Akcije

Kragujevac Journal of Science
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[38]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:34
  • preuzimanja u poslednjih 30 dana:30

Sadržaj

članak: 1 od 1  
2017, br. 39, str. 99-108
Spectroscopic features of caffeic acid: Theoretical study
(naslov ne postoji na srpskom)
Univerzitet u Kragujevcu, Prirodno-matematički fakultet, Institut za hemiju, Srbija

e-adresajelena.tosovic@kg.ac.rs
Projekat:
Sinteza, modelovanje, fizičko-hemijske i biološke osobine organskih jedinjenja i odgovarajućih kompleksa metala (MPNTR - 172016)

Ključne reči: caffeic acid; vibrational spectra; NMR spectra; UV spectrum; DFT calculations
Sažetak
(ne postoji na srpskom)
In order to investigate spectroscopic features of caffeic acid (CA), the IR, Raman, 13C-NMR, 1H-NMR, and UV spectra of this compound were simulated. For this purpose the B3LYP-D3/6-311+G(d,p) theoretical model was used in combination with CPCM solvation model. Very good agreement between all experimental and simulated spectra was achieved. This result indicates that B3LYP-D3 can be a method of choice in studies that refer to spectroscopic investigations. Spectroscopic features of CA are very similar to those of chlorogenic acid (5-O-caffeoylquinic acid) (MARKOVIĆ, TOŠOVIĆ and DIMITRIĆ MARKOVIĆ, 2016), pointing out the significance of caffeic moiety.
Reference
Baghestani, A., Lemieux, C., Leroux, G.D., Baziramkenga, R., Simard, R.R. (1999) Determination of allelochemicals in spring cereal cultivars of different competitiveness. Weed Sci., 47: 498-504
Bostock, R.M., Wilcox, S.M., Wang, G., Adaskaveg, J.E. (1999) Suppression ofMonilinia fructicolacutinase production by peach fruit surface phenolic acids. Physiological and Molecular Plant Pathology, 54(1-2): 37-50
Buchanan, B.B., Gruissem, W., Jones, R.L. (2000) Biochemistry and Molecular Biology of Plants. Rockville, MD: American Society of Plant Physiology
Challis, B. C., Bartlett, C. D. (1975) Possible cocarcinogenic effects of coffee constituents. Nature, 254(5500): 532-533
Decker, E.A. (1997) Phenolics: prooxidants or antioxidants?. Nutr Rev, 55(11 Pt 1): 396-8
Faulds, C.B., Williamson, G. (1999) The role of hydroxycinnamates in the plant cell wall. Journal of the Science of Food and Agriculture, 79(3): 393-395
Frank, H., Thiel, D., MacLeod, J. (1989) Mass spectrometric detection of cross-linked fatty acids formed during radical-induced lesion of lipid membranes. Biochemical Journal, 260(3): 873-878
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., i dr. (2013) Gaussian 09, Revision D.1. Wallingford CT: Gaussian Inc
Fukumoto, L. R., Mazza, G. (2000) Assessing Antioxidant and Prooxidant Activities of Phenolic Compounds †. Journal of Agricultural and Food Chemistry, 48(8): 3597-3604
García-Granda, S., Beurskens, G., Beurskens, P. T., Krishna, T. S. R., Desiraju, G. R. (1987) Structure of 3,4-dihydroxy-trans-cinnamic acid (caffeic acid) and its lack of solid-state topochemical reactivity. Acta Crystallographica Section C Crystal Structure Communications, 43(4): 683-685
Gould, K. S. (2000) Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. Journal of Experimental Botany, 51(347): 1107-1115
Gulcin, I. (2006) Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 217(2-3): 213-220
Jayasena, T., Poljak, A., Smythe, G., Braidy, N., Münch, G., Sachdev, P. (2013) The role of polyphenols in the modulation of sirtuins and other pathways involved in Alzheimer's disease. Ageing Research Reviews, 12(4): 867-883
Jokura, H., Watanabe, I., Umeda, M., Hase, T., Shimotoyodome, A. (2015) Coffee polyphenol consumption improves postprandial hyperglycemia associated with impaired vascular endothelial function in healthy male adults. Nutrition Research, 35(10): 873-881
Joyeux, M., Lobstein, A., Anton, R., Mortier, F. (1995) Comparative Antilipoperoxidant, Antinecrotic and Scavanging Properties of Terpenes and Biflavones from Ginkgo and some Flavonoids. Planta Medica, 61(02): 126-129
Lee, E.J., Kim, J.S., Kim, H.P., Lee, J., Kang, S.S. (2010) Phenolic constituents from the flower buds of Lonicera japonica and their 5-lipoxygenase inhibitory activities. Food Chemistry, 120(1): 134-139
Legler, C.R., Brown, N.R., Dunbar, R.A., Harness, M.D., Nguyen, K., Oyewole, O., Collier, W.B. (2015) Scaled Quantum Mechanical scale factors for vibrational calculations using alternate polarized and augmented basis sets with the B3LYP density functional calculation model. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145: 15-24
Marković, S., Tošović, J. (2015) Application of Time-Dependent Density Functional and Natural Bond Orbital Theories to the UV-vis Absorption Spectra of Some Phenolic Compounds. Journal of Physical Chemistry A, 119(35): 9352-9362
Marković, S., Tošović, J., Dimitrić, M.J.M. (2016) Synergic application of spectroscopic and theoretical methods to the chlorogenic acid structure elucidation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 164: 67-75
Munos, R. A., Panchenko, Yu. N., Koptev, G. S., Stepanov, N. F. (1970) Program for calculating distribution of potential energy in internal coordinates. Journal of Applied Spectroscopy, 12(3): 428-429
Pulido, R., Bravo, L., Saura-Calixto, F. (2000) Antioxidant Activity of Dietary Polyphenols As Determined by a Modified Ferric Reducing/Antioxidant Power Assay. Journal of Agricultural and Food Chemistry, 48(8): 3396-3402
Reinders, R. D., Biesterveld, S., Bijker, P. G. H. (2001) Survival of Escherichia coli O157:H7 ATCC 43895 in a Model Apple Juice Medium with Different Concentrations of Proline and Caffeic Acid. Applied and Environmental Microbiology, 67(6): 2863-2866
Snook, M.E., Data, E.S., Kays, S.J. (1994) Characterization and quantitation of hexadecyl, octadecyl, and eicosyl esters of p-coumaric acid in the vine and root latex of sweetpotato [Ipomoea batatas (L.) Lam.]. Journal of Agricultural and Food Chemistry, 42(11): 2589-2595
Sudina, G.F., Mirzoeva, O.K., Pushkareva, M.A., Korshunova, G.A., Sumbatyan, N.V., Varfolomeev, S.D. (1993) Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett., 329: 21-24
Świsłocka, R. (2013) Spectroscopic (FT-IR, FT-Raman, UV absorption, 1H and 13C NMR) and theoretical (in B3LYP/6-311++G** level) studies on alkali metal salts of caffeic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 100: 21-30
Tošović, J., Marković, S. (2017) Reproduction and interpretation of the UV-vis spectra of some flavonoids. Chemical Papers, 71(3): 543-552
Vaughan, J.G., Geissler, C.A. (2009) The New Oxford Book of Food Plants. New York: Oxford University Press
Wang, H. (2004) Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chemistry, 87(2): 307-311
Weinhold, F., Landis, C.R. (2012) Discovering Chemistry with Natural Bond Orbitals. Hoboken: John Wiley & Sons
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/KgJSci1739099T
objavljen u SCIndeksu: 02.11.2017.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka