Metrika

  • citati u SCIndeksu: [4]
  • citati u CrossRef-u:[22]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:11
  • preuzimanja u poslednjih 30 dana:5

Sadržaj

članak: 1 od 1  
2014, vol. 42, br. 2, str. 155-160
Uticaj procesa hlađenja nanofluidom sastavljenog od vode i Al2O3 nanočestica na prenos toplote konvekcijom
aBrawijaya University Malang, Faculty of Engineering, Mechanical Engineering Department, Malang, Indonesia + Malang State Polytechnic, Mechanical Engineering Department, Malang, Indonesia
bBrawijaya University Malang, Faculty of Engineering, Department of Mechanical Engineering, Malang, Indonesia

e-adresasudmaji@yahoo.co.id
Sažetak
Rad prikazuje istraživanje prenosa toplote konvekcijom i pad pritiska u nanofluidu korišćenjem nanofluida koji se sastoji od vode i aluminijum oksida u uslovima režima laminarnog strujanja. Ispitivanje je vršeno pomoću cevi dužine 1,1 m i unutrašnjeg prečnika 5 mm kod izmenjivača toplote sa dvostrukom cevi pri konstantnim temperaturama zida. Zagrejani nanofluid teče kroz unutrašnju cev a rashladna voda opstrujava spolja. Zapreminska koncentracija nanočestica je varirala: 0,15%; 0,25% i 0,5%. Eksperiment je pokazao da se prenos toplote konvekcijom značajno povećava sa povećanjem koncentracije nanočestica pri različitim vrednostima Rejnoldsovog broja. Nuseltov broj se povećava oko 40,5% u odnosu na čistu vodu pri zapreminskoj koncentraciji od 0,5%. Pad pritiska u nanofluidu neznatno raste sa porastom zapreminske koncentracije. Međutim, u poređenju sa korišćenjem čiste vode razlika je beznačajna, tako da korišćenje nanofluida ima malog uticaja na pad pritiska.
Reference
Anoop, K.B., Sundararajan, T., Das, S.K. (2009) Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region. Int. J. Heat Mass transfer, 52, 9-10, pp. 2189-2195
Asirvatham, L.G., Raja, B., Lal, D.M., Wongwises, S. (2011) Convective heat transfer of nanofluids with correlations. Particuology, 9(6): 626-631
Beck, M.P., Sun, T., Teja, A.S. (2007) The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol. Fluid Phase Equilibria, 260(2): 275-278
Choi, S.U.S. (1995) Enhancing thermal conductivity of fluids with nanoparticles. u: Siginer D.A., Wang H.P. [ur.] Developments and applications of non-Newtonian flows, ASME, FED, 231/MD, 66, pp. 99-105
Duangthongsuk, W., Wongwises, S. (2009) Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger. International Journal of Heat and Mass Transfer, 52, 7-8, str. 2059-2067
Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J. (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6): 718
Giraldo, M., Ding, Y., Williams, R.A. (2008) Boundary integral study of nanoparticle flow behaviour in the proximity of a solid wall. Journal of Physics D: Applied Physics, 41(8): 085503
Heris, W.S., Esfahany, N.M., Etemad, Gh.S. (2007) Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. International Journal of Heat and Fluid Flow, 28, 2, pp. 203-210
Hojjat, M., Etemad, S.G., Bagheri, R., Thibault, J. (2011) Turbulent forced convection heat transfer of non-Newtonian nanofluids. Experimental Thermal and Fluid Science, 35(7): 1351-1356
Incropera, F.P., Dewitt, D.P., Bergman, T.L., Lavine, A.S. (2011) Fundamentals of Heat and Mass Transfer. New York: John Wiley & Sons
Li, Q., Xuang, Y. (2002) Convective Heat Transfer and Flow Characteristic of Cu-Water Nanofluid. Science in China, Series E, 45, 4, pp. 408-416
Maïga, S.E.B., Palm, S.J., Nguyen, C.T., Roy, G., Galanis, N. (2005) Heat transfer enhancement by using nanofluids in forced convection flows. International Journal of Heat and Fluid Flow, 26(4): 530-546
Moffat, R.J. (1988) Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science, 1(1): 3-17
Murshed, S.M.S., Leong, K.C., Yang, C. (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. International Journal of Thermal Sciences, 44(4): 367-373
Pak, B.C., Cho, Y.I. (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11(2): 151-170
Sajadi, A.R., Kazemi, M.H. (2011) Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube. International Communications in Heat and Mass Transfer, 38(10): 1474-1478
Sieder, E.N., Tate, G.E. (1936) Heat transfer and pressure drop of liquids in tubes. Industrial and Engineering Chemistry, 28, str. 1429-1435
Wang, X., Xu, X., Choi, S. (1999) US thermal conductivity of nanoparticles fluid mixture. Journal of ThermoPhysic Heat Transfer, 13, 4, str. 474-80
Xuan, Y., Roetzel, W. (2000) Conceptions of heat transfer correlations of nanofluids. International Journal of Heat and Mass Transfer, 43, 19, str. 3701-3707
Yu, W., Choi, S.U.S. (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. Journal of Nanoparticle Research, 5, 1, pp. 167-171
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fmet1402155S
objavljen u SCIndeksu: 14.04.2014.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka