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The relations from which Young’s modulus may be computed from mechanical flexural
and longitudinal resonance frequencies have been established by an empirical method using

two sets of steel bars.

Both sets contained rectangular and cylindrical specimens.

For

longitudinal vibration of ecylindrical specimens, the agreement between the empirical curves
and Bancroft’s corresponding theoretical relation was within experimental error if Poisson’s

ratio for both sets is taken to be 0.292.

For flexural vibrations, the agreement between the

empirical curve and the corresponding theoretical relation developed by Pickett is also with-
in experimental error for about the same value of Poisson’s ratio for the rectangular speci-
mens of both sets; but for eylindrical specimens, the empirical values are somewhat lower

than those predicted by the theory.

1. Introduction

In a previous paper, [1] ' an empirical relation was
established from which the shear modulus could be
calculated from the torsional resonance frequency
using uniform steel bars of different rectangular cross
sections. The empirical relation was compared with
corresponding theoretical approximations. The pur-
pose of the present paper is to establish similar rela-
tions from which Young’s modulus may be deter-
mined from the flexural and longitudinal mechanical
resonance frequencies for bars of round and rectangu-
lar cross section. These empirical relations are also
compared with corresponding theoretical equations
when feasible.

As in the previous work, advantage is taken of the
fact that these resonance frequencies can be deter-
mined to an accuracy which, when combined with
comparable accuracy of dimensions, is sufficient to
vield empirical results good to four significant
figures.

In fact, it is this increased accuracy to which
modern experimental techniques have advanced
dynamic elastic measurements that has made it
possible to check in a more precise manner the
theoretical results of such analysts as Rayleigh,
Kelvin, Poisson, and Stokes [2].

As usually happens in such cases, this increased
experimental accuracy has, in turn, led to a refine-
ment and extension of the theory. Some equations
had lain dormant for many years because, though
presumably ‘“‘complete” and ‘‘correct,” they were
nevertheless expressed in so general a form that
numerical solutions for most real cases were too
cumbersome to be of practical value. Such equa-
tions have recently been solved for given boundary
conditions. These solutions have often taken ad-

! Figures in brackets indicate the literature references at the end of this paper.

rantage of modern computing devices. A particular
case 1n point is the set of Pochhammer-Chree equa-
tions, relating the most general case of elastic waves
in rods to their elastic moduli. These equations,
almost forgotten for more than 50 years, were solved
by Bancroft [3] for the case of longitudinal waves
and by Hudson [4] for flexural waves. A recent
article by Davies [5] presents a comprehensive re-
view and bibliography of the advances in this field
up to the present time.

For Young’s modulus, the problem of establishing
an empirical relation is complicated by the fact that
the cross sectional correction for both flexural and
longitudinal vibrations depends upon Poisson’s ratio
as well as the dimensions. This 1s in contrast with
shear for which the cross sectional correction is
independent of Poisson’s ratio. Consequently, the
results to be presented here are more limited than
those previously given for shear since these results
apply mainly to those materials having Poisson’s
ratios approximately equal to those used here.
Furthermore, when comparing the empirical with
theoretical relations, any error in the value of Pois-
son’s ratio assigned to the specimens would result in
a corresponding error in the comparison of the cor-
rection factors. This error would increase as the
ratio of cross section to length increased.

2. Experimental Procedures

2.1. General

The basic experimental approach consists in de-
termining the flexural and longitudinal resonance
frequencies of specimens of known mass and dimen-
sions, and assuming their uniformity of Young’s
modulus and density, to derive the empirical relation
needed for the determination of Young’s modulus
from the mechanical resonance frequency. Data to
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be presented later will show that the assumption of
uniform density and Young’s modulus is quite
justified.

2.2. Specimens

Two separate sets of steel specimens were used in
this investigation. Each set of specimens was cut
from its own parent piece to insure the greatest
possible uniformity of intrinsic Young’s modulus
and density from specimen to specimen within each
of the two sets.

One source was a cylindrical bar of cold drawn
steel about 1 in. in diameter, designated as SAE No.
1020. Originally 18 specimens, 1-5 through [-22,
ranging in length from about 3 to 12 in. were cut from
the parent stock. Subsequently some of these rods
were further shortened or machined to square cross
section to extend the range of the experimental data.
All of the specimens from this source are henceforth
classified as set I. Exact dimensions and other
related data for set I are given in table 1.

TasLe 1. Data for specimens of set 1*
Speci- | Length | Density | f(long)b | f(flex)b kjl ¢ v/vo i
men ! p empirical | empirical
cm glem3 cps cps
5. 050 7.849 50, 253 31, 310 0. 12565 0. 9851 2.1234
5.118 7.850 | 49,606 30, 650 . 12396 9857 2. 0997
5. 354 7.849 |_________ 28, 624 SI1S5D A eens e 1. 9998
5. 639 7o 8H0R|EEE TS 26, 401 il ey T e 1. 9206
7.511 7.851 | 34,051 16, 605 . 08447 9929 1. 5424
7. 584 7.851 33,752 16, 341 . 08366 . 9938 1. 5320
7.760 7.851 32,975 15,733 . 08176 . 9934 1. 5077
10.117 7.847 25, 370 9, 939 . 06272 . 9965 1. 3085
10. 224 7.846 | 25,107 9, 7565 . 06206 . 9966 1. 3024
14.790 7.851 17, 389 4, 965 . 04289 9985 1. 1475
14.958 7.853 17,190 4, 859 . 04241 9982 1. 1447
14. 968 7.854 17,185 4,854 . 04238 9986 1. 1438
15.118 7.853 17,014 4,765 . 04196 . 9985 1. 1410
15. 235 7.851 16, 883 4,695 . 04164 . 9986 1. 1395
19. 736 7.851 13,037 2, 866 . 03214 9989 1. 0862
19. 985 7.852 12, 875 2, 799 . 03174 9989 1. 0829
22,951 7.849 11,213 2,139 . 02766 . 9991 1. 0664
25. 641 7.850 10, 039 1,725 . 02475 . 9993 1. 0525
29. 987 7.852 8, 687 1,271 . 02116 9997 1. 0360
30. 201 7.853 8, 525 1,253 . 02101 9995 1. 0359
30. 500 7.852 8,442 1,229 . 02080 9996 1. 0353
30. 554 7. 850 8, 427 1,225 . 02076 9995 1. 0350
5.177 U 26, 704 . 10020 1. 7649
6. 942 7E - 16,415 . 07473 1. 4445
14. 968 7. 850 17,188 4,043 . 03464 1. 1016
19. 736 7.848 13,039 2,370 . 02627 1. 0610
25. 641 7.847 10, 038 1,421 . 02023 1. 0360

a All specimens except those followed by a letter are 2.5378 cm in diameter.
Those followed by a letter are 1.796-cm square.
b Fundamental lonzitudinal and flexural resonance frequencies.

ck=radius of gyration of the cross sectional area about an axis perpendicular
to the plane of vibration

for round specimens k=% diam=0.63445 cm.
for square specimens k=edge/~/12=0.51846 cm,
_for cylindrical specimens, D/A=2k/l
where D =diameter of specimen and A=wavelength of longitudinal wave.

The other source of specimens was a bar of 2-in.
square stock of hot rolled and annealed tool steel
designated by the trade name ‘“Stentor.” The
original specimens from this source were the same
12 pieces (II-1 through I1-12) of equal lengths but
different rectangular cross sections that were used
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in the investigation for shear modulus [1]. As for
set I, some of these specimens were further reduced
in dimensions or machined to circular cross section.
All specimens from the second source are classified
as set II and data for these specimens are given in
table 2.

The dimensions of both sets of specimens are
accurate to 4=.001 em. The density was calculated
from the mass and the dimensions of the specimens.
The average density for the specimens of set I was
7.851 g/em?, and that of set IT was, as previously
given [1], 7.814 g/em®. The standard deviation of
this measurement was 0.002 g/em?® for both sets.
This small variation in density is good evidence for
the intrinsic uniformity of the specimens of each set.
Although the density variations are within the error
of the measurement, the mass and dimensions of
each particular specimen were used in most calcula-
tions rather than the average value of density. The
density of some randomly selected specimens of both
sets was also checked by weighing in air and while
immersed in liquid and was found to agree with the
above values within the error of their determination.

Actually, for the specimens of set 11, the density,
p, by the immersion technique was found to be
7.816 g/em?.  Subsequent determination of p, calcu-
lated from the mass and volume of two specimens
machined to a higher degree of accuracy than the
others (specimens 11-47; and 11-47,), agreed with the
value obtained by immersion and is believed to be
the most reliable value for the specimens of set II.

2.3. Method

The mechanical longitudinal and flexural resonance
frequencies of both sets of specimens were deter-
mined by the dynamic method previously deseribed
[1]. Briefly, one of the mechanical resonance
frequencies of the specimen is excited by an electro-
magnetic driver. The increased amplitude of vibra-
tion of the specimen at résonance is detected by a
crystal pickup whose output, together with a signal
of the same frequency, produces a Lissajou pattern
on a cathode-ray oscilloscope. The different types of
vibrations are obtained by appropriate placement of
the driver and pickup with respect to the specimen.

As with torsional vibrations the longitudinal and
flexural resonance frequencies were excited and
detected by more than one method.

In the first method the specimens were supported
on foam rubber in the vicinity of the nodal points
and driven through air by a tweeter type driver. A
crystal pickup placed lightly against the proper part
of the specimen detected the vibrations. Both
longitudinal and flexural vibrations could be ob-
tained by this method.

The second method could be used only to obtain
flexural vibrations and was most appropriate for the
lichter specimens. This method consisted in sus-
pending the specimens from two cotton fibers, one
fiber being attached to a phonograph record cutting
head as the driver and the other fiber being attached
to a crystal pickup. Unlike the case for torsion, it



TaBLE 2.

Data for specimens of set I1

Rectangular specimens
Specimen = Flatwise ‘ Edgewise
Length Width Depth Density - | f(long)
l w d p |
k/L b f(flex) 1t ’ kL b f(flex) T
cm cm cm glem ? cps cps cps
II-1 15. 202 3. 1496 3. 1496 7.817 0. 05981 6411 1.2915 0. () 7981 6411 1. 2915 17, 046
I1-2 15. 202 3. 1433 2. 5405 7.819 . 04825 5379 1.1936 )5969 6399 1.2910 17, 053
II-3 15. 202 3. 1433 1. 9055 7.814 . 03619 4183 1.1112 o ll 5969 6398 1. 2923 17, 062
114 15. 202 3. 1433 1. 5875 7.817 . 03015 3538 1.0775 . 05969 6400 1. 2909 17, 065
1I-5 15. 202 3. 1433 1. 4300 7.814 . 02716 3208 1. 0635 . 05969 6397 1. 2926 17, 066
11-6 15. 202 3.1433 1. 2708 7.816 . 02413 2867 1.0514 . 05969 6399 1.2916 17, 066
I1-7 15. 202 3. 1433 1.1120 7.812 .02112 2523 1. 0403 . 05969 6399 1.2921 17,071
II-8 15. 202 3. 1433 0. 9530 7.812 . 01810 2172 1. 0309 . 05969 6394 1. 2941 17, 067
11-9 15. 202 3. 1433 L7943 7.813 . 01508 1820. 6 1.0189 6400 1. 2916 17,075
11-10 15. 202 3. 1433 . 6362 7.815 L 01208 1463. 4 1.0118 ) 6400 1. 2912 17,070
1I-11 15. 202 3. 1433 L4773 7.811 . 00906 1101. 1 1. 0061 o (h‘)h‘) 6400 1. 2919 17, 070
II-12 15. 202 3. 1433 L3172 7.814 . 00602 733.0 1. 0028 . 05969 6396 1. 2927 17, 064
II-2a 7.882 3. 1433 2. 5405 7.814 . 09306 16, 941 1. 6660 11513 19, 203 1.9849 | ..
1I-2b 7.010 3. 1433 2. 5405 7.817 . 10463 20, 432 1. 8297 . 12945 22, 934 2.2232 |coeeeee -
1I-3a 7.546 3. 1433 1. 9055 7.818 . 07290 14, 983 1.4255 L 12026 20, 495 2.0732 |ococ-
1I-3b 7.249 3. 1433 1. 9055 7.817 . 07589 16, 052 1.4584 . 12519 21, 789 251535 emEteTee
1I-10a 15. 202 2.0574 0. 6363 7.816 . 01208 1460. 7 1.0147 | . 03907 4475 1.1314 | .
1I-10b 15. 202 0. 6426 L6363 | 7.814 01220 || | ——— T | S 17,100
|
Cylindrical specimens
Length 1 Diameter Density k/le J(flex) T J(long) 200
l D P

II-1r 14. 364 3.1252 7.816 0. 05439 6303 1. 2384 18, 057 0. 9978
1I-2ar 7.315 2. 4460 7.812 . 08359 17,102 1. 5329 35, 329 . 9944
I1-3br 6. 447 1.8124 7.812 . 07029 17, 141 1. 3882 40, 145 . 9957
I1-47; 14. 669 1. 2845 7.816 . 02189 2708. 9 1. 0404 17,714 . 9996
11-4r; 14. 668 1. 2843 7.816 . 02189 2708. 3 1. 0407 17,715 . 9996

a Letter following specimen number indicates that the specimen has been
redimensioned. Number denotes original specimen. A second letter indicates
a second change in dimensicn.

b k=radius of gyration of the cross sectional area about an axis perpendicular to

was not necessary for the points of suspension to be
at opposite faces of the specimen.

A third method, combining certain features of the
first two, consisted in suspending the specimens from
two cotton fibers as in the second method but
driving them through air with a tweeter and detect-
ing the vibrations with a crystal pickup as in the
first method. This third method could be used to
obtain both flexural and longitudinal vibrations and
was satisfactory for heavy as well as light specimens.
The highest resonance frequencies could be obtained
most readily by this method.

The accuracy of the resonance frequencies obtained
by the last two methods was usually somewhat
better than that obtained by the first method.
However, by any of these methods, the accuracy of
the resonance frequencies was usually better than 1
part in 4,000 [1].

The fundamental longitudinal and flexural reso-
nance frequencies for the specimens of sets I and 11
are given respectively in tables 1 and 2. Inasmuch
as the specimens of set Il are rectangular in cross
section, two separate flexural resonance frequencies
oceur about both longitudinal planes of symmetry
(flatwise and edgewise). The fact that the edgewise
flexural frequency is the same for specimens II-
through I1-12 is of considerable significance as will

the plane of vibration. For rectangular specimens in flatwise vibrations,

k=d/y/12; for edgewise vibration k= /12.
e For cylindrical specimens, k=D/4. ~ Since, for the fundamental longitudinal
resonance frequency, N=2L, k/l=d/2\.

be explained. Table 3 gives frequencies of overtones
of longitudinal resonance vibrations of four speci-
mens of set I and one specimen of set T1.

It may be observed that longitudinal resonance
frequencies of over 50,000 cps are recorded for both
fundamentals and overtones. These remarkably

Tasre 3. Overtones of logitudinal resonance vibrations of several
cylindrical specimens

Frequency | D/A=r/l v/von
Fundamental (n=1) 8525 0. 04202 0. 9995
1st overtone (n=2) 17027 . ?ggg? 3 836332
2d overtone (n=3) 25491 . o

Specimen 1-20 3d overtone  (n—4) 33808 116809 - 9936
4th overtone (n=>5) 42218 . 21012 . 9900

Fundamental (n=1) 8442 . 04160 . 9996

Set I 1st overtone (n=2) 16858 . 08321 . 9981
Specimen T-21 12d overtone  (n=3) 25238 . 12481 - 9961
Specime lxd overtone  (n—4) 33560 C16642 | L9935
4th overtone (n=>5) 41800 . 20802 . 8999

Fundamental (n=1) 8587 . 04232 . 9997

Set T 1st overtone (n=2) 17154 . 08464 9985
Specimen I-19 }2d overtone (n=3) 25683 . 12696 9966
3d overtone (n=4) 34146 . 16928 9938
Set T {Fundamnntal (n=1) 12875 . 06348 9989
Specimen I-16 \1st overtone (n=2) 25692 . 12696 . 9967
Set I Fundamental (n=1) 18057 . 10878 . 9978
Specimen II-1r 1st overtone (n=2) 35823 . 21756 9898
Pl 2d overtone  (n=3) 52884 . 32634 9741

a For set I specimens, vo=>5152 m/sec; for set IT specimens, vo=>5199 m/sec.
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high values of resonance frequency which can be
excited and detected by a method sometimes de-
seribed as ‘“‘sonic,” are explained by the nature of
the specimens and also by the fact that the response
of both driver and pickup, though reduced, persists
at frequencies considerably above their rated upper
frequency limit. This reduced response is amplified
and detected as a recognizable pattern on the scope.

Since the upper frequency response obtained is
more than 2} times higher than the nominal upper
limit of the sonic range and will probably go higher
as experimental techniques improve, it is felt that
the term, ‘“mechanical resonance methods,” would
be more appropriate than ‘“sonic methods” to de-
scribe the experimental procedure used.

3. Calculations, Results, and Discussion

3.1. Longitudinal Resonance Frequencies for Cylin-
drical Specimens of Sets I and II

The following relations for this type of vibration
are recalled. Kirst, a rod vibrating in this manner
satisfies the condition that

I=n)\/2 1)

where /=length of specimen, n=order of resonance
frequency. For the fundamental, n=1, for the first
overtone n=2, etc., A=wavelength of the vibration
in the specimen. This leads to the well-known
relation between the velocity of the longitudinal
wave, », and the longitudinal resonance frequency,
ny

p2ln,

- @)

The subseript after the f indicates the order of the
resonance frequency.

For an infinitely thin specimen of length /, »
becomes the “rod velocity,” »,. Rayleigh’s familiar
approximation, given below, shows the amount
by which », in a specimen of finite circular cross
section 1s reduced from .

LT W

where u=Poisson’s ratio and r=radius of the rod.

The relation showing the effect of cross section is
often expressed in terms of »/p, as a function of
D/\, D being the diameter of cross section. This
convention will be followed here. From eq (1) it
is seen that D/N=mnr/L.

Empirical values of »/s, can be conveniently cal-
culated after the value of », has been determined.
We consider first the specimens of set I. Substitu-
tion of the appropriate values for the longest speci-
men, [-22  (having the lowest 7/l) in eq (3) shows
that ©=0.99962,. Specimens I1-19, [-20, and
I-21 are sufficiently long to give an average for
the ratio, »/v,, from eq (3) equal to that for specimen
I-22. At the low values of 7/l associated with these
specimens, the choice of a proper value of x is no
problem, since any reasonable variation about the

selected value of 0.3 (say from 0.26 to 0.32) will
have only a negligible effect on the result. Also,
at such low values of 7/l any difference between
Rayleigh’s and corresponding equations, such as
Bancroft’s, will also be negligible. Therefore, the
average value of »,=5152 m/sec, obtained by sub-
stituting the values for these four longest specimens
in eq (2) and dividing by 0.9996, is taken to be the
rod velocity for the specimens of set I. The empirical
values of »/v, for the remainder of the specimens of
set I are then found from the following equation

211, |
5152n

4)

vfve=

These v/v, values are given numerically in table 1 and
graphically, as a function of D/\ in figure 1.

The empirical values of »/v, for the specimens of
set II are found in the same manner. The reference
specimens in this case, having the lowest value of
r/l, were I1-4r;, and II-47,. These are recalled to
be the specimens that were more accurately machined.
The purpose of this was to obtain a more reliable
base value. For these specimens, »/v,=0.9996,
2o="5199 m/sec, and empirical values for the other
specimens are found from the equation

21T,
Vbo=rrg0" (4a)
5199n
T T T T
1,000 =
N i
995|— I
990=— —
i EMPIRICAL/ n
985 — AND |
| BANCROFT, }LI 292
Y 7
980 |— / \ —
L BANCROFT, £1-30 i
°-FROM FUNDAMENTAL B
I e-FRoM OverTonEs | ot1 1 3
+-FROM FUNDAMENTAL |
+-FROM OVERTONES ] SERT
975 — _
970 - [ L | I | \ 1 _1
10 20 30 40
o/x
Frcure 1. Effect of the ratio of diameter (D) to wavelength (N)

on the ratio of the velocity of the longitudinal wave (v) to the
rod velocity (vo) for two sets of cylindricol steel specimens.

Theoretical curves are included for comparison.
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Numerical values of »/p, for these specimens are
given in table 2 and are plotted along with those of
set I in figure 1.

For both sets of specimens, /s, for higher values
of D/\ was obtained both by vibrating the shortest
specimens at their fundamental resonance frequency
and also (since D/A=n r/l) by vibrating some speci-
mens at higher overtones. The data for these over-
tones are found in table 3.

It is observed from figure 1 that not only do the
empirical points fall on the same curve, within experi-
mental error, whether determined from the funda-
mental or overtones of either set of specimens, but
also the points for both sets of specimens also fall
on this same curve.

Since v, and the density, p, are known, Young’s
modulus, 7, can be det ermined for each set of speci-
mens from the equation,

=0y p (5)
for set I, £=2084X10° dynes/cm?=
and for set 1I, £=2113 kilobars.

Banecroft’s [i] numerical solution of the Poch-
hammer-Chree equation for longitudinal waves has
already been mentioned. His values for p=0.25
and u=0.30 are plotted, along with values based on
Rayleigh’s equation for p=0.25, in figure 1. Ban-
croft’s solution is seen to reduce »/v, by a greater
amount than Rayleigh’s for a given value of pu.
Since Bancroft’s solution is considered more exact
than Rayleigh’s, comparison of the empirical points
will be made with Bancroft. Graphical inter-
polation between Bancroft’s values for u=10.25 and
r=0.30 at D/Ax=0.25 shows the cmpin( al curve to
agree with Bancroft for the case where u=0.292.
That is, if the w of the specimens of sets I and 11 is
0.292, then agreement of the empirical with Ban-
croft’s solution would be within the error of the
measurement.

It would be desirable then to obtain an independ-
ent value of x as a further check. The method that
appeared most feasible for this was to determine
the shear modulus, @, from the torsional resonance
frequency and then, since /£ is already known, to
compute g from the well-known relation between
I/ and G for isotropic materials,

2084 kilobars,

E
F=5g b

(6)
For the specimens of set II, G is already known from
the previous investigation [1] to be 822.1 kilobars.
For the specimens of set I, however, it was not pos-
sible (at first) to detect the torsional resonance fre-
quency of the round bars by any of the variations of
the method previously described.? To circumvent

2 Subsequultly by the use of an improved driver and suspension of the speci-
mens from strings as already described, the torsional resonance frequencies were
obtained for eylindrical bars of sets I and II. The av erage values of G, calculated
from these resonances, were in agreement with those given in the tcxt.

535595—60——2

this difficulty, three of the specimens were machined
to square cross section. This was in fact the original
reason for squaring some of the round specimens of
set I.  (These squared bars incidentally provided
additional specimens for which longitudinal and flex-
ural resonance frequencies could be determined. It
can be seen from table 1 that for specimens of this
size, the effect of cross section in reducing the rod
velocity is of the same order of magnitude as for
circular cross section.) For square specimens the
torsional resonance frequency, and hence G, can be
obtained in the manner described in the previous
paper [1].

Two of the longer and one relatively short speci-
men were selected. A square rather than rectangular
cross section was chosen because the shape factor for
square cross section is believed to be more accurate
[1] and would therefore lead to a more accurate

value of @.

The value of G obtained for specimens I-12a,
I-15a, and I-18a, of set I, were 820.5, 821.6, 820.5
respectively, with an average of 820.9 kilobars.

Substituting the known values of /£ and @ for
both sets of specimens in eq (6) yields the following
values for u: For set I, p=0.269 and for set T[
p=0.285.

The physical constants obtained for sets I and 11
are now summarized in table 4

It appears far more likely that the value of
w=0.292 is closer to the true value for both sets of
specimens than the values obtained from eq (6).
This belief is supported by the following evidence.

Tasur 4. Physical constants of two different sets of steel
specimens

Set I Set IT
v, “‘rod velocity’ . _____ -.m/sec-- 5152 5199
(ll‘ll\ll\ —— S eeea---_glcm& " 7.851 7.816
I Young’s modulus _kilobars. - 2084 2113
(v shear modulus__. ---kilobars._ 820.9 822.1
u, Poisson’s ratio .. R R 0.269 0.285»

« Derived from £ and ¢ values and eq (6).

sets.

From Bancroft, p=0.292 for both

The value of u for steel usually found in the
literature is around 0.29. Markham [6], for instance,
measured £ and @ for 10 different types of steel by an
ultrasonic method and, from these elastic moduli,
calculated x. His values for p varied between 0.286
and 0.292 with an average of 0.289. Analysis of
Markham’s data shows that the variation in values
of p given for the different types of steel can be
accounted for completely by precision in measure-
ments of /7 and ¢, given by Markham, rather than by
any differences in the values of £ and @ themselves.
Therefore, the average value of p=0.289 for all the
steels may be taken as characteristic of each of them.
Thus it appears that though /£ and ¢ may be differ-
ent for different types of steel, these elastic modult
vary concomitantly so that u remains constant.

If ©1~0.292 is correct for the specimens of sets I
and 11, then a possible explanation for the lower
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values of u obtained from eq (6) lies in the fact that
a preferred crystal orientation develops in the steel
during the process of manufacture. Consequently,
the assumption of macroscopic isotropy resulting
from a completely random ecrystal orientation is not
entirely fulfilled, and eq (6) which is based on this
assumption, is not entirely valid for these specimens.
Frankland and Whittemore [7] have demonstrated
that the average E for specimens of “black’ sheet
steel cut perpendicular to the direction of rolling is
significantly different from the average I of speci-
mens cut parallel to the direction of rolling. In
this connection, it is noteworthy that for the speci-
mens of set I, in which the process of repeated cold
working of the parent stock results in a more pro-
nounced crystal orientation, the value of u departs
by a greater amount from the “correct” value, than
for the specimens of set II, where the process of
annealing of the parent stock largely restores the
random crystal orientation. Indeed, the value of w
in the specimens of set Il from eq (6) is in good
agreement with the values found in the literature
and with that based on Bancroft in this investigation.

Also, it appears from the fact that the empirical
points of v/, for sets I and 1I lie on the same line,
that the value of u for both sets of specimens is the
same. This does not prove that the value of u
based on Bancroft is “correct” but it does make it
improbable that sets I and II should have different
values as the results based on eq (6) would indicate,
for it would be a most unlikely coincidence that any
error resulting from interpolation from Bancroft
should lead to the same value of y, if the u of both
sets of specimens were actually different. Further-
more, the agreement in u for both sets of specimens
is in accordance with Markham’s data.

The alternative possibility to explain the discrep-
ancy in g, is that the values based on eq (6) are
correct, and that Bancroft’s correction for cross
section and consequently, the value of p based on it
are incorrect. Inasmuch as this alternative involves
the (at least partial) rejection of Banecroft’s
theoretical equation as well as the value of u for
steel found in the literature, both widely accepted,
its correctness appears most unlikely.

3.2. Longitudinal Resonance, Rectangular
Specimens

The longitudinal resonance {requencies of the
rectangular specimens of both sets are listed in
tables 1 and 2 but will not be considered here. Tt is
planned to discuss these in a subsequent paper. Tt
will merely be noted here that specimen II-10 b,
having a small nearly square cross section, had a
considerably higher resonance frequency (17,100
cps) than the other specimens of the same set.
Substituting the resonance frequency and length for
this specimen in eq (2) yields a value of »=5199
m/sec in agreement with », for this set. This value
would be expected for a round specimen of the
same k/L.
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3.3. Flexural Vibrations, Sets I and II

Flexural vibrations are probably of more practical
importance than longitudinal as a means of de-
termining Young’s modulus because flexural vibra-
tions can usually be excited more easily than longi-
tudinal. This is especially true for thin specimens.
Thus, for these thin specimens where any error in £
due to an error in the correction for cross section
would be minimized, the longitudinal resonance
frequency is relatively difficult to obtain, whereas
the flexural resonance frequency becomes experi-
mentally easier to excite. Hence a reliable relation-
ship from which 7 may be determined from the
flexural resonance frequency becomes important.

Hudson’s [4] numerical solution of the Poch-
hammer-Chree equations for flexural waves has
already been mentioned. Unfortunately, no com-
parison can be made between Hudson’s results and
the empirical ones, because no simple or clear-cut
relation has been found to exist between the length
of a traveling flexural wave in a very long bar and
the length of bars vibrating in flexural resonance.
Consequently, one relies on a direct relation between
Young’s modulus and the flexural resonance fre-
quency.

Goens [8] has solved Timoshenko’s [9] equation
relating Young’s modulus to the flexural resonance
frequency for bars of different cross section. Pickett
[10] has further simplified Goen’s solution. Goen’s
solution can be expressed in the following form:

20l )
75,'7',;21] p1 (M

where f, in this case, is the flexural resonance fre-
quency; k is the radius of gyration of the cross sec-
tional area about an axis perpendicular to the plane
of vibration. For arectangular cross sectionk—=1/412,
t being the dimension in the direction of vibration.
(The depth and width interchange as ¢ depending on
whether the vibration is flatwise or edgewise.) For a
circular cross section, k=7/2; m is a constant which
has higher values for higher overtones, for the
fundamental m=4.730; 17 is a correction factor
which varies with £/l and u.  Pickett used subscripts
for m and 7" since both factors vary with the order
of vibrations. Since only the fundamental flexural
resonance frequency is considered here, the subseripts
are dropped.
For cylindrical bars eq (7) becomes

V=

l? 2
E=1.2619 [—D—q e (7a)
and for rectangular bars eq (7) becomes
l? 2
E—0.9464 [{] oT. (7h)
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Pickett gives algebraic equations relating 7' to
k/lfor u=0, %, and %. In addition he gives numerical
solutions of these equations for particular values of
e/l and graphs based on these solutions. The graphs
for p="1¢ and %, the two values which span the range
of interest for steel, are reproduced in figure 2 from
Pickett’s numerical values. 7" approaches 1 as &/l
approaches 0 for all values of .
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Ficure 2. Empirical and theoretical curves showing the effect
of k/1 on the correction factor, T, for flexural vibrations.
k/l is the ratio of the radius of gyration of the cross sectional area about an axis

perpendicular to the plane of vibration to the length of the specimen. Sets I and
II represent two separate sets of steel bars.

According to eq 7b, for a given value of £, the
flexural resonance frequencies of rectangular speci-
mens are independent of the dimension perpendicular
to the plane of vibration. Pickett shows in the
appendix of his paper, which deals with the problem
more rigorously, that in the extreme cases of an
infinitely thin bar or an infinitely wide slab, this
dimension (perpendicular to the plane of vibration)
does slightly affect the flexural resonance frequency.
However, for the specimens used in this investiga-
tion, this correction would be insignificant.

This means that if the specimens of set Il are
really uniform with respect to /£ as well as p, then
the edgewise flexural resonance frequency of speci-
mens [1-2 through IT-12 should all be equal, since
the only variable for these specimens is the dimension
perpendicular to the plane of vibration. The degree

of agreement in this frequency is a critical indication
of the intrinsic uniformity of the specimens. The
variation i frequency is insignificantly small, as
shown in table 3. Therefore, the specimens must
be uniform with respect to £ as well as p! The
importance of this result can hardly be overempha-
sized, since the uniformity of the specimens with
respect to /£ and p is the foundation of the entire
empirical approach.

For the specimens of set I no such conelusive check
on the uniformity of /7 is possible, so that the uni-
formity of p must serve as indirect evidence of the
uaiformity of 7. However, the evidence just pre-
sented for the specimens of set 1T makes it more
likely that the same situation holds for the specimens
of set 1.

The empirical values of 7" are obtained by substi-
tuting the base value of /£ for each set of specimens,
given in table 4, and the other appropriate param-
eters for each specimen, 2ll of which are known from
tables 1 and 2, in eq 7a or 7b.

It is interesting to compare the values of /£ which
result from a determination based on eq 7a and 7b,
using 7" obtained directly from Pickett, with the
base values of £ used above. TFor this purpose,
only those specimens of each set are used which have
the lowest values of £// because for these, as was the
ase for longitudinal vibrations, it can be seen from
the thecretical curves i figure 2 that an error in
the choice of x would cause only a negligible error
in 7. Values of £ for these specimens of low £/l
are given below:

Set I, average of specimens [-19, [-20, 1-21, and
I-22—2085 kilobars;
Set IT, average of specimens [I-4r; and [T-4r,—
2113 kilobars;
Set 1T, average of specimens I1-11 and 11-12--2115
kilobars,

These values are seen to be in excellent agreement
with those based on longitudinal vibrations and
given in table 4. The values based on longitudinal
vibrations are used in establishing the empirical
values of 7" because the equations on which they are
based are established by long usage.

The empirical values of 7" are given numerically
in tables 1 and 2 and are plotted as a function of
k)l in figure 2. The average value of 7" obtained
from the edgewise flexural resonance {requency for
specimens I1-2 through I1-12 of set II provide a
single point which is designated in the figure. Figure
3 shows the same data in an expanded form.

The values for 7' from Pickett, for p=0.29 given
in figure 3, were obtained by a quadratic interpola-
tion from Pickett’s equations for u=0, 1/6, and 1/3.2

3 The actual equation used for this interpolation was:
T=1+479.02 (140.0752 p+0.810¢ u2) (k/D)?

S (k>4 1201 (1402023 u+2.173 ) (k/D*
2\ 1) T1476.06 (140.14081 u+1.536 u2) (k[D)*
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Ficure 3.  Krpanded method of showing data in figure 2 illus-
trating (@), separation of empirical correction factor for round
and rectangular spectmens, and (b), departure of all empirical
points from theoretical (solid) curve for p=0.29.

Square symbols represent rectangular specimens; round symbols represent
cylindrical specimens; hollow symbols, set I; solid symbols, set IT; symbols with

crosses, special group (footnote 4).

The computations involved in obtaining 7" for a
given value of p from this equation are Obwouql\'
more cumbersome than from the corresponding one
given in the ASTM Book of Standards, pt. 3, p. 1355,
1955 (C215-55T). However, the oqu(Ltlon given in
the ASTM is inadequate nccebsnntmg the use of the
equation given here.

Inspection of figures 2 and 3 shows the empirical
points to fall on two distinctly separate curves.
The points determining these curves are not grouped
on the basis of which set of specimens they are
comprised but rather on the basis of whether the
specimens are cylindrical or rectangular. All of the
points forming the upper curve are derived from the
rectangular specimens of sets I and II, while all of
the points forming the lower curve are derived from
the cylindrical specimens of both sets.

Inasmuch as the empirical curves are developed
without any assumption for the value of u, these
data support the conclusion drawn previously (rom
longitudinal vibrations; namely, that the speci-
mens of both sets have the same value of u.

However, the separation of the empirical points
into two curves, one for ecylindrical and one for
rectangular specimens, is unexpected; for, according
to Pickett, the value of 7" at any given k/l should
depend only upon x and not upon whether the bars

are circular or rectangular in cross section.* Actu-
ally, Pickett recognizes that an assumption 1is
involved in the equality of 7" for specimens of circular
and square cross section.

Since the two empirical curves do diverge, especi-
ally at higher values of %//, it is relevant to inquire
which empirical curve is in better agreement with
Pickett’s theoretical relation. An estimate of the
probable values of p for the two curves may be made
on the basis of their relative positions from Pickett’s
curves for u=1% and p=1%. Such an estimate leads
to a value of u for the upper curve of around 0.26 to
0.30 while for the lower curve u appears to be around
0.17 to 0.19. Inasmuch as the u value so estimated
for the upper curve is in agreement with the literature
as well as earlier parts of This investigation, while the
similar estimate for the lower curve leads to an
absurdly low value of u for steel, one concludes that
the empirical curve for rectangular specimens is in
better agreement with Pickett than the empirical
curve for ecylindrical specimens. It also appears
that Pickett’s curve for u=1J% would give reasonably
good values of 7" for eylindrical specimens having an
actual value of u=0.29

Inspection of figure 3 also shows that the empirical
curve for rectangular spec ‘imens _departs from  the
theoretical curve for p= by an increasing amount
as k/l increases. For the cylindrical specimens the
curve appears to level off to a value slightly above
Pickett’s curve for u=1%.

4. Summary

1. Empirical relations have been developed from
which Young’s modulus may be determined from the
longitudinal and flexural resonance frequencies.
Two sets of steel bars were used as specimens.  Both
sets were composed of eylindrical and rectangular
specimens. These empirical relations have been
compared with corresponding theoretical ones. The
accuracy of the empirical determinations are such
that numerical comparisons with the theory to four
significant figures are justified.

2. For longltu(hnal vibrations, the empirically
determined curve for the cylmdncal specimens,
agrees with the corresponding theoretical one (based
on Bancroft’s numerical solution of the Pochham-
mer-Chree equations for this particular boundary
condition) if a value of Poisson’s ratio of 0.292 1s
assumed for both sets of specimens. This value is
in agreement with that found in the literature for
steel.

3. For flexural vibrations two separate empirical
curves develop. One curve is formed by the rectan-
gular specimens of both sets and a second curve is

4 This unexpected result was further tested using an entirely different group of
six specimens all cut from the same soft steel. Special care was taken to have the
specimens homogeneous and isotropic. The six specimens were divided into
three pairs, each pair having the same length and the same value of k. One
specimen of each pair was circular and the other square in cross section.

If Pickett’s assumption of the equality of the correction factor 7 for square
and ecylindrical bars of the same k/ is correct, then each of the above pairs should
have the same flexural resonance frequency. However, the frequencies of each
pair were found to differ from each other by an amount in agreement with the
empirical results already obtained for sets I and II. Points representing these
specimens are included in figure 3.
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formed by the cylindrical specimens of both sets.
The curve formed by the rectangular specimens is in
fair agreement with the corresponding theoretical
relation (based on Timoshenko, Goens, and Pickett)
if a value of Poisson’s ratio about 0.292 is again as-
sumed. However, the empirical curve formed by the
cylindrical specimens would agree with the theoreti-
cal one only if a Poisson’s ratio of about % is assumed
for them. Since this value is obviously too low for
steel, based on the literature and the present study,
it is concluded that the experimental results agree
with the theory for rectangular specimens but that
Pickett’s' equations give too high a value for the
correction factor for cylindrical specimens.

The authors express their appreciation for the
imvaluable help of J. B. Wachtman, both for in-
formation of a general background nature and also
for clarifying many particular problems which arose
during the course of the investigation.

Wasninaron, D.C. (Paper 64A2-37)
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