Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957
General Subjects
Paradoxical Bactericidal Effects of Hydrophobic Lung Surfactant Proteins and Their Peptide Mimics Using Liposome Molecular Trojan
Kunal DuttaKaushik NagValerie BoothErin SmythHelen DueckMauricia Fritzen-GarciaChandradipa GhoshAmiya Kumar Panda
Author information
JOURNAL FREE ACCESS
Supplementary material

2018 Volume 67 Issue 8 Pages 1043-1057

Details
Abstract

Lung surfactant, besides alveolar stability, also provides defence against pathogens by surfactant proteins (SP), SP-A and SP-D. The hydrophobic proteins SP-B and SP-C enhance surface activity. An unusual and paradoxical effect of bovine LS and synthetic model LS with SP-B/-C was bactericidal to Staphylococcus aureus and Escherichia coli. Bacterial proliferation were investigated with bovine lung surfactant extract (BLES), dipalmitoylphosphatdylcholine, palmitooleylglycerol, in combination with SP-B/-C using standard microbiological colony forming unit (CFU) counts and structural imaging. BLES and other surfactant-SP-B/-C mixtures inhibit bacterial growth in the concentration range of 0 -7.5 mg/mL, at > 10 mg/mL paradoxical growth of both the bacterial species suggest antibiotic resistance. The lipid only LS have no effect on bacterial proliferation. Smaller peptide mimics of SP-B or SP-B1-25, were less efficient than SP-Cff. Ultra structural studies of the bacterial CFU using electron and atomic force microscopy suggest some membrane damage of S. aereus at inhibitory concentration of BLES, and some structural alteration of E. coli at dividing zones, suggesting utilization and incorporation of surfactant lipid species by both bacteria. The results depicted from in vitro studies are also in agreement with protein-protein interactions obtained from PatchDock, FireDock and ClasPro algorithm. The MD-simulation decipher a small range fluctuation of gyration radius of the LS proteins and their peptide mimics. The studies have alarming implications in the use of high dosages (100 mg/mL/kg body weight) of exogenous surfactant for treatment of respiratory distress syndrome, genetic knock-out abnormalities associated with these proteins, and the novel roles played by SP-B/C as bactericidal agents.

Content from these authors
© 2018 by Japan Oil Chemists' Society
Previous article
feedback
Top