark. It follows immediately from Lemmas 2 and 7 that S is commu-
tative (see [9]. [12]). We do not, however, use this fact in the proof of the main
theorem.

(4.12) Lemma 8. If x <y and x" < b, then x" < y" .

PrOOF. Assume that the lemma is false. Then there exist two elements x and
y in J° and an integer n such that x <=y and x"<b, but x"=)",
By Lemma 7, there exists z in J° such that y =x-z. Then we have

b=x"=y"= (" 1)y = (&2 = (O0")x)z =
=((x"-1)ex):z = x"-2=>x"

This contradiction proves the lemma.

Thus we see that the continuous and nondecreasing function s, (where
s.(x)=x" [cf. the list of conventions]) increases steadily from the value @ to the
value b, then remains constant at b.

(4.13) Lemma 9. For all x in J',x"<b implies x* <=x"+1,

Proo¥. This follows from Lemma 6 by taking y to be x". Thus we see that the
sequence {x"} increases steadily from the value x until the value b is reached. From
that term onward, the sequence has all terms equal to b.

(4. 14) Lemma 10. Let x be in J and R(x)={yly in J, y*=x}. Then R (x) has
a least element.

Proor. Consider the continuous function s,:J/J —J. It assumes the values a (= a")
and b (=5b"). Therefore it assumes all values from a to b, in particular the value x.
Hence there exists y in J such that y"=x.

Let L be the infimum of R,(x). We want to show that L" = x. Choose a sequence
{ya} in R(x) converging to L.

Since s,(y,,) =x, and lims,(y,)=s,(L), we must also have s,(L)=x. This

proves the lemma.
(4. 15) Definition. We define a function r,:J/J—~J by:

r(X)=min (R,(x)).

(4. 16) Lemma 11. The function r, is a right-subinverse of the continuous function
s,, and r, is continwous and increasing.

-

ProOF. Dom (r,) =J=Ran (s,). Ran (r,) is contained in J=Dom (s,). Finally,
s(r(x))=x for all x in J. Thus r, is a right-subinverse of s,.

By Lemma 8. s, is continuous and increasing on the interval [a, r,(b)] = K.
Therefore s, restricted to the domain K is an orderpreserving homeomorphism
between K and J. By Definition (4. 15) r,:J — K is the inverse of this homeomorphism.
Hence r, is also continuous and increasing.
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(4. 17) Lemma 12. For all x in J°, r(x)=r,.(x) for all n.

ProoOF. Assume that the lemma is false. Then there exist an x in J° and an n
such that
a<r(x) =r,.q(x)<b.

Since s, is nondecreasing, we then have
a <S5, (X) = S0 +1(x)<b.

Therefore a=x = 57,4 (X) =58,+17p+1(x)=x by Lemma 9, a contradiction. This
proves the lemma.

(4. 18) Lemma 13. For all x in J",

limr,(x) = a.
ProoF. The sequence {r,(x)} is decreasing by Lemma 12. Let L be the limit
of the sequence. Then L < r,(x) for all n. Hence L" = x for all n, by the monotonicity
of s,. Hence L=a by the Archimedean order of S.

(4. 19) Lemma 14. For all i, m, n, we have
Sm T'n=Sim Fin-

PrOOF. Assume that the lemma is false. Then there exist 7. m. n and an element
x in J° such that
S () 7 Sl 1a( X)-

Writing r,(x)=y and r,(x)=z, we have »"=x and z" =x. Hence both y and zf
are in R,(x), and by Definition (4. 15),

y=z, whence ym=zim

But by choice, y" = zi™. Consequently y™ <z This shows that y =z,

Now consider the continuous function s;. It assumes the value @ (= «') and the
value =z, therefore it assumes all values from « to z'. In particular it assumes the
value y. Therefore there exists an element w in the open interval (a, z) such that
y=w.

Then wi" =" = x. Hence w is in R, (x) and w=<z. This contradicts the definition
of z, whence the lemma.

Proof of the Main Theorem

With the help of the preceding lemmas, we are in a position to prove the main
theorem.

Let Q denote the set of all positive rational numbers. First we construct a
relation g*: Q —~J as follows:

We choose an element ¢ in (a, b) and keep ¢ fixed throughout the remainder
of the discussion. We define g*(m/n) = s,,r,(c) for any m/n in Q. By virtue of Lemma 14,
the relation g* is in fact a function.
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Now we proceed to prove the following four propositions:
Proposition (1). The function g* is nondecreasing.

Proor. Let x and y be two positive rational numbers. Reduce them to a common
denominator 4, i.e.,
x=mj/d and y=n/d.
If x<y, then m<n. Hence

g*(x)=g*(m/d)=s,rfc) = s,;rdc)=g*(n/d)=g*(y).
Proposition (2). For all x,y in Dom (g*), if x=y and g*(x) <b, then g*(x) <
<g*(»).
Proor. Let x and y be in Q. Reduce them to a common denominator d. i. ¢.,
x=mjd and y=n/d.
If x<y, then m<n. If g*(x)<b, then by Lemma 9,
g¥(x) =s,.rdc) <8, 17Lc) = srfdc)=g*(y).
Proposition (3). The function g* satisfies the functional equation
g¥(x)-g*(y) = g*(x+y) for all x in Dom (g*).
Proor. Let x, y be in Q. Reduce them to a common denominator d, 1. e.,
x=m/d and y=n/d.

Then g*(x):g*(3) = 85,(ri©))5.(ri(€) = 5 2n(ri©)) = g*((m+m)/d) = g*(x+y), by
the definition of g*.
Proposition (4). The function g* is continuous on Dom (g*).

PRrROOF, Since the function g* is nondecreasing. it has limits on both sides at
any x in Q. Therefore, we need only to show, e. g., that

limg*(x+ 1/n) = g*(x),

n—* oo

limg*(x—1/n) = g*(x).

n=t =

and

for all x in Q.
First observe that
limg*(1/n) = g*(0) = a,

n—+ oo

limg*(l/n) = limr,(c) = a,

n— e n— =

since

by Lemma 13. Also, we have
g (x+1/n) = g*(x)-g*(1/n),
by Proposition (3). Therefore

lim g*(x+1/n) = g*(x)-lim g*(1/n) = g*(x)-a = g*(x).

n— e n— e
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Next for x>0 in Q. we have
lim g*(x—1/n) = [limg*(x—1/n)]-a =

n=> o n—= o

= [lim g*(x — 1/m)]-[ lim g*(1/m)] = lim [g*(x — 1/n)g*(1/m)],
by virtue of the continuity of the semigroup operation. But g*(x — 1/n)-g*(1/n) =
= g*(x), by Proposition (3). Hence
lim g*(x—1/n) = limg*(x) = g*(x).

This shows that g* is continuous on Dom (g~).

We can now extend the function g* by continuity to a unique function g: R —~J.
All the Propositions (1)—(4) remain valid for the extended function g. In particular,
according to Proposition (2), g starts from « and increases strictly until the value
b is reached. Let B be the first point in R such that g(B)=5. Then by Propositions
(2) and (4), the restriction of g to [0, B] is a homeomorphism from [0, B] onto J.
Let f:J [0, B] be the inverse homeomorphism. Then f'is increasing and continuous.

By Proposition (3), we have for all x, y in R,

g(x)g(y) = glx+y).

Writing #=g(x) and v=g(y), we see that, since x and y are both in [0, B],
x =f(u) and y=/f(r). The above equation then reduces to

S(u,v) = wr = g(flw)+f(v)).

By examining all relevant definitions, and straightforward computation, we see
that g is the pseudo-inverse of f. Therefore, the representation of S by a continuous
and strictly increasing additive generator f is established. This completes the first
proof of the main theorem.

5. Second proof of the main theorem

We will now show the main theorem and its dual can be deduced from known
results on topological semigroups [11, 16]. To this end we first restate a theorem of
Faucett and one of Mostert and Shields.

(5. 1) Theorem of FAUCETT [11]: Let J be a closed interval [a, b] of the extended
real line and S:J X J — J an associative function continuous on J. If the left endpoint
a is the identity clement for the binary operation S and the right endpoint b the annihi-
lator (or zero), and if no interior point of J is nilpotent, then the semigroup J under
S is order-isomorphic to the semigroup [0, =] under addition (i. e., there exists an
increasing and bi-continuous function f:J [0, =] such that f(S(x, y)) = f(x)+/f(»).)

(5. 2) Theorem of MOSTERT and SHIELDS [16]: Ler J and S satisfy all the hypothe-
ses of Faucett’s theorem except that J has at least one interior nilpotent element.
Then J under S is order-isomorphic to the semigroup 1= (0, 1] under the binary opera-
tion S, (i. e., there exists an increasing and bi-continuous function f:J —1 such that

S(S(x, ) = So(f(x), A(¥) = Min (f(x)+£(»), 1).
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(5. 3) Deduction of the Main Theorem. Let S:Jx J — J satisfy the postulates
(1)—(4) of the main theorem. Then we have the following two cases.

Case 1. (This is actually a special case of Aczfl’s theorem, but we include it
here for the sake of completeness.) If J=[a, b] has no interior nilpotent element,
then by Lemmas 4 and 5, the semigroup J under S satisfies all the hypotheses of
Faucett’s theorem. Consequently there exists an increasing and bi-continuous
function f:J—[0, =] such that f(S(x,»)) = f(x)+f(y) for all x.y in J. Let
g:[0, =] -J be the inverse function of f. Then

S(x.y) = g(f(x) +£(p)),
for all x and y in J.

Case 2. If J=[a.b] has an interior nilpotent element, then the semigroup J
under S satisfies all the hypotheses of the theorem of Mostert and Shields. Conse-
quently there exists an increasing and bicontinuous function f:J--I such that
F(S(x, ») = So( f(x), f(»)) =Min(f(x)+f(p). 1) for all x and y in J. Let g:[0, =] ~J
be the pseudo-inverse of f, i.e.,

f-Y(x), if x is in [0, 1],
g(x) = { b

Then we have the following:
(i) If f(x)+f(y) = 1, then

f8(x.p) = Min (f(x)+£(y), 1) = f(x)+£(»)
S(x, ) = U +1(»),

the greatest element of J, if x=1.

and
g(f(x)+/() = f~1(f(x) +1(3).
Therefore
S(x,») = g(f(x)+£(p).
(i1) If fix)+f(y) = 1, then
f8(x,y) = Min(f(x)+f(»,1) = 1,
and
flb)=1,
g(f(x)+f(») = b,
Therefore

S(x,y) = b = g(f(x)+£()).

Hence we have S(x,y) = g(f(x)+f(y)) for all x and y in J, and this completes the
second proof of the main theorem.

Having deduced the main theorem from a theorem of Mostert and Shields.
we shall now show that, conversely, their theorem is a consequence of the main
theorem. To do this, we recall that if S,:/>< 7 - I is the associative function given
by

So(x, y) = Min (x+y, 1),

then S, has an additive generator f,, where f, and its pseudo-inverse g, are given,
by fo(x)=x for all x in 7 and go(x)=Min (x. 1) for all x in R=[0, ==]. (Cf. (3. 18)
(3.19).)
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Let S:JxJ - J be any semigroup satisfying all the hypotheses of Mostert
and Shields’s theorem. Then S satisfies all the hypotheses of the main theorem and
is therefore Archimedean. Since there exists at least one nilpotent element in the
interior of the interval J = [a, b], S must be improperly Archimedean. Hence S has
a bounded additive generator.

Let f:J — [0, B] be an additive generator of S and g:R -/ its pseudo-inverse.
Let the function h:J—1 be defined as follows:

h(x)=f(x)/B, where B=/f(b).
Hence the inverse h=1:7-+J is given by
h=1(x) =11 Bx).
Then, with the above definitions, we have the following:
(5.4) Lemma. gG(.x'lzh(g(B.\*i) for all x in I.
PrROOF. By the definition of s, we have

x=h(f~%(Bx)) for all x in I

go(x) = h(f 1 (Bgo(x)) = h(f '(BMin (x, 1)) =
hf =1 (Bx). if x=1,
:{hf 1(B) = h(b) = 1, if x=1,
hg(Bx), if x=1,
{1 if x=1.

= hg(Bx), for all x in R = [0, =].
Hence, the lemma is proved.

Hence

(5. 5) Theorem. The main theorem implies Mostert and Shields’ theorem (5. 2).

ProOF. Since S and S, are Archimedean, we have, for all x, y in /, the following:
h(S(x. ) = hg(f(x)+f(y) = hg(B(f(x)/B+f()/B) = go( f(x)/B+f(y)/B) =
(by Lemma (5. 4))
= go(h(x)+h(y)) = Min (h(x)+h(p), 1) = Sy(h(x), h(y)).

This shows that h:J -1 1s an order-preserving isomorphism.

Thus Mostert and Shields’ theorem is obtainable as a consequence of the main
theorem restricted to the improperly Archimedean semigroups. Similarly Faucett’s
theorem (a special case of Aczél’s theorem) is equivalent to the main theorem restricted
to properly Archimedean semigroups. The main theorem has the advantage of
treating the two cases in a unified manner.

The history of such isomorphism theorems for ordered semigroups goes back
at least as far as HOLDER [13]. For comprehensive surveys of the field and additional
references, see CLIFFORD [8, 9] and FucHhs [12].

We note that another theorem of MOSTERT and SHIELDS characterizes all
the continuous semigroups on the unit interval that have 0 as an annihilator and 1
as a unit. Using this we can characterize the most general continuous 7-norms.
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(5.6) Definition. Let A4 be a totally ordered set and {S,},- 4 be a collection
of disjoint semigroups indexed by A. Then the ordinal sum of {S,} is the set-theoretic

union |J S, under the following binary operation:
ac A

x-y, if x and y are in one and same S, for some «¢ A.
xXp=1X if xS, and ycS, for some a and » in 4 and a<b.
Y, if xe&8, and y€S, for some @ and b in A and a=b.

It is immediately verified that the ordinal sum is a semigroup under the above defined
operation.

The theorem of Mostert and Shields ([16], p. 130, Theorem B) when applied
to r-norms takes the following form:

Every continuous 7-norm is either the r-norm Min, or is an ordinal sum of
Archimedean semigroups and one-point semigroups. This theorem generalizes the
theorem of CrLimescu [10] on the ordinal sum of two semigroups, which was applied
to r-norms by SCHWEIZER and SKLAR in [20].

6. Archimedean semigroups as limits of Aczélian semigroups

The purpose of this section is to show that every Archimedean semigroup §
is obtainable as a limit of Aczélian semigroups. The precise statement is as follows:

(6. 1) Theorem. Let J be a closed interval [a, b], and S an Archimedean semi-
group on J. (Cf. Definition (3.7)). Then there exists a sequence {S,| of semigroups
on J, where each S, is continuous on J and Aczélian on J° (cf. Definition (3. 2)), and
such that for every (x,y) in JXJ,

lim S, (x. y) = S(x, »).

A= oo

PROOF. It is clear that we need only consider the case of semigroups satisfying
the hypotheses of the main theorem (3. 3), since the dual case follows by dual argu-
ments. In what follows, then, all notation will conform to that of the main theorem.

Furthermore, since the case where S is itself Aczélian is trivial, we consider
only non-Aczélian S.

By the main theorem (3. 3), S has a continuous and increasing generator f:J —
— [0, B], such that S is representable in the form

(L) S(x,y) = g(f/(x)+£(»),

where g is the pseudo-inverse of f, and B=/f(b).

The function g:R—~J is nondecreasing, is the inverse of f on [0, B], and is
constant on [B. =].

The idea of the proof is to construct a sequence of increasing, continuous
function g, converging pointwise to the continuous function g.

For this purpose, let {b,} be an increasing sequence of numbers with limit b.
We can always take b,= a. Let A, be the restriction of g to the interval [0, f(b,)],
k, a continuous increasing function from [f(b,). -] to [b,, b], and g, the union of
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h, and k,. Then g, is a continuous increasing function from R to J which coincides
with g on [0, f(b,)]: accordingly, g, has a continuous, increasing inverse which we
denote by f,.
We have so constructed the g, that they converge pointwise to the function g.
For example, if b is finite, we can take the following as a formula for g,:

g(x), if 0=x=/(b,),

f(bn) =%

&(¥) = b—(b—b,) exp ——'——'—]. if  f(b)) =x=ce.

As b, the last expression becomes (x —f(b,))+b,.
Next, we construct semigroups S, as follows:

5%, ¥) = g(fX) +£(),
for ail x,y in J.
The converse of Aczél’s theorem shows that the S, are Aczélian, i. e., S,(x, »y)
1s increasing in each of its places for all x, y in J°.
It remains to show that S, converges pointwise to S. There are two cases to
consider:

Case 1. If S(x,y) is an [a, b), i.e., S(x,y)<b. Then we have S(x,y) =
= g(f(x) +f(»)) = b, whence f(x)+f(y) = f(b). But limb,=b, and limf(b,) =

e = =

=f(b). Hence, for all sufficiently large n, we have

S(x)+f(y) = f(b,).
It follows that, by the definitions of g, and f,.

&(x) = g(x), f(x)+£(») = [Ax)+A ).

Consequently, we have, for all sufficiently large n,

Sidx,¥) = () +£(») = g(f(X)+1(») = S(x, p).
Case 2. If S(x,y)=>b, then we have

S(x, ) = g(f(X)+/(») = b.
S(x)+/(y) = fib).

Consider the following three sub-cases.
(i) If £(x)=/f(x) and f(») =f(),
LX) +1(») = [(x)+(») = f(b)= f(b,) = [.(by).
Hence, by the monotonicity of g,, we have
| S,%.3) = Gl ) +10)= &uliib) = b,.
(i) If £,(x) =/ (x).

Therefore

then
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then by the definition of g, and f,, we have
Ju(x)= fulb,).
Therefore, by monotonicity of g,, we have
Sux, ¥) = g(fx) +1(¥)= guf(b,) = b,.
(iii) If £,(») #f(y), we have S,(x,y)<b,

by arguments similar to those of case (ii). Hence for all three cases, we have S,(x, y)=
=b,. But lim b,=5, so we must have

N o=

lim S,(x,y) = b = S(x, y).

n—+ e

Consequently, lim S, (x, y)=S(x.y) for all (x,y) in JxJ.

1= o=

The following theorem is a special case of the dual version of Theorem (6. 1).

(6. 2) Theorem. Every Archimedean t-norm is the limit of a pointwise convergent
sequence of strict t-norms.

7. Nonexistence of monotone generators for discontinuous semigroups

The existence of continuous and monotone generators for any Aczélian semi-
group S is deduced from the following two conditions:

(i) S is continuous,

(ii) S is increasing in ecach of its places.

In Section 3 we have obtained a proper generalization of Aczél’s theorem by
relaxing condition (ii). The purpose of this section is to investigate the situation
arising from relaxing condition (i) while keeping condition (ii). In other words,
we consider the question of the existance of monotone generators for a discontinuous
semigroup S which satisfies condition (ii).

The following nonexistence theorem answers this question in the negative,

(7.1) Theorem. Let J* be the half-open interval [a, b) and S:J* X J*~J* be
an associative function satisfying the following conditions:

(S1) S is discontinuous.

(S2) S is commutative,

(S3) S is increasing in each of its places,

(S4) The endpoint a is a unit, i. e., a-x =x-a=x for all x in J*.

Then there exists no monotone function f:J* —[0, =) such that S is representable
in the form

(S) S(x, y) = g(f(x)+£(»).

where g is the inverse of f.
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Naturally Theorem (7. 1) can be dualized as follows:

(7.2) Theorem. Let (a,b] be half-open interval and S:(a.b] < (a, b]~(a,b]
be an associative function satisfying the following conditions:

(1S) S is discontinuous,

(2S) S is commutative,

(3S) S is increasing in each of its places.

(4S) The endpoint b is a unit, i. e., x-b="b-x =x for all x in (a, b].
Then there exists no monotone function [:(a, b] — (— ==, 0] such that S is representable
in the form

(S*) S(x, ») = g(f(x)+1(»),
where g is the inverse function of f.

Both Theorem (7. 1) and its dual are consequences of the following theorem
on groups:

The Group Case

(7. 3) Theorem. Let J° be an open interval (a,b) and S:J° X J°—~J° be an
associative function satisfying the following conditions:

(G1) S is discontinuous,

(G2) S is commutative,

(G3) S is increasing in each of its places.

(G4) Thereis a unit e in J°, i. e., e:x =x-e=x for all x in J°,

(GS) For each x in J°, there is an inverse y, i. e., y is in J° and x-y =y-x =e.

Then there exists no monotone function f:J° —~ (— ==, =) such that S is representable
in the form
(G) S(x. y) = g(f(x)+1(»).

where g is the inverse function of f.
We remark that by applying f to both sides of the equation (G)., we have
S(xy) = fix)+/(y),

for all x and y in J°. Hence if f exists, it is an isomorphism of the group J° relative
to S with a subgroup of the real numbers relative to addition.
In the proof of Theorem (7. 3) we need the following lemma:

(7.4) Lemma. If a subgroup G of the real numbers (relative to addition) has a
least positive element. then G is countable.

PrROOF. Let p be the least positive element of G. Suppose that G is not count-
able. Then there exists a positive element x in G such that x = np for all n. But then
x lies between two consecutive multiples of p, say

(n—1)p=x=np.
Hence O =np —x <p. and (np — x) is a positive element of G smaller than p. This
contradiction proves the lemma.

D 14
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PROOF of Theorem (7. 3). Suppose that there exists a monotone generator f
such that S is representable in the form (G). Then fis an isomorphism of the group
J° with a subgroup G of the real numbers relative to addition. Since J° is uncount-
able, and fis a 1 —1 correspondence, G is also uncountable. Therefore, G has no
least positive element by the preceding lemma. This means that for all y =0, there
exists an x in G such that 0<=x<=n.

On the orher hand. f, being already monotone, cannot be continuous. Other-
wise g, the inverse of f, would be also both continuous and monotone. Then by the
representation (G), S would be continuous, which contradicts (G1).

Now a monotone function f has only jump discontinuities, if any. So our f
must have a jump at some point ¢. Let H be the height of the jump at ¢. Then we
have

lim f(x) = L=f(c)=M = lim f(),

y—re— pr 4
and
M—-L = H.

There are two cases to consider:

Case 1. L=f(c) or M =f(c). Then G and the open interval (L, M) are disjoint.
On the other hand, G has no least positive element, so G has an element x such
that 0 =x = H. Then some integral multiple of x, +nx must fall inside (L, M),
which is a contradiction.

Case 2. L<f(c)<=M. Let n = min(f(c)—L, M—f(c)). Then there exists no
element of G inside (L_.f(c)). But again G has an element x such that 0 <=x <.
So some multiple of x, +nx must fall inside (L_.f(r‘)). which is a contradiction.

Hence, the nonexistence of a monotone generator f for S is proved.

Reduction of the Semigroup Case to the Group Case

We need only show that Theorem (7. 3) (group case) implies Theorem (7. 1).
(7.5) Theorem. Theorem (7. 1) follows from Theorem (7. 3).

PROOF. Suppose that the semigroup S on J*, which satisfies all the hypotheses
of Theorem (7. 1), has a monotone generator f:J* —[0, =) such that S is represent-
able in the form

(S) S(x, ) = g(f(x)+£(»),

where g is the inverse of f.

Let ¢(x) denote the point symmetric to x with respect to the point «. We shall
extend the function f:J* [0, ~) to the function h:(q(b), b) -~ (— ==, ==) by symmetry.
This means that we define & by

J(x), ¥ X i m T

h(x) = {—f(q(l‘)), if x is in g(J*).

There is no conflict of the definition of /& at the point a. This is because f(a) =0,
which is a consequence of representation (S) and the fact that & is the unit.
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Observe that the extension £ is also monotone.
If k is the inverse function of A, it can be shown by a simple calculation that

2(x) if xism FJ",

k(x) = {qg(_‘\-), if x is in —f(J%.

Now construct the following 2-place function T

T(x,y) = k(h(x)+h(p)),

for all x and y in (g(b), b).

It is obvious that 7 defines a group on the open interval (¢(b), ) and T extends
& O T

A straightforward verification shows that 7 satisfies all the hypotheses of
Theorem (7. 3).

By the definition of 7, T has a monotone generator /i, which is impossible by
Theorem (7. 3).

This contradiction proves the nonexistence of monotone generators f for S,
and so concludes the proof of Theorem (7. 1). Theorem (7. 2) then follows dually.

The t-norm T,,

The r-norm T, (see p. 14) serves as a noteworthy counterexample to the non-
existence theorem (7.2). T, (when restricted to the subdomain (0, 1]<(0, 1])
satisfies all the hypotheses except one (isotonicity in each place) of Theorem (7. 2).
Yet T, has in fact a decreasing additive generator f:/— R such that 7, is represent-
able in the form

(W) T (x,y) = g(f(x)+£(»),

where g is a nonincreasing left-neutralizer of f.
For example, we can take f:/— R to be the following function:

!2—.\', if X<,
%=1 " o

And the left-neutralizer g: R~/ to be the following:

1, if 0=x
g(x) =12—-x, if 1=x
0, if x=2,

1,
2,

1A 1A

That f and g satisfy the representation equation (W) is a matter of simple
calculation.

It is noteworthy that f is decreasing but discontinuous; however. g is non-
increasing and continuous.
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