Open access peer-reviewed chapter

The State of Knowledge on Intestinal Helminths in Free-Roaming Dogs in Southern South America

Written By

Luciano Ritossa, Gustavo Viozzi and Verónica Flores

Submitted: 26 October 2020 Reviewed: 20 January 2021 Published: 01 April 2021

DOI: 10.5772/intechopen.96125

From the Edited Volume

Canine Genetics, Health and Medicine

Edited by Catrin Rutland

Chapter metrics overview

360 Chapter Downloads

View Full Metrics

Abstract

In South America there are more dogs per person than in developed countries. Many owners allow their dogs to roam freely in public areas, which favours the spread of zoonotic diseases. The objective of this work is to describe, through bibliographic analysis, the occurrence, prevalence, species richness, and distribution of intestinal helminth parasites found in dog faeces from urban and rural areas of southern South America (Argentina-Chile-Uruguay). Using three databases, we performed a systematic review of articles published between 2000 and 2020 in indexed journals. A total of 219 articles was evaluated for eligibility, and of these 67 were included in the final analysis; 48 correspond to Argentina, 17 to Chile, and 2 to Uruguay. The total number of parasite taxa recorded was 22, the most frequently occurring species being Toxocara canis, Ancylostoma sp., Trichuris vulpis and Echinococcus sp. Species richness was correlated with sample size and varied between 1 and 10 species. In addition, disease risk is not homogeneously distributed. Due to the high infection levels in dogs, urban and rural dwellers are at risk of infection with zoonotic diseases transmitted by these animals, therefore a One Health approach to public health would be advisable.

Keywords

  • Argentina
  • Chile
  • Uruguay
  • Helminths
  • Canine faeces
  • Toxocara canis
  • Echinococcus granulosus
  • Ancylostoma caninum
  • Trichuris vulpis
  • systematic bibliographic review
  • zoonotic risk

1. Introduction

1.1 Dog populations

Humans and dogs share a long history and were probably associated with European early-modern humans [1], coexisting indoors and outdoors and colonising new environments, often in cooperation [2]. From ancient times dogs have been used by humans as tools for different purposes, such as hunting, gathering food, caring for livestock, protection, and more recently as detectors of explosives and drugs, as companion animals, or as assistants for people with various types of disease or disability [3, 4, 5]. Therefore, their coexistence has been wide-ranging, and has generated numerous opportunities for around 260 zoonotic diseases to emerge between dogs and humans [2, 6].

There are almost one billion dogs worldwide [7], but the relationship between the numbers of people and dogs varies according to the geographic area and socioeconomic conditions of each country or region [8]. In developed countries the human to dog ratio varies from 6 to 10:1 according to the World Health Organisation [9]; in Italy the human:dog ratio is 9:1 [10], and in the United States it is 3.6:1 [11]. The dog population in South America is very large, around 87.6 million. In Brazil in particular there are 44.9 million children aged under 14 years, and an estimated total of 52.2 million dogs, which means there are more dogs than children [12]. In Argentina, a survey carried out for food companies determined that there are approximately 9 million dogs, and that 78% of households have a dog, whose function is mainly exclusively companionship [13]. The situation in Chile is similar, where the dog population is around 3.5 million and 64% of households have at least one [14], while in Uruguay the dog population is 1.75 million and 72% of households own a dog [15].

To encourage responsible ownership of this large number of dogs, it was necessary to enact laws indicating what responsible dog care implies (Argentina: Decree 1088/11; Chile: No. 21.020/17; Uruguay: No. 1189/14). Animal welfare thus imposes obligations on the owner, which include vaccinations, deworming, neutering, adequate food, and keeping pets confined to the household or taking them outside on a lead, thus preventing them from roaming freely. It should be noted that in most localities of these countries these laws are not enforced effectively [16].

1.2 Dog care

Although national laws have been promulgated several years ago, knowledge of them and the care received by dogs is far from adequate [17, 18, 19, 20]. The biggest problem in these countries is that dogs are allowed to roam freely in public areas, and this is associated with education, socio-economic level, the idiosyncrasy and customs of each country, the role the dog plays within the family, and the low importance that people give to how their dog can affect other people or animals [21]. In addition, allowing dogs to roam freely is strongly correlated with other aspects of dog care, such as a lack of appropriate vaccination and deworming treatment [21]. The care given to dogs that roam freely is poorer than for dogs which are confined, and they are rarely taken to the vet due to the high cost that this represents [22]. In Chile, the average cost spent per pet for annual veterinary check-ups, diagnoses, vaccines and treatment is US$ 330 [4], while in Argentina this cost is around US$ 100 annually (personal observation). The percentage of vaccinated dogs is low, even when there is a possibility of rabies contagion [14, 23], and the frequency of deworming is in most cases inadequate considering that dogs can roam freely on public roads, becoming reinfected [23, 24, 25]. The percentage of animals that are neutered is also insufficient, despite the national or local neutering programs run in the three countries [21, 26, 27]. Neutered animals represent less than half the dog population [21, 23, 28] and the majority are older than 3 years; in many cases dogs are allowed to have at least one litter of offspring [23].

1.3 Dogs, parasites and diseases

One Health is recognised as a valuable paradigm for global health management, and seeks the integration of human and animal health. The risk of transmission of a zoonotic disease from dogs to humans is related to the abundance of infectious forms in the environment, climatic conditions, whether dogs roam freely, and the behaviour of humans that exposes them to infective sources [29, 30]. It has been observed that free-roaming dogs are more exposed and prone to acquiring parasites [24, 31, 32, 33]. In Chile, rural dogs are associated with agricultural and livestock activities. They are unsupervised, have freedom to roam and are given limited veterinary care [34]. In Argentina, parasite richness and prevalence are positively associated with free-roaming animals, and only a small proportion of dogs (17%) is subjected to some degree of movement restriction [20]. In the cities of Argentinian Patagonia, another important factor that promotes infection by zoonotic parasites, mainly cystic echinococcosis, is the domestic slaughter of small ruminants for human consumption. This practice occurs frequently in rural areas and the peripheral low-income neighbourhoods of cities, where dogs are fed with the raw offal of sheep and goats [35, 36]. The vast majority of parasites registered in South America are cosmopolitan zoonotic parasites transmitted through dog faeces, such as Toxocara canis, Ancylostoma caninum, Toxascaris leonina, Echinococcus spp., and Dipylidium caninum, which are common parasites in dogs worldwide [12]. Zoonotic parasitic infections in dogs are a public health issue not only in developing countries but also in developed nations, such as in the USA and European countries [37, 38]. Other parasites like Trichuris vulpis are distributed worldwide, but are rarely transmitted to humans [39]. Some human parasites like Ascaris lumbricoides and Strongyloides stercoralis are occasionally reported in dogs [40, 41]. Therefore, worldwide, dogs may harbour zoonotic parasites that affect the health and wellbeing of humans, their distribution being linked to poverty, poor knowledge of sanitary practices, insufficient hygiene and problems with unconfined and untreated dogs [42]. Pet diseases may pose risks to human health but are rarely included in surveillance systems. Although pet-borne infections have become increasingly relevant to human health, systematic notification of these infections is not currently conducted, except for rabies and Echinococcosis in some countries [22, 43].

Southern South America is a region with varied geography and climate and marked altitudinal and latitudinal differences; for example, plains (Pampas in Argentina and Uruguay), arid plateaus (Patagonia), forests (Patagonia and northeastern Argentina), and mountains of high altitude between Argentina and Chile (the Andes). The climate ranges from humid tropical in northern Argentina and Uruguay, arid in northern Chile, to humid cold in the south of Argentina and Chile. This climatic variety favours the distribution and occurrence of different parasites. On the other hand, the socio-economic condition of a large part of the population is characterised by poverty and a low-income economy. This scenario is accompanied by a lack of parasitological studies, surveillance and zoonosis control plans on the part of public health organisations [44].

The objective of this work is to describe, through bibliographic analysis, the occurrence, prevalence, species richness, and distribution of intestinal helminth parasites found in dog faeces in urban and rural areas of southern South America (Argentina-Chile-Uruguay).

Advertisement

2. Materials and methods

2.1 Search approach

Three databases (PubMed, Google Scholar and Scopus) were searched for studies published between 2000 and 2020. The search terms were “dog AND parasite AND Argentina”; “dog AND parasite AND Chile”; and “dog AND parasite AND Uruguay”.

The Google Scholar search in particular returned a large number of results, of which the first 700 titles were read (and in some cases the abstract); however, it was observed that after the first 200 no results were found that met the search requirements.

2.2 Paper assortment

The studies to be included were identified independently by two reviewers, and were confirmed by a third reviewer following standardised methodology [45]. The studies included met the following criteria: (1) full text articles available online; (2) published between 2000 and 2020; (3) peer-reviewed, original papers published either in English or Spanish; (4) cross-sectional studies that assessed the prevalence of any intestinal helminth parasite of dogs in Argentina, Chile or Uruguay; (5) studies that detected parasite infection in faeces using at least one parasitological, serological and/or molecular method; (6) studies that reported sample sizes, and the prevalence of each parasite species. Reviews and case reports were excluded. The following data were extracted from each article: authors, publication year, country, localities (coordinates), type of locality (rural/urban), sample size, detection method, prevalence of each parasite, number of parasite species.

2.3 Parasite distribution

The distribution maps were constructed using the Free and Open Source Geographic Information System (QGis system). The coordinates for the site locations were taken from the selected works or were completed using Google Earth. The prevalence values shown on the maps were obtained from the studies included in the bibliographic review. The map of South America was obtained from shape files from Instituto Geográfico Nacional [46].

2.4 Statistical analysis

Spearman’s rank Correlation Tests were performed to analyse the relation between richness, with sample size and latitude. All sites with richness = 1 were excluded, since they searched for only one parasite.

Advertisement

3. Results

From the search in the 3 databases, 29,450 scientific items were found. Of these, 24,517 belong to the period between 2000 and 2020. After analysing the titles and abstracts, 24,298 articles were excluded because they did not comply with the objectives or inclusion criteria, did not include helminths, did not correspond to the countries under study, or were not cross-sectional studies. A total of 219 articles were evaluated for eligibility. After removing the duplicates, 67 were included in the final analysis ( Table 1 ), and the full texts of these relevant articles were reviewed in depth. Forty-eight corresponded to Argentina, 17 to Chile, and 2 to Uruguay ( Figure 1 ). The data come from analysis of 32,300 dog faeces collected in urban or rural sites of the 3 countries. Sample sizes in the different studies ranged from 4 to 2,417, except for Uruguay where 5,356 faeces were analysed for the National Echinococcosis Control Programs, without considering the presence of other parasites ( Table 1 ).

Figure 1.

Flow diagram of epidemiologic studies on dog parasites for the systematic review.

Autor Año Country Name Study Locality Coordinates Sample size Fixing method of tection Methods No. Of detection methods RURAL URBAN Richness Ancylostomids Ancylostoma sp. Uncinaria sp. Ascaris sp. Dibothriocephalus sp. Dipylidium caninum Echinococcus sp. Eucoleus aerophila Eucoleus boehmi Capillaria sp. Taenia multiceps sp. Strongyloides eggs Spirocerca Taenidae Taenia hydatigena Taenia ovis Toxascaris sp. Toxocara sp. Trichuris sp. Trematodes Oncicola canis Physalopetra sp.
Acosta Jamett et al. [47] 2010 Chile Tangue 30°20'S, 71°34'W 120 ELISA 1 rural 1 10
Acosta Jamett et al. [47] 2010 Chile Guanaqueros 30°11'S, 71°25'W 81 ELISA 1 urban 0
Acosta Jamett et al. [47] 2010 Chile Coquimbo 29°57'S, 71°20'W 128 ELISA 1 urban 1 15
Acosta Jamett et al. [48] 2014 Chile Combarbalá 31°10′S, 71°03′W 52 CoproElisa 1 urban 1 27
Andresiuk et al. [49] 2007 Argentina Mar del Plata 37°56'S, 57°35'W 400 Willis Flotation 1 urban 3 62.8 13.9 46.75
Andresiuk et al. [50] 2003 Argentina Mar del Plata 38°00′S, 57°33′W 125 Flotation, sedimentation of Willis 1 urban 4 62.96 24.07 2.56 22.22 62.96
Andresiuk et al. [29] 2004 Argentina Mar del Plata 38°00′S, 57°33′W 288 Flotation, sedimentation of Willis 1 urban 3 65.83 14.17 46.67
Archelli et al. [51] 2018 Argentina Ensenada 34°51′S, 57°54′W 217 Formol 10% Sedimentation of Teleman and Flotation of Sheater 2 urban 1 23.0
Arezo et al .[36] 2020 Argentina Bariloche 41°10’S, 71°18’W 1780 coproElisa Echinococcus 1 rural 1 1
Arezo et al .[36] 2020 Argentina El Bolson 41°58′S, 71°32′W CoproElisa 1 rural
Arezo et al. [36] 2020 Argentina Comallo 41°02′S, 70°16′W CoproElisa 1 rural 1 1
Arezo et al. [36] 2020 Argentina El Cuy 39°56′S, 68°20′W CoproElisa 1 rural 1 1
Arezo et al. [36] 2020 Argentina Ing. Jacobacci 41°18′S, 69°35′W CoproElisa 1 rural 1 1
Arezo et al. [36] 2020 Argentina Maquinchao 41°15′S, 68°42′W CoproElisa 1 rural
Arezo et al. [36] 2020 Argentina Los Menucos 40°50′S, 68°05′W CoproElisa 1 rural 1 1
Arezo et al. [36] 2020 Argentina Ñorquinco 41°51′S, 70°54′W CoproElisa 1 rural 1 1
Arezo et al. [36] 2020 Argentina Pilcaniyeu 41°07′S, 70°43′W CoproElisa 1 rural 1 1
Arezo et al. [36] 2020 Argentina Ramos Mexia 40°30′S, 67°17′W CoproElisa 1 rural 1 1
Arezo et al. [36] 2020 Argentina Sierra Colorada 40°35′S, 67°45′W CoproElisa 1 rural 1 1
Arezo et al. [36] 2020 Argentina Sierra Grande 41°36′S, 65°21'W CoproElisa 1 rural
Arezo et al . [36] 2020 Argentina Valcheta 40°42′S, 66°09′W CoproElisa 1 rural 1 1
Armstrong et al. [52] 2011 Chile Temuco 37°24'S, 72°31'W 196 Flotation with zinc 1 urban 4 9.3 4.7 12.4 4.7
Casas et al. [53] 2013 Argentina La Quiaca 22°06′S, 65°36′W 89 Copro, Elisa and WB 2 urban 1 2.2
Castillo et al. [54] 2000 Chile Santiago de Chile 33°27′S, 70°40′W 288 Formol salino Telemann modified, using ethandl acetate 1 urban 4 4.5 0.7 13.5 7.3
Chiodo et al. [55] 2006 Argentina General Mansilla 35°04'S, 57°44'W 81 Sedimentation of Teleman modified 1 rural 1 6.17
Cociancic et al. [56] 2017 Argentina La Plata 34°56′S, 57°57′W 78 Sedimentation of Ritchie and Flotation of Willis 2 urban 7 69.2 41.0 1.3 1.3 1.3 21.8 28.2
Cociancic et al. [32] 2020 Argentina Ushuaia 54°48′S, 68°18′W 80 Formol 5% Sedimentation and Flotac 2 urban 7 1.3 2.5 5.0 1.3
De Costas et al. [57] 2014 Argentina Tumbaya 23°51′S, 65°28′W 222 Copro, Elisa and WB 2 1 11.7
De Costas et al. [57] 2014 Argentina Humahuaca 23°12′S, 65°21′W 18 Copro, Elisa and WB 2 1 27.7
De Costas et al. [57] 2014 Argentina Tilcara 23°34′S, 65°23′W 64 Copro, Elisa and WB 2 1 14.0
De Costas et al. [57] 2014 Argentina Cochinoca 22°44′S, 65°53′W 94 Copro, Elisa and WB 2 1 9.5
De Costas et al. [57] 2014 Argentina Susques 23°24′S, 66°22′W 50 Copro, Elisa and WB 2 1 2.0
De Costas et al. [57] 2014 Argentina Santa Catalina 21°56′S, 66°03′W 28 Copro, Elisa and WB 2 1 10.7
De Costas et al. [57] 2014 Argentina Yavi 22°07′S, 65°27′W 47 Copro, Elisa and WB 2 1 14.8
Dopchiz et al. [58] 2013 Argentina Lobos, Bs As 35°10′S, 59°05'W 42 Formol 10%, freezado Sedimetation of Ritchie, Flotation of Sheater and CoproElisa 3 rural 6 11.9 14.29 19.05 26.19 26.19
Enriquez et al. [59] 2019 Argentina Pampa del Indio, Chaco 26°02′S, 59°55′W 85 SAF solution Flotation with NaCl and Sedimentation 2 urban 8 68.2 2.4 1.2 5.9 5.9 14.1 3.5 15.3
Flores et al. [35] 2017 Argentina Bariloche 41°10’S, 71°18’W 118 Sheater Flotation 1 urban 9 47.0 16.9 0.8 9.3 5.1 2.5 11.9 12.7 39.0
Fontanarosa et al. [60] 2006 Argentina Lanus 34°22′S, 58°22′W 262 Sheater Flotation 1 urban 5 9.1 0.05 12.6 11
Fontanarosa et al. [60] 2006 Argentina Avellaneda 34°39′S, 58°22′W 547 Sheater Flotation 1 urban 5 8.9 0.8 14.2 5.4
Fontanarosa et al. [60] 2006 Argentina Alte Brown 34°50′S, 58°23′W 458 Sheater Flotation 1 urban 5 19 8.9 14.1
Fontanarosa et al. [60] 2006 Argentina E.Echeverria 34°52′S, 58°28′W 134 Sheater Flotation 1 urban 5 21.6 6.7 17.9
Fontanarosa et al. [60] 2006 Argentina Lomas de Zamora 34°45′S, 58°25′W 499 Sheater Flotation 1 urban 5 13 9.8 10.2
Fontanarosa et al. [60] 2006 Argentina Quilmes 34°15′S, 58°15′W 293 Sheater Flotation 1 urban 5 13.6 10.2 7.5
Gamboa et al. [61] 2011 Argentina La Plata 34°56′S, 57°53′W 12 Formol 10% Sedimentation of Ritchie and Flotation of Willis 2 urban 4 16 16 16 8
Gamboa et al. [62] 2009 Argentina La Plata Norte 34°56′S, 57°57′W 5 Sedimentation of Ritchie and Carles Barthelemand, and Flotation of Fülleborn 3 urban 4 16.7 16.7 16.7 8.3
Gamboa et al. [62] 2009 Argentina La Plata Sur 34°56′S, 57°57′W 4 Sedimentation of Ritchie and Carles Barthelemand, and Flotation of Fülleborn 3 urban 2 33.3 8.3
Gamboa et al. [62] 2009 Argentina Aristóbulo del Valle 27°05′S, 54°53′W 11 Sedimentation of Ritchie and Carles Barthelemand, and Flotation of Fülleborn 3 urban 4 90.9 9.1 27.3 9.1
Gonzalez Acuña et al. [63] 2008 Chile Archipiélago de Juan Fernández 33°38′S, 78°50′w 40 SAF solution Teuscher Methods or Flotation of Willis 2 rural 3 30.0 3.9 15
Gorman et al. [31] 2006 Chile Santiago de Chile 33°27′S, 70°40′W 582 Flotation zinc sulfate and Sedimentation of Teleman modified 2 urban 5 5.3 2.1 2.4 9.1 8.6
Irabedra et al. [64] 2016 Uruguay 5356 CoproElisa 1 3.6
Irabedra et al. [64] 2016 Uruguay 1496 CoproElisa 1 7.35
La Sala et al. [65] 2015a Argentina Bahía Blanca 38°44′S, 62°16′W 475 Formol 10% Sedimentation of Ritchie 1 urban 5 21.1 0.6 2.3 18.1
La Sala et al. [66] 2015b Argentina Bahia Blanca 38°43′S, 62°16′W 475 Direct observation 1 urban 5 22.3 0.6 2.3 18.1
Lamberti et al . [67] 2014 Argentina Gra. Pico 35°39′S, 63°45′W 785 Flotation with ClNa 1 urban 3 45.4 7.1 25.8
Lamberti et al. [68] 2015 Argentina Gral Pico 35°40′S, 63°44′W 1229 Flotation with ClNa and ZnSO4 2 urban 3 45.4 6.4 21.9
Larrieu et al. [69] 2014 Argentina El Bolsón 41°58′S, 71°32′W 68 Copro, Elisa and WB 2 rural 1 11.8
Larrieu et al. [69] 2014 Argentina El Cuy 39°56′S, 68°20′W 81 Copro, Elisa and WB 2 rural 1 6.1
Larrieu et al. [69] 2014 Argentina Ñorquinco 41°51′S, 70°54′W 47 Copro, Elisa and WB 2 rural 1 6.4
Larrieu et al. [69] 2014 Argentina Pilcaniyeu 41°07′S, 70°43′W 19 Copro, Elisa and WB 2 rural 1 5.3
Larrieu et al. [69] 2014 Argentina Comallo 41°02′S, 70°16′W 12 Copro, Elisa and WB 2 rural 1 8.3
Larrieu et al. [69] 2014 Argentina Ingeniero Jacobacci 41°18′S, 69°35′W 108 Copro, Elisa and WB 2 rural 1 7.4
Larrieu et al. [69] 2014 Argentina Maquinchao 41°15′S, 68°42′W 16 Copro, Elisa and WB 2 rural 1 12.5
Larrieu et al. [69] 2014 Argentina Los Menucos 40°50′S, 68°05′W 37 Copro, Elisa and WB 2 rural 1 5.4
Larrieu et al. [69] 2014 Argentina Sierra Colorada 40°35′S, 67°45′W 42 Copro, Elisa and WB 2 rural 1 2.4
Larrieu et al. [69] 2014 Argentina Valcheta 40°42′S, 66°09′W 106 Copro, Elisa and WB 2 rural 1 4.7
Larrieu et al. [69] 2014 Argentina Sierra Grande 41°36′S, 65°21'W 14 Copro, Elisa and WB 2 rural 1 7.2
Lavallén et al. [70] 2011 Argentina Gral Pueyrredon 38°00′S, 57°33′W 46 Formol 10% Sediemtation of Ritchie and Flotation of Sheater and coproELISA 3 urban 6 71.74 41.3 8.6 17.36 63.04 45.65
Lopez et al. [71] 2006 Chile Santiago de Chile 33°27′S, 70°40′W 972 PAF fenol, alcohol and formaldehído Burrows Technique 1 urban 7 1.8 2.2 0.4 1.4 11.1 8.9 1.2
Luzio et al. [72] 2013 Chile Tomé 36°37′S, 72°57′W 223 PAF fenol, alcohol and formaldehído Burrows Technique 1 urban 9 8.1 0.9 9.9 2.7 3.1 1.8 6.3 22.9 8.1
Luzio et al. [73] 2015 Chile Santa de los Angeles 37°28'S, 72°21'W 452 PAF fenol, alcohol and formaldehído Burrows Technique 2 urban 7 4.2 0.44 2.6 0.44 1.6 1.3 9.3
Luzio et al. [74] 2017 Chile Concepcion 36°49′S, 73°03′W 64 PAF fenol, alcohol and formaldehído Burrows Technique 1 urban 5 8.5 29 4.5 6.3 29.7
Madrid et al. [75] 2008 Argentina Mar del Plata 38°00′S, 57°33′W 358 Flotation with NaCl 1 urban 7 18.9 11.5 1.1 0.6 5.9 13.4
Marder et al. [76] 2004 Argentina Ciudad de Corrientes 27°25’S, 58°52’W 900 Flotation of Willis, Sheater and Faust 3 urban 3 64.5 7.6 3.1
Martin et al. [77] 2008 Argentina Paraná 31°44′S, 60°31′W 61 Solución salina 5% Concentration methods 1 urban 2 67.0 7.0
Martin et al. [77] 2008 Argentina Santa Fé 31°38′S, 60°42′W 200 Solución salina 5% Concentration methods 1 urban 3 14.0 62.0 12.0
Martin et al. [77] 2008 Argentina Avellaneda (Santa Fé) 29°07′S, 59°39′W 15 Solución salina 5% Concentration methods 1 urban 3 5.0 6.0 1.0
Martin et al. [77] 2008 Argentina Reconquista (Santa Fé) 29°09′S, 59°39′W 10 Solución salina 5% Concentration methods 1 urban 2 5.0 5.0
Martin et al. [77] 2008 Argentina Calchaquí (Santa Fé) 29°53′S, 60°16′W 17 Solución salina 5% Concentration methods 1 urban 3 2.0 5.0 1.0
Martin et al. [77] 2008 Argentina Hersilia (Santa Fé) 30°00′S, 61°51′W 12 Solución salina 5% Concentration methods 1 urban 3 4.0 5.0 1.0
Martin et al. [77] 2008 Argentina San Carlos Centro (Santa Fé) 31°44′S, 61°06′W 24 Solución salina 5% Concentration methods 1 urban 3 8.0 6.0 3.0
Martin et al. [77] 2008 Argentina Santo Tomé (Santa Fé) 31°40′S, 60°46′W 54 Solución salina 5% Concentration methods 1 urban 3 9.0 5.0 2.0
Mercado et al. [78] 2004 Chile Arica 18°28′S, 70°19′W 50 Sedimentation and Harada, Mori 2 urban 2 2 4
Mercado et al. [78] 2004 Chile Antofagasta 23°38′S, 70°23′W 50 Sedimentation and Harada, Mori 2 urban 2 2
Mercado et al. [78] 2004 Chile Illapel 31°37′S, 71°10′W 50 Sedimentation and Harada, Mori 2 urban 2 7.2 10
Mercado et al. [78] 2004 Chile Viña del Mar 33°01′S, 71°33′W 27 Sedimentation and Harada, Mori 2 urban 2
Mercado et al. [78] 2004 Chile Valparaiso 33°02′S, 71°37′W 40 Sedimentation and Harada, Mori 2 urban 2 10 12.5
Mercado et al. [78] 2004 Chile San Felipe 32°45′S, 70°43′W 44 Sedimentation and Harada, Mori 2 urban 2 6.8
Mercado et al. [78] 2004 Chile Santiago de Chile 33°27′S, 70°40′W 54 Sedimentation and Harada, Mori 2 urban 2 1.9
Mercado et al. [78] 2004 Chile Rancagua 34°09′S, 70°44′W 27 Sedimentation and Harada, Mori 2 urban 2 7.4
Mercado et al. [78] 2004 Chile San Fernando 34°35′S, 70°59′W 50 Sedimentation and Harada, Mori 2 urban 2 24 8
Mercado et al. [78] 2004 Chile Concepcion 36°49′S, 73°03′W 49 Sedimentation and Harada, Mori 2 urban 2 8.2 6.1
Mercado et al. [78] 2004 Chile Temuco 38°44′S, 72°35′W 50 Sedimentation and Harada, Mori 2 urban 2 40 4
Mercado et al. [78] 2004 Chile Valdivia 39°48′S, 73°14′W 50 Sedimentation and Harada, Mori 2 urban 2 20 4
Mercado et al. [78] 2004 Chile Punta Arenas 53°09′S, 70°54′W 54 Sedimentation and Harada, Mori 2 urban 2 1.9
Milano et al. [79] 2005 Argentina Ciudad de Corrientes 27°25’S, 58°52’W 61 Formol 10% Sedimentation and flotation of Willis 2 urban 4 32.8 1.6 26.3 3.3
Milano et al. [79] 2005 Argentina Ciudad de Corrientes 27°25’S, 58°52’W 40 Formol 10% Sedimentation and flotation of Willis 2 urban 4 35.0 2.5 17.5 2.5
Milano et al. [79] 2005 Argentina Ciudad de Corrientes 27°25’S, 58°52’W 40 Formol 10% Sedimentation and flotation of Willis 2 urban 4 35.0 12.5 12.5 10.0
Milano et al. [79] 2005 Argentina Ciudad de Corrientes 27°25’S, 58°52’W 32 Formol 10% Sedimentation and flotation of Willis 2 urban 3 50.0 15.6 9.4
Milano et al. [79] 2005 Argentina Ciudad de Corrientes 27°25’S, 58°52’W 40 Formol 10% Sedimentation and flotation of Willis 2 urban 4 45.0 2.5 20.0 2.5
Milano et al. [79] 2005 Argentina Ciudad de Corrientes 27°25’S, 58°52’W 33 Formol 10% Sedimentation and flotation of Willis 2 urban 3 48.2 6.0 3.0
Milano et al. [79] 2005 Argentina Ciudad de Corrientes 27°25’S, 58°52’W 34 Formol 10% Sedimentation and flotation of Willis 2 urban 3 38.2 17.6 5.9
Milano et al. [79] 2005 Argentina Ciudad de Corrientes 27°25’S, 58°52’W 44 Formol 10% Sedimentation and flotation of Willis 2 urban 4 43.2 4.5 6.8
Milano et al. [79] 2005 Argentina Ciudad de Corrientes 27°25’S, 58°52’W 38 Formol 10% Sedimentation and flotation of Willis 2 urban 4 50.0 2.6 15.8 7.9
Motta et al . [80] 2019 Argentina Rio Cuarto 33°07′S, 64°20′W 493 Formol 10% Flotation of Willis, and Sheather, and Sedimentation 3 urban 5 30.83 0.61 1.42 6.9 9.94
Natalini et al . [81] 2020 Argentina Parque Nac Mburucuya 27°58′S, 57°59′W 28 Formol 10% Flotation Sheater and sedimentation of Ritchie 2 rural 6 4 4 4 7 14 4 4
Natalini et al . [81] 2020 Argentina San Nicolás NP 27°59′S, 57°35′W 23 Formol 10% Flotation Sheater and Sedimentation of Ritchie 2 rural 3 52 9 9
Oku et al. [82] 2004 Uruguay Tacuarembo 31°42′S, 55°58′W 79 Necropsy 1 urban 4 38 23 1 8
Oku et al. [82] 2004 Uruguay 31°45′S, 55°58′W -31.75 Necropsy 1 rural 6 1 30 3.49 4 23 3
Olivares et al. [83] 2014 Chile Temuco 37°24'S, 72°36'W 102 Flotation and Sedimentation of Teuscher 1 urban 4 21.5 12.7 21.5 35.2
Opazo et al. [84] 2019 Chile Valparaiso 33°02′S, 71°37′W 30 PAF fenol, alcohol and formaldehído Burrows Technique 1 rural 6 7 13 17 17 40 3
Oyarzun et al. [85] 2019 Chile Contulmo 38°00′S, 73°14′W 270 Alcohol Sedimentation and Flotation of Teuscher 1 rural 5 25.5 4 53.9 30.5 15.6
Parra et al. [86] 2017 Argentina Ancajuli 26°35′S, 65°33′W 43 CoproElisa 1 rural 1 13
Parra et al. [86] 2017 Argentina Anfama 26°45′S, 65°34′W 22 CoproElisa 1 rural 1 7
Parra et al. [86] 2017 Argentina Chaquivil 26°41′S, 65°36′W 7 CoproElisa 1 rural 1 4
Parra et al. [86] 2017 Argentina La Hoyada 26°41′S, 65°31′W 5 CoproElisa 1 rural 1 3
Parra et al. [86] 2017 Argentina Mala Mala 26°47′S, 65°33′W 9 CoproElisa 1 rural 1 6
Parra et al. [86] 2017 Argentina San José de Chasquivil 26°41′S, 65°36′W 17 CoproElisa 1 rural 1 8
Perez et al. [87] 2006 Argentina Rio Negro 40°48′S, 63°00′W 416 Copro, Elisa and WB 2 2 4.6 14.9
Quilodrán-González et al. [88] 2018 Chile Cabrero 37°2'S, 72°24'W 83 Flotation of Sheater 1 urban 1 41 4.8 4.8 13.3
Quilodrán-González et al. [88] 2018 Chile Cabrero 37°2'S, 72°24'W 10 Flotation of Sheater 1 rural 2 60 10
Radman et al. [89] 2006 Argentina Capital Federal 34°34S, 58°31W 125 Flotation of Fülleborn 1 urban 1 51.2
Rivero et al. [90] 2015 Argentina Puerto Iguazú y alrededres 25°35′S, 54°34′W 405 Formol 10% Flotation of Sheater and Sedimentation of Telemann 2 rural 1 0.49
Rivero et al. [91] 2017 Argentina Puerto Iguazú y alrededres 25°35′S, 54°34′W 530 Formol 10% Direct with lugol, Flotation of Sheater and Sedimentation of Teleman 3 urban 8 0.9 0.9 1.3 55.6 0.4 3.9 13.4 12.1
Rodriguez et al. [92] 2005 Argentina Mar del Plata 38°00′S, 57°33′W 171 Flotation and Sedimentation 2 urban 6 67.8 42.4 1.5 5.6 6.8 52.2
Roth et al. [93] 2018 Argentina Bariloche 41°08′S, 71°27′W 118 Freezado Flotation of Sheater and Sedimentation of Telemann 2 urban 1 16.9
Rubel et al. [94] 2003 Argentina Capital Federal 34°34S, 58°31W 31 Formol 5% Sedimentation of Teleman 1 urban 1 14.0
Rubel et al. [95] 2005 Argentina Capital Federal 34°34S, 58°31’W 2417 Formol 5% Sedimentation of Teleman 1 urban 4 33.5 0.7 13.0 32.0
Rubel et al. [96] 2010 Argentina Capital Federal 34°34’S, 58°31’W 421 Formol 5% Flotation of Willis 1 urban 7 26.0 0.6 0.9 0.6 0.2 1.7 4.0
Rubel et al. [97] 2019 Argentina Buenos Aires 34°37′S, 58°25′W 112 Centrifugation and Flotation of Sheater 2 urban 4 20.5 0.9 1.8 3.6
Sánchez et al. [98] 2003 Argentina Comodoro Rivadavia y Rada Tilly 45°S, 68°W 481 Formol 5% Sedimentation de Teleman and Flotation de Willis 2 urban 6 1.0 0.2 0.2 2.6 3.6 17.9
Sánchez Thevenet et al. [99] 2003 Argentina Comodoro Rivadavia 45°S, 68°W 163 Formol 5% Sedimentation of Teleman and Flotation of Willis 2 urban 6 0.8 0.3 1.6 1.4 8.8
Semenas et al. [100] 2014 Argentina Bariloche 41°10’S, 71°18’W 54 Sedimentation of Teleman and Flotation of Sheater 2 urban 10 1.8 3.7 12.8 3.6 1.8 12.8 7.3 1.8 11.0 29.3
Soriano et al. [101] 2010 Argentina Neuquen rural 38°14′S, 69°46′W 1298 Formol 5% Flotation and Sedimentation 2 rural 8 0.15 0.15 0.15 17.87 0.84 16.4 1.3 0.3
Soriano et al. [101] 2010 Argentina Neuquén urbano (neuquen y chos malal 37°23′S, 70°17′W 646 Formol 5% Flotation and Sedimentation 2 urban 6 0.93 0.31 2.17 16.1 15.63
Souto et al. [102] 2016 Argentina El Chalía (Chubut) 45°41′S, 70°59′W 22 Formol 10% Sedimentation of Teleman, Flotation of Willis and copro, Elisa 3 rural 2 13.6 9.1
Taranto et al. [103] 2000 Argentina Fortín Dragones y Misión Chaqueña 23°15’S, 63°20’W 106 Directo, Flotation of Willis and centrifugation 3 urban 4 69.8 1.9 17.2 7.5
Torres et al. [104] 2004 Chile Panguipulli 39°38′S, 72°20′W 109 PAF fenol, alcohol y formaldehído Sedimentation 1 urban 1 1.8
Torres et al. [104] 2004 Chile Choshuenco 39°50′S, 72°04′W 22 PAF fenol, alcohol y formaldehído Sedimentation 1 urban 1 4.5
Vargas et al. [105] 2016 Chile Niebla 39°48'S, 73°14'W 78 Formol salino Sedimentation of Telemann modified, Flotation Sulphate Zinc, método cuantitativo 3 1 15.4
Vargas et al. [105] 2016 Chile Valdivia 39°48'S, 73°14'W 77 Formol salino Sedimentation of Telemann modified, Flotation Sulphate Zinc, método cuantitativo 3 urban 1 15.6
Winter et al. [106] 2018 Argentina Viedma 40°48’S, 62°59’W 531 Flotation de Sheater 1 urban 6 33.8 2.2 0.7 2.9 22.8 40.4
Zonta et al [107] 2019 Argentina Clorinda (Formosa) 25°17'S, 57°43'W 16 Formol Sedimentation of Ritchie and Flotation of Willis 2 urban 4 62.5 37.5
Zunino et al. [108] 2000 Argentina Comodoro Rivadavia 45°S, 68°W 31 Formol 5% Flotation of Willis 1 urban 2 9.7 3.3
Zunino et al. [108] 2000 Argentina Trelew 43°15′S, 65°18′W 30 Formol 5% Flotation of Willis 1 urban 3 3.3 3.3 33.3
Zunino et al. [108] 2000 Argentina Puerto Madryn 42°46′S, 65°02′W 29 Formol 5% Flotation of Willis 1 urban 1 10.3
Zunino et al. [108] 2000 Argentina Sarmiento 45°36′S, 69°05′ 29 Formol 5% Flotation of Willis 1 urban 3 6.9 6.9 24.1
Zunino et al. [108] 2000 Argentina Esquel 42°54′S, 71°19'W 29 Formol 5% Flotation of Willis 1 urban 3 6.9 3.4 13.8
Zunino et al. [108] 2000 Argentina Lago Puelo 42°09′S, 71°38′W 30 Formol 5% Flotation of Willis 1 urban 3 16.7 6.9 20.0

Table 1.

Data extracted from the 67 articles selected for analysis.

The number of copro-parasitological techniques used in each study varied between 1 and 3, with a total of 15 different methods ( Table 1 ). The most commonly used techniques were Willis flotation (20 reports), Sheater flotation (15 reports) and Telemann sedimentation (14 reports). In Uruguay only two methods were used: necropsy of stray dogs and coproELISA for Echinococcus sp., whereas in Argentina and Chile the techniques in common were Faust, Sheater, Telemann, Willis, and coproELISA for Echinococcus sp. Chilean researchers also used a modification of Faust (Teuscher), Burrows, and Harada-Mori for larvae. Other methods used only in Argentina were Füllerborn, Mini Flotac; Ritchie, Carles Barthelemy, direct observation with lugol; and Western Blot and PCR molecular techniques for E. granulosus.

More than 140 sites were analysed in Chile and Argentina ( Figure 2 , Table 1 ); however, the number of sites analysed in Uruguay could not be determined as this information is not given in the 2 selected studies. In Argentina and Chile, a total of 104 urban sites and 43 rural areas were considered ( Table 2 ).

Figure 2.

Distribution of collection sites and species richness in each site.

Country Number of studies analysed Number of sites analysed Rural Sites Urban Sites Total collected faeces (range) Richness (Range) Number of Techniques used
Argentina 48 110 38 76 18,812 (4–2417) 17 (1–10) 13
Chile 19 33 5 28 4,574 (10–972), 14 (1–9) 11
Uruguay 2 not reported not reported not reported 7,134 (79–5356) 6 (1–6) 2

Table 2.

Summary of studies: Total number of reports analysed for the three countries, number of rural and urban sites, collected samples, techniques used, and species richness.

A total of 22 parasite taxa was recorded ( Table 3 ): 1 trematode (Trematoda sp.), 7 cestodes (Dibothriocephalus sp., Dipylidium caninum, Echinococcus sp., Taenidae, Taenia multiceps, Taenia hydatigena, Taenia ovis), 13 nematodes (Trichuris vulpis, Eucoleus aerophila, Eucoleus boehmi, Capillaria sp., Strongyloides sp., Ancylostomatidae sp., Ancylostoma sp., Uncinaria sp., Ascaris sp., Toxascaris leonina, Toxocara canis, Spirocerca sp., and Physaloptera sp.), and 1 acanthocephalan species (Oncicola canis). In Argentina the presence of Ancylostoma was recorded up to genus level, whereas in Chile they were recorded only as Ancylostomatidae sp., so while it is likely that there are some shared species, this cannot be established from the records analysed. The distribution of the species is presented in Figures 3 5 , which show that most of the parasitic records are located in the central zone of Chile, while in Argentina there are records at all latitudes, except in an arid zone in the northwest, close to the Andes mountains. Species richness was correlated only with sample size (R = 0.44809, p < 0.05) and varied between sites, from 1 to 10 species (Argentina 1 to 10; Chile 1 to 9; Uruguay 1 to 6) ( Figure 2 ).

Parasite species Total Number of Sites Mean prevalence (SD) Number of positive urban sites Mean prevalence in urban sites (SD) Number of positive rural sites Mean prevalence in rural sites (SD)
Dibothriocephalus sp. 14 5.7 ± 6.2 10 7.8 ± 6.3 4 0.6 ± 0.4
Dipylidium caninum 21 5.6 ± 10.3 16 4.1 ± 9.3 5 10.5 ± 12.8
Echinococcus granulosus 52 7.9 ± 7.1 14 12.9 ± 9.9 38 6 ± 4.7
Taenidae 16 5.1 ± 5.9 12 3.4 ± 4.2 4 10.3 ± 7.5
Taenia hydatigena 9 9 ± 10.5 7 3.9 ± 2.7 2 26.8 ± 5.3
Taenia multiceps 2 2.5 ± 2.1 1 1 1 4
Taenia ovis 1 3 1 3
Trichuris vulpis 60 14.7 ± 14.7 53 15.3 ± 15.3 7 10.3 ± 8.7
Eucoleus aerophila 4 14.9 ± 8.8 1 17.4 3 14.1 ± 10.5
Eucoleus boehmi 2 1.8 ± 0.6 2 1.8 ± 0.6
Capillaria sp. 11 3.9 ± 6.1 11 3.9 ± 6.1
Strongyloides sp. 19 12 ± 16.1 14 5.6 ± 4.2 5 30.1 ± 22.7
Ancylostomatidae 6 24.2 ± 23.5 3 16 ± 21.7 3 32.3 ± 26.6
Ancylostoma sp. 66 29 ± 23.4 62 29.7 ± 23.3 3 21.4 ± 27.2
Uncinaria sp. 21 17.3 ± 18.5 17 18 ± 20.2 4 14.2 ± 8.8
Ascaris sp. 8 7.6 ± 6.2 6 9.3 ± 6.1 2 2.5 ± 2.2
Toxascaris leonina 13 2.7 ± 3.2 11 2.7 ± 3.5 2 2.4 ± 2.2
Toxocara canis 86 13.6 ± 11.6 80 13.4 ± 11.5 6 15.9 ± 12.8
Spirocerca sp. 3 3.4 ± 2.3 3 3.4 ± 2.3
Physalopetra sp. 1 1.2 1 1.2
Oncicola canis 1 0.3 1 0.3

Table 3.

Species recorded in the studies analysed, their distribution (urban versus rural) and mean intensity.

Figure 3.

Distribution of Cestoda collected in Argentina, Chile and Uruguay. A.: Dibothriocephalus sp.; B.: Dipilidium caninum; C.: Echinococcus sp.; D.: Taenids.

Figure 4.

Distribution of Nematoda (part 1) in Argentina, Chile and Uruguay. A.: Ancylostomatidae.; B.: Ascaris sp.; C.: Strongyloides; D.: Eucocleus spp. and Capillaria sp.

Figure 5.

Distribution of Nematoda (part 2) in Argentina, Chile and Uruguay. A.: Toxocara canis and Toxascaris leonina.; B.: Trichuris vulpis; C.: Spirocerca; D.: Physalopetra, Trematoda sp. and Oncicola canis.

The most frequently recorded species was T. canis (86 sites), followed by Ancylostoma sp. (66); Trichuris vulpis (60 sites), and Echinococcus sp. (52) ( Table 3 ; Figure 4A , 5B , 3E , respectively); others were recorded only once, e.g.: Trematoda sp. and O. canis in Argentina, and Physaloptera sp. in Chile. The species detected in Uruguay, except for Echinococcus sp., correspond to different taeniid cestodes. Argentina and Chile shared 10 helminth species: Dibothriocephalus sp., D. caninum sp., Echinococcus sp., Ascaris sp., Capillaria sp., Strongyloides sp., T. leonina, T. canis, T. vulpis, and Uncinaria sp.

The species richness in urban areas (20 species) was slightly higher than in rural areas (17 species) ( Table 3 ). In addition, a higher number of zoonotic species was recorded in urban areas, species such as Uncinaria sp., Ancylostoma sp. and Echinococcus sp. being widespread and prevalent in the cities ( Table 3 ). Many parasite species showed greater prevalence in urban areas than in rural ones. The only exception to this was T. canis which had higher values in the rural areas ( Table 3 ). In Chile 8 species were registered in rural areas and 14 in urban locations, whereas in Argentina the species richness was 10 and 16, respectively ( Table 4 ).

Country Urban Rural
Richness (Range) Mean richness Most widespread species Richness (Range) Mean richness Most widespread species Similarity
Argentina 16 (1–10) 3.8 Toxocara canis, Ancylostoma sp. Trichuris vulpis 10 (1–8) 1.7 Echinococcus sp. 7/17
Chile 14 (1–9) 2.8 Toxocara canis, Ancylostoma sp. Trichuris vulpis 8 (1–6) 3 Echinococcus sp. 7/14

Table 4.

Characterisation of urban and rural areas in terms of richness and most widespread species, present in Argentina and Chile.

Of the total taxa recorded, 14 (63.6%) have been registered in humans: Dibothriocephalus sp., D. caninum, Echinococcus (sensu lato), Taenidae, T. multiceps, T. hydatigena, Ancylostomatidae sp., Ancylostoma sp., Uncinaria sp., Ascaris sp., E. aerophila, E. boehmi, T. leonina, and T. canis. Some of these species are only occasionally recorded infecting humans, such as D. caninum, Taenia multiceps, E. aerophila, E. boehmi and T. leonina.

Advertisement

4. Discussion

4.1 State of knowledge and distribution

Although three databases were used, this work could have some bias due to the exclusion of grey literature, like technical reports, congress abstracts or thesis manuscripts, so some sites or negative data may be excluded in the analysis [109]. The systematic bibliographic review carried out shows that the published and available knowledge of the occurrence and distribution of helminths in dogs is scarce in southern South America; in countries such as Uruguay there are no records other than those obtained within the Echinococcosis National Programmes. Furthermore, in Argentina there are arid regions near the Andes, such as the northwest of the country, where there are no records of parasites in dogs. The same was observed for Chile south to 40°s, except for one record in Punta Arenas, the southernmost city in Chile. Most of the records are associated with large cities and their surroundings, such as Buenos Aires and La Plata in Argentina, and in the area of Santiago de Chile, Concepción, and Temuco in Chile.

Although sample size is the only factor that significantly affected richness, other factors to consider could be the analytical methods used and whether the sample was fixed or not. Sample size affects the results, generating deviations in the number of species and in their prevalence, especially in places where the sample size was too low. On the other hand, a lack of methodological specifications can be observed in the techniques used. This could imply potential biases in the reporting and/or interpretation of data. In order to obtain data of higher quality, a general consensus should be reached on the techniques to be applied. It is also desirable to apply molecular techniques that allow parasite identification to species level, thus solving records identified to family level, such as “Ancylostomatidae” or “Strongylids”, or the recording of species outside their natural range of distribution, like Dibothriocephalus in the northeast of Argentina.

The presence of a greater number of species, most of which have zoonotic potential, in urban areas than rural ones is probably due to the fact that dogs can roam freely. Dogs spread the parasite eggs, thereby these areas will function as contagion points for both other dogs and humans. A further problem is that deworming in these countries is insufficient [21]. A similar situation has been detected in parks in the United States, where it has been suggested that dogs are at risk of infection with parasites at these sites, and it has been recommended that preventive strategies be considered [30, 110]. Some parasitic infections could become increasingly urbanised, and an estimation for 2050 indicates that up to two-thirds of the global population will live in megacities. The slums of these megacities would concentrate high levels of intestinal helminth. Toxocariasis and other urban soil-transmitted helminths are important, yet little studied, health issues in the cities of the Americas [111].

The zoonotic broad tapeworm, Dibothriocephalus sp., is found in dogs from the endemic zone of the disease, the Andean Patagonia of Argentina and Chile [93, 104]. The records from the northeastern region of Argentina require revision, as there are no molecular studies confirming the identity of these parasites, and there are no records of fish infected by plerocercoids in this zone. Although Dibothriocephalus sp., is not transmitted to humans by dogs, they can act as disseminators of the disease and are often used as sentinel species for the spread of the disease in some areas. Ascaris sp. in dogs is distributed mainly in subtropical regions of Argentina, where this parasite is most prevalent in humans [107]. Some parasites are distributed throughout all the latitudes regardless of the type of climate, like T. canis., T. vulpis, and Ancylostomatids, as observed in other parts of the world [112, 113, 114]. Echinococcus sp. is distributed across almost all rural areas of the three countries, although has recently also been registered in cities [35, 47, 64, 115].

4.2 Zoonoses and human cases reported

The high percentage of parasites with zoonotic potential reinforces the need to establish effective prevention measures, not only with regard to parasitosis in animals but also to transmission to humans. This situation highlights the need for better integration between specialists in animal and human health [74]. A few diseases transmitted by dogs have surveillance mechanisms in humans, but there are many other important zoonoses worldwide, with numerous human cases, which are not kept watch on. Some of these have been recorded in Argentina and Chile, such as those caused by T. canis, Ancylostoma sp., A. caninum, Uncinaria sp., and Strongyloides sp. [30]. Of the main zoonoses recorded in dogs in the three countries, cystic echinococcosis is the only one which has to be reported to the health authorities, since it is of major sanitary importance [115]. The others, like toxocariasis, hookworm and strongyloidiasis are not reported, and records of human cases in these countries are scarce. The status of these zoonoses in humans from southern South America is analysed below.

4.2.1 Cystic echinococcosis

Cystic echinococcosis or hydatidosis, produced by Echinococcus granulosus sensu lato, is a highly endemic parasitic zoonosis in South American countries, especially in Argentina, Chile, Uruguay and Brazil. It is associated with rural areas dedicated mainly to goat and sheep breeding, and causes significant economic losses [47, 69, 116, 117, 118]. From 2009 to 2014, a total of 29,559 new human cases of cystic echinococcosis were registered in these countries. The average fatality rate across the three countries was 2.9%, suggesting that the disease causes approximately 880 deaths annually. The most affected are children <15 years of age, which is indicative of a persistent environmental risk leading to new cases [69, 115]. In the countries analysed, Government Control Programmes have been addressed, and surveillance of the disease from a holistic perspective based on Primary Health Care has been implemented [64, 69, 115, 117]. The number of human cases has a heterogeneous geographical distribution in Chile and Argentina, showing an increase towards the south [116, 118].

4.2.2 Toxocariasis

Toxocariasis is an infection that has a worldwide distribution and is a very important zoonosis due to its frequent occurrence in humans [119]. The estimate of the overall worldwide prevalence of T. canis in dogs of 11.1% represents 100 million dogs, which should alert Public Health experts and policy makers to the need for effective intervention programs [114, 120]. This parasite species has high biotic potential since its eggs contaminate water, soil, grass, and pet fur [51]. The results presented here regarding T. canis in dogs of southern South America show higher prevalence values (around 13%) than the overall prevalence registered worldwide. Also, the risk of infection is similar in urban and rural areas, as suggested in Chile [105]. In Argentina, numerous studies that analysed the seroprevalence of toxocariasis in both children and adults from urban and rural areas reported results varying between 28% and 80% [51, 121, 122]. In Chile, the seroprevalence of this parasitosis varies between 1.3% and 25.4% [105]. Although in Uruguay there are no published records of seroprevalence in humans [123], a recently published work reported that from 2014 to 2018, 20 children had been treated in the public health system for ocular and visceral larva migrans syndrome [123].

4.2.3 Ancylostomiasis

Dog hookworms are Ancylostoma caninum, Ancylostoma braziliense, and Uncinaria stenocephala, and their eggs can be found in faeces. The larvae of these parasites can cause cutaneous larva migrans in humans [124]. The main causal agent of larva migrans worldwide is A. braziliense; however, the causative agents vary among geographical areas, even within a single country. This disease is mainly endemic to tropical and subtropical developing countries with high average annual temperatures and humid climates, predominating in America from the southern United States, through Mexico, Central, and reaching South America. It is especially prevalent in areas where dogs roam freely, and on sandy, wet soils, such as beaches and playgrounds [124]. In Argentina, records of human cutaneous larva migrans correspond to the Wichi aboriginal communities in the subtropics of the northwest of the country [103], or to people who had travelled to Brazil [125]. In Chile, there are also few reports of this disease, and they correspond to a 3-year-old patient who acquired the disease in an urban area [126], and to an adult who had been infected on a trip to Brazil [127].

4.2.4 Strongyloidiasis

Strongyloidiasis is prevalent in remote socioeconomically disadvantaged communities around the world, and dogs can act as reservoirs of human strongyloidiasis [128]. This parasitosis is registered in the north of Argentina, with similar infection values in both rural and urban populations and an overall seroprevalence of 19.6% [129, 130]. In Chile, the seroprevalence is much lower (0.25%) in blood donors from Arica and La Union. Human infections by S. stercoralis in this country are therefore endemic, with very low frequency in apparently healthy individuals [131].

Advertisement

5. General conclusions

This review shows that knowledge of canine helminths in southern South America is scarce. The studies published on dog parasites are not equally distributed across the three countries, with Uruguay presenting the least amount of available information. Data on dog parasites in southern South America is still too incipient for identification of a clear distribution pattern. Homogenisation of criteria would be beneficial, since the methods used are diverse and heterogeneous, some studies using only flotation or sedimentation techniques. Numerous parasitic species were recorded, many of which are zoonotic and widely distributed throughout both urban and rural areas of these countries. The risk of dogs becoming infected is high given the number of parasites present and the style of pet ownership in the communities of these countries, where dogs are allowed to roam freely, and veterinary care is scarce. The high percentage of zoonotic helminths reinforces the need to establish effective prevention measures, not only for parasitosis in animals but also for transmission to humans. Considering that people in both urban and rural areas are at risk of being infected with zoonoses transmitted by dogs, given the high levels of infection they present in their faeces, a One Health approach to public health would be desirable, such that humans and dogs should be treated concomitantly to control the parasites. Furthermore, it would be desirable to implement measures such as control of the canine population, mass treatment of dogs with anthelmintics, education programmes and healthcare alert systems.

Advertisement

Acknowledgments

This work was funded by PICT 1385–2017 and UNCo B225.

References

  1. 1. Germonpré M, Sablin M, Stevens R, Hedges R, Hofreiter M, Stiller M, Despres V. Fossil dogs and wolves from Paleolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. Journal of Archaeological Science. 2009; 36:473–490. DOI: 10.1016/j.jas.2008.09.033
  2. 2. Morand S, McIntyre KM, Baylis M. Domesticated animals and human infectious diseases of zoonotic origins: Domestication time matters. Infection, Genetics and Evolution. 2014; 24:76–81. DOI: 10.1016/j.meegid.2014.02.013
  3. 3. O'Haire M. Companion animals and human health: Benefits, challenges, and the road ahead. Journal of Veterinary Behavior. 2010; 5:226–234. DOI: 10.1016/j.jveb.2010.02.002
  4. 4. Peña A, Abarca K, Weitzel T, Gallegos J, Cerda J, García P, López J. One Health in Practice: a pilot project for integrated care of zoonotic infections in immunocompromised children and their pets in Chile. Zoonoses and Public Health. 2015; 63:403–409. DOI:10.1111/zph.12241
  5. 5. Hill J, Ziviani J, Driscoll C, Teoh A, Chua J, Cawdell-Smith J. 2020. Canine assisted occupational therapy for children on the autism spectrum: A pilot randomized control trial. Review Journal of Autism and Developmental Disorders. 2020; 50:4106–4120. DOI: 10.1007/s10803-020-04483-7
  6. 6. Cleaveland SC, Laurenson MK, Taylor LH. Diseases of humans and their domestic mammals; pathogen characteristics, host range and the risk of emergence. Philosophical Transactions of the Royal Society of London. 2001; 356:991–999. DOI: 10.1098/rstb.2001.0889
  7. 7. Gompper ME. Free-ranging dogs and wildlife conservation. Oxford and New York: Oxford University Press; 2013. 312 p
  8. 8. Wellbeing international NGO [Internet]. Available from: https://wellbeingintl.org/global-dog-populations-2/ [Accessed: 2020-12-08]
  9. 9. World Health Organization [Internet]. Available from: https://www.who.int/es [Accessed: 2020-12-08]
  10. 10. Carvelli A, Scaramozzino P, Iacoponi F, Condoleo R, Ugo Della M. Size, demography, ownership profiles, and identification rate of the owned dog population in central Italy. PLoS ONE. 2020; 15: e02405515. DOI: 10.1371/journal.pone.0240551
  11. 11. Insurance Information Institution [Internet]. Available from: https://www.iii.org/table-archive/22742 [Accessed: 2020-12-10]
  12. 12. Otranto D, Dantas-Torres F, Mihalca AD, Traub RJ, Lappin M, Baneth G. Zoonotic parasites of sheltered and stray dogs in the era of the global economic and political crisis. Trends in Parasitology. 2017; 33:813–825. DOI: 10.1016/j.pt.2017.05.013
  13. 13. Infobae [Internet]. 2011. Available from: https://www.infobae.com/2011/09/16/605985-argentina-el-pais-la-region-mas-mascotas-habitante/#:~:text=Argentina%20es%20el%20pa%C3%ADs%20de,%25 [Accessed: 2020-12-14]
  14. 14. Astorga F, Escobar LE, Poo-Muñoz DA, Medina-Vogel G. Dog ownership, abundance and potential for bat-borne rabies spillover in Chile. Preventive Veterinary Medicine. 2015; 118:397–405. DOI: 10.1016/j.prevetmed.2015.01.002
  15. 15. El Observador [Internet]. 2017. Available from: https://www.elobservador.com.uy/nota/-cuantos-perros-y-gatos-hay-en-uruguay--201751716300 [Accessed: 2020-12-15]
  16. 16. Zanini F, Leiva D, Fernández R, Bergagna H, Elissondo MC. Manejo de las poblaciones caninas urbanas en Argentina. Revista Argentina de Zoonosis y Enfermedades Infecciosas Emergentes. 2013; 8:20–25. aazoonosis.org.ar/wp-content/uploads/2013/05/RAZ-2013-Vol-VIII.pdf
  17. 17. De la Reta M, Muratore M, Perna S, Polop J, Provensal MC. Abundancia de perros en situación de calle y su relación con factores ambientales en Río Cuarto (Córdoba, Argentina). Revista Veterinaria. 2018; 29:113–118. DOI: 10.30972/vet.2923275
  18. 18. Notejane M, Moure T, Silva JED, Barrios P, Pérez W. Niños con mordeduras de animales hospitalizados en un centro de referencia de Uruguay. Boletín Médico del Hospital Infantil de México. 2018; 75:358–365. DOI: 10.24875/bmhim.18000031
  19. 19. Schüttler E, Saavedra-Aracena L, Jiménez JE. Domestic carnivore interactions with wildlife in the Cape Horn Biosphere Reserve, Chile: husbandry and perceptions of impact from a community perspective. PeerJ. 2018; 6:e4124. DOI: 10.7717/peerj.4124
  20. 20. Natalini B, Gennuso S, Beldoménico PM, Rigonatto T, Kowalewski MM. Parasitologic examination and associated risk factors of domestic dogs at the domestic-wildlife interface in the Iberá wetlands Ecoregion, Argentina. Veterinary Parasitology: Regional Studies and Reports. 2020; 20:100378. DOI: 10.1016/j.vprsr.2020.100378
  21. 21. Astorga F, Poo-Muñoz DA, Organ J, Medina-Vogel G. Why let the dogs out? Exploring variables associated with dog confinement and general characteristics of the free-ranging owned-dog population in a peri-urban area. Journal of Applied Animal Welfare Science. 2020; 27:1–15. DOI: 10.1080/10888705.2020.1820334
  22. 22. López J, Abarca K, Cerda J, Valenzuela B, Lorca L, Olea A, Aguilera X. Surveillance system for infectious diseases of pets, Santiago, Chile. Emerging Infectious Disease. 2009; 15:1674–1676. DOI: 10.3201/eid1510.081596
  23. 23. Garibotti G, Zacharías D, Flores V, Catrimán S, Falconaro A, Kabaradjian S, Luque ML, Macedo B, Molina J, Rauque C, Soto M, Vázquez G, Vega R, Viozzi G. Tenencia responsable de perros y salud humana en barrios de San Carlos de Bariloche, Argentina. Medicina. 2017; 77:309–313. http://www.medicinabuenosaires.com/revistas/vol77-17/n4/309-313-Med6681-Garibotti.pdf
  24. 24. Canadian guidelines for the treatment of parasites in dogs and cats [Internet]. 2009. Available from: https://www.wormsandgermsblog.com/files/2008/03/CPEP-guidelines-ENGLISH1.pdf [Accessed: 2020-12-14]
  25. 25. Villagra V, Cáceres D, Alvarado S, Salinas E, Caldera ML, Lucero E, Viviani P, Torres M. Características epidemiológicas de mordeduras en personas, según registro de atención de urgencias Provincia de Los Andes, Chile. Revista Chilena de Infectología. 2017; 34:212–220. DOI: 10.4067/S0716-10182017000300002
  26. 26. Pro Tenencia - Tenencia Responsable de perros y gatos en Argentina. [Internet]. Available from: https://www.argentina.gob.ar/salud/protenencia. [Accessed: 2020-12-10]
  27. 27. Intendencia de Montevideo [Internet]. 2020. Available from: https://montevideo.gub.uy/noticias/salud-y-salubridad/calendario-de-castraciones-de-perros-y-gatos [Accessed: 2020-12-14]
  28. 28. Gobierno de la ciudad de Buenos Aires. Informe módulo de Tenencia responsable y sanidad de perros y gatos. Encuesta Anual de Hogares 2018 Ciudad de Buenos Aires. [Internet]. 2020. Available from: https://www.estadisticaciudad.gob.ar/eyc/wp content/uploads/2020/01/eah_2018_tenencia_responsable_perros_gatos.pdf [Accessed: 2020-12-10]
  29. 29. Andresiuk MV, Rodríguez F, Denegri GM, Sardella NH, Hollmann P. Relevamiento de parásitos zoonóticos en materia fecal canina y su importancia para la salud de los niños. Archivos Argentinos de Pediatría. 2004; 102:325–329. https://www.sap.org.ar/docs/publicaciones/archivosarg/2004/A5.325-329.Andresiuk.pdf
  30. 30. Day MJ, Breitschwerdt E, Cleaveland S, Karkare U, Khanna C, Kirpensteijn J. Surveillance of zoonotic infectious disease transmitted by small companion animals. Emerging Infectious Diseases. 2012; 18:e1. DOI:10.3201/eid1812.120664
  31. 31. Gorman T, Soto A, Alcaíno H. Parasitismo gastrointestinal en perros de comunas de Santiago de diferente nivel socioeconómico. Parasitología Latinoamericana. 2006; 61:126–132. DOI: 10.4067/S0717-77122006000200005
  32. 32. Cociancic P, Deferrari G, Zonta ML, Navone GT. Intestinal parasites in canine feces contaminating urban and recreational areas in Ushuaia (Argentina). Veterinary Parasitology: Regional Studies and Reports. 2020; 21:100424. DOI: 10.1016/j.vprsr.2020.100424
  33. 33. López-Pérez AM, Orozco L, Zazueta OE, Fierro M, Gomez P, Foley J. An exploratory analysis of demography and movement patterns of dogs: New insights in the ecology of endemic Rocky Mountain-Spotted Fever in Mexicali, México. PLoS One. 2020; 15:e0233567. DOI: 10.1371/journal.pone.0233567
  34. 34. Sepúlveda MA, Singer RS, Silva-Rodríguez E, Stowhas P, Pelican K. Domestic dogs in rural communities around protected areas: Conservation problem or conflict solution? PLoS ONE. 2014; 9:e86152. DOI: 10.1371/journal.pone.0086152
  35. 35. Flores V, Viozzi G, Garibotti G, Zacharias D, Debiaggi MF, Kabaradjian S. Echinococcosis and other parasitic infection in domestic dogs from urban areas of an Argentinian Patagonian city. Medicina. 2017; 77:469–474. http://www.medicinabuenosaires.com/PMID/29223937.pdf
  36. 36. Arezo M, Mujica G, Uchiumi L, Santillán G, Herrero E, Labanchi JL, Arayaa D, Salvitti JC, Cabrera M, Grizmado C, Calabro A, Talmon G, Sepulveda L, Galvan JM, Volpe M, Bastin V, Seleiman M, Panomarenko O, Tissot H, Sobrino M, Crowley P, Daffner J, Larrieu E. Identification of potential ‘hot spots’ of cystic echinococcosis transmission in the province of Río Negro, Argentina. Acta Tropica. 2020; 204:105341. DOI: 10.1016/j.actatropica.2020.105341
  37. 37. Little SE, Johnson EM, Lewis D, Jaklitsch RP, Payton ME, Blagburn BL, Bowmane DD, Moroff S, Tams T, Rich L, Aucoin D. Prevalence of intestinal parasites in pet dogs in the United States. Veterinary Parasitology. 2009; 166:144–152. DOI: 10.1016/j.vetpar.2009.07.044
  38. 38. Deplazes P, Van Knapen F, Schweiger A, Overgaauw PAM. Role of pet dogs and cats in the transmission of helminthic zoonoses in Europe, with a focus on echinococcosis and toxocarosis. Veterinary Parasitology. 2011; 182:41–53. DOI: 10.1016/j.vetpar.2011.07.014
  39. 39. Areekul P, Putaporntip C, Pattanawong U, Sitthicharoenchai P, Jongwutiwes S. Trichuris vulpis and T. trichiura infections among schoolchildren of a rural community in north-western Thailand: the possible role of dogs in disease transmission. Asian Biomedicine. 2010; 4:49–60. DOI: 10.2478/abm-2010-0006
  40. 40. Shalaby HA, Abdel-Shafy S, Derbala AA. The role of dogs in transmission of Ascaris lumbricoides for humans. Parasitology Research. 2010; 106:1021–1026. DOI: 10.1007/s00436-010-1755-8
  41. 41. Štrkolcová G, Goldová M, Bocková E, Mojžišová J. The roundworm Strongyloides stercoralis in children, dogs, and soil inside and outside a segregated settlement in Eastern Slovakia: frequent but hardly detectable parasite. Parasitology Research. 2017; 116:891–900. DOI: 10.1007/s00436-016-5362-1
  42. 42. Amundson Romich J. Understanding Zoonotic Diseases. Nueva York: Thomson Delmar Learning; 2008. 701 p
  43. 43. Dantas Torres F, Otranto D. Dogs, cats, parasites, and humans in Brazil: opening the black box. Parasites & Vectors. 2014; 7:22. DOI: 10.1186/1756-3305-7-22
  44. 44. Alvarez Di Fino EM, Rubio J, Abril MC, Porcasi X, Periago MV. Risk map development for soil-transmitted helminth infections in Argentina. PLOS Neglected Tropical Diseases. 2020; 14:e0008000. DOI: 10.1371/journal.pntd.0008000
  45. 45. Aromantaris E, Fernández R, Godfrey CM, Holly C, Khalil H, Tungpunkom P. Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. International Journal of Evidence-Based Healthcare. 2015; 13:132–140. DOI: 10.1097/XEB.0000000000000055
  46. 46. Instituto Geográfico Nacional [Internet]. Available from: https://www.ign.gob.ar. [Accessed: 2020-12-10]
  47. 47. Acosta-Jamett G, Cleaveland S, Bronsvoort BM, Cunningham AA, Bradshaw H, Craig PS. Echinococcus granulosus infection in domestic dogs in urban and rural areas of the Coquimbo region, north-central Chile. Veterinary Parasitology. 2010; 19:117–22. DOI: 10.1016/j.vetpar.2009.12.005
  48. 48. Acosta-Jamett G, Weitzel T, Boufana B, Adones C, Bahamonde A, Abarca K, Craig PS, Reiter-Owona I. Prevalence and risk factors for echinococcal infection in a rural area of northern Chile: a household-based cross-sectional study. PLoS Neglected Tropical Disease. 2014; 8:e3090. DOI:10.1371/journal.pntd.0003090
  49. 49. Andresiuk MV, Sardella NH, Denegri GM. Seasonal fluctuations in prevalence of dog intestinal parasites in public squares of Mar del Plata city, Argentina and its risk for humans. Revista Argentina de Microbiología. 2007; 39:221–224. https://www.redalyc.org/pdf/2130/213016793007.pdf
  50. 50. Andresiuk MV, Denegri GM, Sardella NH, Hollmann P. Encuesta coproparasitológica canina realizada en plazas públicas de la ciudad de Mar del Plata, Buenos Aires, Argentina. Parasitología Latinoamericana. 2003; 58:17–22. DOI: 10.4067/S0717-77122003000100003
  51. 51. Archelli S, Kozubsky L, Gamboa MI, Osen B, Costas ME, López M, Burgos L, Corbalán V, Butti M, Radman N. Toxocara canis en humanos, perros y suelos en ribera del Río de la Plata, provincia de Buenos Aires. Acta de Bioquímica Clínica Latinoamericana. 2018; 52:441–449. http://sedici.unlp.edu.ar/bitstream/handle/10915/73806/Documento_completo.pdf-PDFA.pdf?sequence=1&isAllowed=y
  52. 52. Armstrong WA, Oberg C, Orellana JJ. Presence of parasite eggs with zoonotic potential in parks and public squares of the city of Temuco, Araucanía Region, Chile. Archivos de Medicina Veterinaria. 2011; 43:127–134. DOI: 10.4067/S0301-732X2011000200005
  53. 53. Casas N, Costas S, Céspedes G, Sosa S, Santillán G. Detección de coproantígenos para el diagnóstico de equinococosis canina en la zona fronteriza de La Quiaca-Villazón. Revista Argentina de Microbiología. 2013; 45:154–159. DOI: 10.1016/S0325-7541(13)70017-8
  54. 54. Castillo D, Paredes C, Zañartu C, Castillo G, Mercado R, Muñoz V, Schenone H. Environmental contamination with Toxocara sp. eggs in public squares and parks from Santiago, Chile, 1999. Boletín Chileno de Parasitología. 2000; 55:86–91. DOI: 10.4067/S0716-10182016000400007
  55. 55. Chiodo P, Basualdo J, Ciarmela L, Pezzani B, Apezteguía M, Minvielle M. Related factors to human toxocariasis in a rural community of Argentina. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro. 2006; 101:397–400. DOI: 10.1590/S0074-02762006000400009
  56. 56. Cociancic P, Zonta ML, Navone GT. A cross-sectional study of intestinal parasitoses in dogs and children of the periurban area of La Plata (Buenos Aires, Argentina): Zoonotic importance and implications in public health. Zoonoses Public Health. 2017; 65:44–53. DOI: 10.1111/zph.12408
  57. 57. de Costas S, Riveros Matas N, Ricoy G, Sosa S, Santillán G. Diagnóstico de situación de la equinococosis quística en heces dispersas en las zonas de Quebrada y Puna, provincia de Jujuy, Argentina. Revista Argentina de Microbiología. 2014; 46:80–84. DOI:10.1016/S0325-7541(14)70052-5
  58. 58. Dopchiz MC, Lavallén CM, Bongiovanni R, Gonzalez PV, Elissondo C, Yannarella F, Denegri G. Endoparasitic infections in dogs from rural areas in the Lobos District, Buenos Aires province, Argentina. Revista Brasileira de Parasitologia Veterinária. 2013; 22:92–97. DOI: 10.1590/S1984-29612013005000008
  59. 59. Enriquez GF, Macchiaverna NP, Argibay HD, López Arias L, Farber M, Gürtler RE, Cardinal MV, Garbossa G. Polyparasitism and zoonotic parasites in dogs from a rural area of the Argentine Chaco. Veterinary Parasitology: Regional Studies and Reports. 2019; 16:100287. DOI: 10.1016/j.vprsr.2019.100287
  60. 60. Fontanarrosa M, Vezzani D, Basabe J, Eira D. An epidemiological study of gastrointestinal parasites of dogs from Southern Greater Buenos Aires (Argentina): Age, gender, breed, mixed infections, and seasonal and spatial patterns. Veterinary Parasitology. 2006; 136:283–295. DOI: 10.1016/j.vetpar.2005.11.012
  61. 61. Gamboa MI, Navone GT, Orden AB, Torres MF, Castro LE, Oyhenart EE. Socio-environmental conditions, intestinal parasitic infections and nutritional status in children from a suburban neighborhood of La Plata, Argentina. Acta Tropica. 2011; 118:184–189. DOI: 10.1016/j.actatropica.2009.06.015
  62. 62. Gamboa MI, Kozubsky LE, Costas ME, Garraza M, Cardozo MI, Susevich ML, Magistrello PN, Navone GT. Asociación entre geohelmintos y condiciones socioambientales en diferentes poblaciones humanas de Argentina. Revista Panamericana de la Salud Pública. 2009; 26:1–8. https://scielosp.org/article/rpsp/2009.v26n1/1-8/
  63. 63. González-Acuña D, Moreno L, Hermosilla C. Parásitos en perros de San Juan Bautista, Isla Robinson Crusoe, Chile. Archivos de Medicina Veterinaria. 2008; 40:193–195. DOI: 10.4067/S0301-732X2008000200012
  64. 64. Irabedra P, Ferreira C, Sayes J, Elola S, Rodríguez M, Morel N, Segura S, Dos Santos E, Guisantes JA. Control programme for cystic echinococcosis in Uruguay. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro. 2016; 111:372–377. DOI: 10.1590/0074-02760160070
  65. 65. La Sala LF, Leiboff A, Burgos JM, Costamagna SR. Spatial distribution of canine zoonotic enteroparasites in Bahía Blanca, Argentina. Revista Argentina de Microbiología. 2015a; 47:17–24. DOI: 10.1016/j.ram.2014.12.006
  66. 66. La Sala LF, Costamagna SR, Leiboff A. Zoonotic parasites in dog feces in Bahía Blanca city. Revista Argentina de Zoonosis y Enfermedades Infecciosas Emergentes. 2015b; 10:70–71. https://www.aazoonosis.org.ar/wp-content/uploads/2013/05/Zoo-2015-2-completa-ok.pdf
  67. 67. Lamberti R, Gino L, Larrieu E, García Cachau M, Calvo C, Morete M, Molina L, Lapuyade C, Cornejo T, Poblete G, Baeza R, Arias P, Cuellas F, Berrios Sierpe A, Crivelli L, Cejas C. Contaminación de parásitos zoonóticos en espacios públicos en el área del Centro de Salud Brown, General Pico, La Pampa. Comunicación preliminar. Revista Ciencias Veterinarias. 2014; 16:57–65. https://repo.unlpam.edu.ar/handle/unlpam/4410
  68. 68. Lamberti R, Gino L, García Cachau M, Calvo C, Morete M, Lapuyade C, Molina L, Larrieu E, Santos K, Arias P, Cornejo T. Contaminación de espacios públicos con nematodes zoonóticos en el Área del Centro de Salud Brown, General Pico, La Pampa desde 2013 a 2015. Ciencia Veterinaria. 2015; 17:61–71. DOI: 10.19137/cienvet20141614
  69. 69. Larrieu E, Seleiman M, Herrero E, Mujica G, Labanchi JL, Araya D, Grizmado C, Sepúlveda L, Calabro A, Talmón G, Crowley P, Albarracín S, Arezo M, Volpe M, Ávila A, Pérez A, Uchiumi L, Salvitti JC, Santillán G. Vigilancia de la equinococosis quística en perros y niños en la provincia de Río Negro, Argentina. Revista Argentina de Microbiología. 2014; 46:91–97. DOI: 10.1016/S0325-7541(14)70054-9
  70. 70. Lavallén CM, Dopchiz MC, Lobianco E, Hollmann P, Denegri G. Intestinal parasites of zoonotic importance in dogs from the District of General Pueyrredón (Buenos Aires, Argentina). Revista Veterinaria. 2011; 22:19–24. https://revistas.unne.edu.ar/index.php/vet/article/view/19/14
  71. 71. López J, Abarca K, Paredes P, Inzunza E. Intestinal parasites in dogs and cats with gastrointestinal symptoms in Santiago, Chile. Revista Médica de Chile. 2006; 134:193–200. DOI: 10.4067/s0034-98872006000200009
  72. 72. Luzio A, Espejo S, Troncoso I, Fernández I, Fischer C. Determinación coproscópica de formas parasitarias en heces de "Canis lupus familiaris" diseminadas en playas de la comuna de Tomé, Región del Bío Bío, Chile. Revista Ibero-Latinoamericana de Parasitología. 2013; 72:88–94. https://www.redalyc.org/pdf/636/63653009042.pdf
  73. 73. Luzio Á, Belmar P, Troncoso I, Luzio P, Jara A, Fernández Í. Parasites of zoonotic importance in dog feces collected in parks and public squares of the city of Los Angeles, Bío-Bío, Chile. Revista Chilena de Infectología. 2015; 32:403–407. DOI: 10.4067/s0716-10182015000500006
  74. 74. Luzio A, Díaz P, Luzio P, Fernández I. Parasites of zoonotic importance in dog feces collected in square of arms of the provincial capitals of the Bío Bío Region, Chile. Revista Electrónica de Veterinaria. 2017; 18:1–10. https://www.redalyc.org/pdf/636/63653009042.pdf
  75. 75. Madrid V, Sardella N, Hollmann P, Denegri G. Estudio coproparasitológico canino en playas de Mar del Plata y su impacto en la salud pública. Revista Veterinaria. 2008; 19:23–27. DOI:10.30972/vet.1914294
  76. 76. Marder G, Ulon S, Botinelli O, Mesa Fleitas Z, Lotero DA, Ruiz R, Peiretti HA, Arzú RA. Infestación parasitaria en suelos y materia fecal de perros y gatos de la ciudad de Corrientes. Revista Veterinaria. 2004; 15:70–72. https://revistas.unne.edu.ar/index.php/vet/article/view/1999
  77. 77. Martín UO, Demonte MA. Urban contamination with zoonotic parasites in the central region of Argentina. Medicina. 2008; 68:363–366. http://medicinabuenosaires.com/revistas/vol68-08/5/v68_n5_p363_366_.pdf
  78. 78. Mercado R, Ueta MT, Castillo D, Muñoz V, Schenone H. Exposure to larva migrans syndromes in squares and public parks of cities in Chile. Revista de Saúde Pública. 2004; 38:729–731. DOI: 10.1590/S0034-89102004000500017
  79. 79. Milano AMF, Oscherov EB. Contaminación de aceras con enteroparásitos caninos en Corrientes, Argentina. Parasitología Latinoamericana. 2005; 60:82–85. DOI: 10.4067/S0717-77122005000100015
  80. 80. Motta CE, Rivero MR, De Angelo CD, Sbaffo AM, Tiranti KI. Risk and protective factors associated with gastrointestinal parasites of dogs from an urban area of Córdoba, Argentina. Turkish Journal of Veterinary and Animal Sciences. 2019; 43:846–851. https://journals.tubitak.gov.tr/veterinary/issues/vet-19-43-6/vet-43-6-17-1803-29.pdf
  81. 81. Natalini B, Gennuso S, Beldomenico PM, Rigonatto T, Kowalewski MM. Parasitologic examination and associated risk factors of domestic dogs at the domestic-wildlife interface in the Iberá wetlands Ecoregion, Argentina. Veterinary Parasitology: Regional Studies and Reports. 2020; 20:100378. DOI: 10.1016/j.vprsr.2020.100378
  82. 82. Oku Y, Malgor R, Benavidez U, Carmona C, Kamiya H. Control program against hydatidosis and the decreased prevalence in Uruguay. International Congress Series. 2004; 1267:98–104. DOI: 10.1016/j.ics.2004.01.087
  83. 83. Olivares P, Valenzuela G, Tuemmers C, Parodi J. Description of parasites in faecal samples collected in plazas of downtown Temuco, Chile. Revista de Investigaciones Veterinarias del Perú. 2014; 25:406–413. https://doi.org/10.15381/rivep.v25i3.10119
  84. 84. Opazo A, Barrientos C, Sanhueza AM, Urrutia N, Fernández I. Parasitic fauna in dogs (Canis lupus familiaris) of a rural sector in the central region of Chile. Revista de Investigaciones Veterinarias del Perú. 2019; 30:330–338. DOI: 10.15381/rivep.v30i1.15683
  85. 85. Oyarzún S, Cabello-Stom J, Moreira D, Hidalgo-Hermoso E. Estudio coproparasitario de perros (Canis lupus familiaris) que viven en co-ocurrencia con el zorro de darwin (Lycalopex fulvipes) en la cordillera de Nahuelbuta. Revista de Medicina Veterinaria e Investigación. 2019; 2:6–20. https://issuu.com/ussvet/docs/rev._med._vet._investig._n_4_2019
  86. 86. Parra A, Orellana V, Rodríguez C, Valle M, Ricoy G, Santillán G. Evaluación de echinococcosis canina en la zona de alta montaña en la provincia de Tucumán, Argentina. Acta Bioquímica Clínica Latinoamericana. 2017; 51:133–137. https://www.redalyc.org/pdf/535/53550497016.pdf
  87. 87. Pérez A, Costa MT, Cantoni G, Mancini S, Mercapide C, Herrero E, Volpe M, Araya D, Talmón G, Chiosso C, Vázquez G, del Carpio M, Santillan G, Larrieu E. Vigilancia epidemiológica de la equinococcosis quística en perros, establecimientos ganaderos y poblaciones humanas en la provincia de Río Negro. Medicina. 2006; 66:193–200. https://www.medicinabuenosaires.com/demo/revistas/vol66-06/3/VIGILANCIA%20EPIDEMIOLOGICA%20DE%20LA%20EQUINOCOCCOSIS%20QUISTICA%20EN%20PERROS,.pdf
  88. 88. Quilodrán-González D, Gädicke P, Junod T, Villaguala-Pacheco C, Landaeta-Aqueveque C. Risk factors associated with the presence of zoonotic gastrointestinal parasites in dogs of Cabrero District, Bio Bio Region, Chile. Chilean Journal of Agricultural and Animal Sciences. 2018; 34:118–125. DOI: 10.4067/S0719-38902018005000401
  89. 89. Radman NE, Archelli SM, Burgos L, Domingo Fonrouge R, del Valle Guardis M. Toxocara canis en caninos. Prevalencia en la ciudad de La Plata. Acta Bioquímica Clínica Latinoamericana. 2006; 40:41–44. https://www.redalyc.org/pdf/535/53540107.pdf
  90. 90. Rivero MR, Motta CE, Salas MM, Chiaretta A, Salomón OD. Diphyllobothrium sp. in Canis familiaris from the subtropical area of Argentina (Puerto Iguazú, Misiones). Revista Argentina de Microbiología. 2015; 47:196–200. DOI: 10.1016/j.ram.2015.05.002
  91. 91. Rivero MR, De Angelo C, Nuñez P, Salas M, Motta CE, Chiaretta A, Salomón OD, Liang S. Environmental and socio-demographic individual, family and neighborhood factors associated with children intestinal parasitoses at Iguazú, in the subtropical northern border of Argentina. PLOS Neglected Tropical Diseases. 2017; 11:e0006098. DOI:10.1371/journal.pntd.0006098
  92. 92. Rodríguez F, Denegri G, Sardella N, Hollmann P. Relevamiento coproparasitológico de caninos ingresados al Centro Municipal de Zoonosis de Mar del Plata, Argentina. Revista Veterinaria. 2005; 16:9–12. https://revistas.unne.edu.ar/index.php/vet/article/view/1984/1731
  93. 93. Roth D, Arbetman M, Flores V, Semenas L, Viozzi G. Diphyllobothriidea in the north area of the Andean Patagonia: Epidemiology in urban dogs, morphometrical and molecular identification, with comments on wild carnivores. Veterinary Parasitology: Regional Studies and Reports. 2018; 14:161–169. DOI: 10.1016/j.vprsr.2018.11.001
  94. 94. Rubel D, Zunino G, Santillán G, Wisnivesky C. Epidemiology of Toxocara canis in the dog population from two areas of different socioeconomic status, Greater Buenos Aires, Argentina. Veterinary Parasitology. 2003; 115:275–286. DOI: 10.1016/S0304-4017(03)00185-7
  95. 95. Rubel D, Wisnivesky C. Magnitude and distribution of canine fecal contamination and helminth eggs in two areas of different urban structure, Greater Buenos Aires, Argentina. Veterinary Parasitology. 2005; 133:339–347. DOI: 10.1016/S0304-4017(03)00185-7
  96. 96. Rubel D, Wisnivesky C. Contaminación fecal canina en plazas y veredas de Bs As. Medicina. 2010; 70:355–363. https://www.medicinabuenosaires.com/demo/revistas/vol70-10/4/v70_n4_p355_363.pdf
  97. 97. Rubel D, Carbajo A. Dogs in public spaces of Buenos Aires, Argentina: Exploring patterns of the abundance of dogs, the canine faecal contamination, the behaviour of people with dogs, and its relationships with demographic/economic variables. Preventive Veterinary Medicine. 2019; 170:104713. DOI: 10.1016/j.prevetmed.2019.104713
  98. 98. Sánchez P, Raso S, Torrecillas C, Mellado I, Ñancufil A, Oyarzo CM, Flores ME, Córdoba M, Minvielle MC, Basualdo JA. Contaminación biológica con heces caninas y parásitos intestinales en espacios públicos urbanos en dos ciudades de la provincia de Chubut, Patagonia, Argentina. Parasitología Latinoamericana. 2003; 58:131–135. DOI: 10.4067/S0717-77122003000300008
  99. 99. Sánchez Thevenet P, Jensen O, Mellado I, Torrecillas C, Raso S, Flores ME, Minvielle MC, Basualdo JA. An eco-epidemiological study of contamination of soil with infective forms of intestinal parasites. European Journal of Epidemiology. 2003; 19:481–489. DOI: 10.1023/B:EJEP.0000027352.55755.58
  100. 100. Semenas L, Flores V, Viozzi G, Vázquez G, Pérez A, Ritossa L. 2014. Helmintos zoonóticos en heces caninas de barrios de Bariloche (Río Negro, Patagonia, Argentina). Revista Argentina de Parasitología. 2014; 2:22–27. https://ri.conicet.gov.ar/handle/11336/12004
  101. 101. Soriano SV, Pierangeli NB, Roccia I, Bergagna HFJ, Lazzarini LE, Celescinco A, Saiz MS, Kossman A, Contreras PA, Arias C, Basualdo JA. A wide diversity of zoonotic intestinal parasites infects urban and rural dogs in Neuquén, Patagonia, Argentina. Veterinary Parasitology. 2010; 167:81–85. DOI: 10.1016/j.vetpar.2009.09.048
  102. 102. Souto MG, Sánchez Thevenet P, Basualdo Farjat J. Evaluation of the presence of Echinococcus granulosus sensu lato in the environment and in hosts in a region endemic for hydatidosis in the province of Chubut (Argentina). Veterinary Parasitology. 2016; 6:42–46. DOI: 10.1016/j.vprsr.2016.09.005
  103. 103. Taranto NJ, Passamonte L, Marinconz R, De Marzi MC, Cajal SP, Malchiodi EL. Parasitosis zoonóticas transmitidas por perros en el chaco salteño, Salta, Argentina. Medicina. 2000; 60:217–220. http://www.medicinabuenosaires.com/revistas/vol60-00/2/parasitosis.htm
  104. 104. Torres P, Villalobos L, Woelfl S, Puga S. Identification of the copepod intermediate host of the introduced broad fish tapeworm, Diphyllobothrium latum, in southern Chile. Journal of Parasitology. 2004; 90:1190–1193. DOI: 10.1645/ge-3332rn
  105. 105. Vargas C, Torres P, Jercic MI, Lobos M, Oyarce A, Juan Carlos M, Ayala S. Frequency of anti-Toxocara spp. antibodies in individuals attended by the Centro de Salud Familiar and environmental contamination with Toxocara canis eggs in dog feces, in the coastal Niebla town, Chile. Revista do Instituto de Medicina Tropical de São Paulo. 2016; 58:62. DOI: 10.1590/S1678-9946201658062
  106. 106. Winter M, Perera N, Marigual G, Corominas MJ, Mora M, Lecertua A, Ávila A, Arezo M. Enteroparásitos en heces caninas de la costanera pública de Viedma (Río Negro, Patagonia Argentina). Revista Argentina de Parasitología. 2018; 7:23–28. http://www.revargparasitologia.com.ar/pdf/RevArgParasitol_Vol7_Winter.pdf
  107. 107. Zonta ML, Cociancic P, Oyhenart EE, Navone GT. Intestinal parasitosis, undernutrition and socio-environmental factors in schoolchildren from Clorinda Formosa, Argentina. Revista de Salud Pública. 2019; 21:224–231. DOI: 10.15446/rsap.V21n2.73692
  108. 108. Zunino MG, De Francesco MV, Kuruc JA, Schweigmann N, Wisnivesky MC, Jensen O. Contaminación por helmintos en espacios públicos de la provincia de Chubut, Argentina. Boletín chileno de parasitología. 2000; 55. DOI: 10.4067/S0365-94022000000300008
  109. 109. Haddaway NR, Bethel A, Dicks LV, Koricheva J, Macura B, Petrokofsky G, Pullin AS, Savilaakso S, Stewart GB. Eight problems with literature reviews and how to fix them. Nature Ecology & Evolution. 2020; 4:1582–1589. DOI: 10.1038/s41559-020-01295-x
  110. 110. Savadelis MD, Evans CC, Mabry KH, LeFavi LN, Klink BD, Simson C, Moorhead AR. Canine gastrointestinal nematode transmission potential in municipal dog parks in the southeast United States. Veterinary Parasitology: Regional Studies and Reports. 2019; 18:100324. DOI: 10.1016/j.vprsr.2019.100324
  111. 111. Hotez PJ. Human Parasitology and Parasitic Diseases: Heading Towards 2050. Advances in Parasitology. 2018; 100:29–38. DOI: 10.1016/bs.apar.2018.03.002
  112. 112. Traversa, D. Are we paying too much attention to cardio-pulmonary nematodes and neglecting old-fashioned worms like Trichuris vulpis? Parasites Vectors. 2011; 4:32. DOI: 10.1186/1756-3305-4-32
  113. 113. Felsmann M, Michalski M, Felsmann M, Sokół R, Szarek J, Strzyżewska-Worotyńska E. Invasive forms of canine endoparasites as a potential threat to public health - A review and own studies. Annals of Agricultural and Environmental Medicine. 2017; 24:245–249. DOI: 10.5604/12321966.1235019
  114. 114. Rostami A, Riahi SM, Hofmann A, Ma G, Wang T, Behniafar H, Taghipour A, Fakhri Y, Spotin A, Chang BCH, Macpherson CNL, Hotez PJ, Gasser RB. Global prevalence of Toxocara infection in dogs. Advances in Parasitology. 2020; 109:561–583. DOI: 10.1016/bs.apar.2020.01.017
  115. 115. Larrieu E, Gavidia CM, Lightowlers MW. Control of cystic echinococcosis: Background and prospects. Zoonoses and Public Health. 2019; 66:889–899. DOI:10.1111/zph.12649
  116. 116. Larrieu E, Frider B, del Carpio M, Salvitti JC, Mercapide C, Pereyra R, Costa M, Odriozola M, Pérez A, Cantoni G, Sustercic J. Portadores asintomáticos de hidatidosis: epidemiología, diagnóstico y tratamiento. Revista Panamericana de Salud Pública. 2000; 8:250–256. https://www.scielosp.org/pdf/rpsp/v8n4/3551.pdf
  117. 117. Martínez PG. Hidatidosis humana: antecedentes generales y situación epidemiológica en Chile, 2001–2009. Revista Chilena de Infectología. 2011; 28:585–591. DOI: 10.4067/S0716-10182011000700013
  118. 118. Vera GM, Venturelli FM, Ramírez JT, Venturelli AL. Hidatidosis humana. Cuadernos de Cirugía. 2003; 17:88–94. http://revistas.uach.cl/pdf/cuadcir/v17n1/art14.pdf
  119. 119. López-Osorio S, Penagos-Tabares F, Chaparro-Gutiérrez JJ. Prevalence of Toxocara spp. in dogs and cats in South America (excluding Brazil). Advances in Parasitology. 2020; 109:743–778. DOI: org/10.1016/bs.apar.2020.01.029
  120. 120. Eslahi AV, Badri M, Khorshidi A, Majidiani H, Hooshmand E, Hosseini H, Taghipour A, Foroutan M, Pestehchian N, Firoozeh F, Riahi SM, Zibaei M. Prevalence of Toxocara and Toxascaris infection among human and animals in Iran with meta-analysis approach. BMC Infectious Disease. 2020; 20:20. DOI: 10.1186/s12879-020-4759-8
  121. 121. Fillaux J, Santillán G, Magnaval JF, Jensen O, Larrieu E, Sobrino-Becaria CD. Epidemiology of toxocariasis in a steppe environment: The Patagonia study. American Journal of Tropical Medicine and Hygiene. 2007; 76:1144–1147. DOI: 10.4269/ajtmh.2007.76.1144
  122. 122. Martín UO, Demonte MA, Contini L, Giraldez E, Mendicino D, Del Barco M. Toxocariosis in different vulnerable groups of children in Argentina. Salud(i)Ciencia. 2014; 20:592–597. https://www.siicsalud.com/des/expertoimpreso.php/120904
  123. 123. Godoy P, Mauvezin J, Basmadjián Y, Sayagués B, Giachetto G. Toxocariasis: manifestaciones clínicas y de laboratorio en niños asistidos en un prestador integral de salud privado de Montevideo, Uruguay (2014–2018). Revista Médica del Uruguay. 2020; 36:6–11. DOI: 10.29193/rmu.36.1.1
  124. 124. Plascencia Gómez A, Proy H, Eljure N, Atoche Dieguez C, Calderón Rocher C, Bonifaz A. Larva migrans cutánea relacionada con Ancylostomas. Dermatología Revista Mexicana. 2013; 57:454–460. https://www.medigraphic.com/pdfs/derrevmex/rmd-2013/rmd136g.pdf
  125. 125. Bava J, González LG, Seley CM, López GP, Troncoso A. A case report of cutaneous larva migrans in Argentina. Asian Pacific Journal of Tropical Biomedicine. 2011; 1:81–82. DOI:10.1016/S2221-1691(11)60074-9
  126. 126. González FCG, Galilea ONM, Pizarro CK. Autochthonous cutaneous larva migrans in Chile. A case report. Revista Chilena de Pediatría. 2015; 86:426–9. DOI: 10.1016/j.rchipe.2015.07.018
  127. 127. Kolbach M, Gamé A, Araya G. Larva migrans cutánea: reporte de un caso. Revista Chilena de Dermatología. 2012; 28:190. https://www.sochiderm.org/web/revista/28_2/17.pdf
  128. 128. Beknazarova M, Barratt JLN, Bradbury RS, Lane M, Whiley H, Ross K. Detection of classic and cryptic Strongyloides genotypes by deep amplicon sequencing: A preliminary survey of dog and human specimens collected from remote Australian communities. PLOS Neglected Tropical Diseases. 2019; 13:e0007241. DOI: 10.1371/journal.pntd.0007241
  129. 129. Rivero MR, De Angelo C, Núñez P, Salas M, Liang, S. Intestinal parasitism and nutritional status among indigenous children from the Argentinian Atlantic Forest: Determinants of enteroparasites infections in minority populations. Acta Tropica. 2018; 187:248–256. DOI: 10.1016/j.actatropica.2018.08.015
  130. 130. Cimino RO, Fleitas P, Fernández M, Echazú A, Juarez M, Floridia-Yapur N, Cajal P, Seijo A, Abril M, Weinberg D, Piorno P, Caro N, Vargas P, Gil J, Crudo F, Krolewiecki A. Seroprevalence of the Strongyloides stercoralis infection in humans from Yungas Rainforest and Gran Chaco Region from Argentina and Bolivia. Pathogens. 2020; 9:394. DOI: 10.3390/pathogens9050394
  131. 131. Mercado R, Jercic MI, Alcayaga S, de Paula FM, Ueta MT, Costa-Cruz JM. Seroepidemiological aspects of human Strongyloides stercoralis infections in Chile. Revista do Instituto de Medicina Tropical de São Paulo. 2007; 49:247–249. DOI: 10.1590/S0036-46652007000400010

Written By

Luciano Ritossa, Gustavo Viozzi and Verónica Flores

Submitted: 26 October 2020 Reviewed: 20 January 2021 Published: 01 April 2021